
Abstract. We have isolated 3-chloro-2,5-dihydroxybenzyl
alcohol (CHBA) from marine-derived fungus Aspergillus
sp. and characterized its apoptosis-inducing properties
against human cervical carcinoma (HeLa) cells. Significantly
decreased rates of proliferation and viability (IC50 ~35 μM)
as well as evidence of apoptosis were observed with CHBA.
Nuclear changes observed under fluorescence microscopy
confirmed apoptosis occurrence and showed a typical pattern
of chromatin condensation. Furthermore, results from
Annexin V-FITC/PI dual staining indicated that CHBA
induced earlier apoptosis of HeLa cells in a concentration-
and time-dependent manner. CHBA also induced cyto-
chrome c release from mitochondria into the cytosol and
subsequent caspase activation involving caspase-9 and -3
by Western blotting assay was observed. We also found that
CHBA was able to induce DNA damage and inhibit DNA
replication followed by S phase arrest. The very sensitive
alkaline microgel electrophoresis technique (comet assay)
was used for estimation of the CHBA-induced DNA single
strand breaks. These findings suggest that CHBA induces
HeLa cell apoptosis by cytochrome c release and caspase
activation pathway and that the effect of CHBA on apoptosis
of HeLa cells is associated with DNA damage. Because of
the ease of synthesis and structural manipulation, CHBA may
have the potential to be developed into an anticancer agent.

Introduction

Marine-derived fungi have proven to be rich sources of
structurally novel and biologically active secondary meta-
bolites, which are emerging as a significant new chemical
resource for drug discovery (1,2). The compound 3-chloro-
2,5-dihydroxybenzyl alcohol (CHBA) (Fig. 1) was first
isolated from a terrestrial fungus Phoma sp. in 1971 by
Sequin-Frey and Tamm and then from two additional
terrestrial fungi: Penicillium canadense (3) and Phyllosticta
sp. (4). In the present study, CHBA was isolated for the first
time from the genus Aspergillus sp. In previous studies,
CHBA was associated with biological functions including
phytotoxic browning effect on red clove leaves (4) and
antifouling and antimicrobial activities (5). However, the
biological properties of CHBA with regard to anti-
proliferative effects and to molecular mechanisms of the
therapeutic effects have not been examined.

In this study, we examined the action of CHBA on
human cervical carcinoma HeLa cells. Many reports have
demonstrated that exposure of cancer cells to chemo-
therapeutic drug can lead to DNA damage (6,7). The most
abundant lesion produced is the DNA single strand breakage,
which can be sensitively detected by the alkaline microgel
electrophoresis (comet) assay (8,9). The comet assay has also
been previously used to detect DNA strand breaks in anti-
tumor studies (10,11). Cells can respond to DNA damage
either by undergoing cell cycle arrest, by facilitating DNA
repair, or by undergoing apoptosis.

Apoptosis, a fundamental cellular activity that maintains
the physiological balance of the organism, is involved in
immune defense machinery (12). It plays a protective role
against carcinogenesis by eliminating either damaged cells
or those excess abnormal cells that proliferated due to
induction by various chemical agents (12,13). Morpho-
logically, apoptosis is characterized by shrinkage of the cell,
dramatic reorganization of the nucleus, active membrane
blebbing and, ultimately, fragmentation of the cell into
membrane-enclosed vesicles (apoptotic bodies) (14). Recent
experiments have demonstrated that mitochondria play an
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essential role in apoptotic commitment (15). Upon apoptotic
stimulation, several important events occur at the mito-
chondria, including the release of cytochrome c. Once cyto-
chrome c is released from the mitochondria into cytosol, the
cell is committed to die by either apoptosis or necrosis. This
cytosolic cytochrome c interacts with apoptotic protease
activation factor 1 (Apaf-1), which induces its association
with procaspase-9, thereby triggering processing and con-
sequent activation of caspase-9. The activated caspase-9 in
turn cleaves downstream effect caspases (such as caspase-3),
initiating apoptotic execution (16).

Activation of the cellular apoptotic axis is a current
strategy for the treatment of human cancer. Emerging
evidence has demonstrated that the anticancer activities
of certain chemotherapeutic agents involve the induction
of apoptosis, which is regarded as the preferred way to
manage cancer (17). It is therefore, essential to identify
novel apoptosis-inducing compounds that are candidate
antitumor agents. Small molecules, like CHBA, have great
potential as anticancer drugs because they can be easily
synthesized and structurally manipulated for selective
development. Clarification of the mode of action of CHBA
may be important in developing its applications.

Materials and methods

Chemicals. PI/RNase staining buffer for cell cycle analysis
and Annexin-FITC kit for apoptosis were from BD Bio-
sciences Pharmingen, USA DMSO and PBS (pH 7.4) were
purchased from Sigma Chemical Co. Eagle's minimum
essential medium (EMEM), fetal bovine serum (FBS),
penicillin-streptomycin and trypsin-EDTA were obtained from
Hyclone Laboratories (Logan, UT). CCK-8 was purchased
from Dojin Laboratories (Osaka, Japan). All other chemicals
were of analytical reagent grade.

Preparation of CHBA. CHBA was isolated from the marine-
derived fungus Aspergillus sp. and was a gift from Dr B.H.
Son's lab of Pukyong National University, Korea. Stock
solutions of CHBA was prepared in dimethyl sulfoxide
(DMSO) and kept at -20˚C. Further dilutions were made
immediately prior to each experiment.

Cell lines. HeLa cells obtained from American Type Culture
Collection (ATCC) were cultured in EMEM medium sup-
plemented with 10% fetal bovine serum at 37˚C (5% CO2) in
a humidified atmosphere.

Cell viability and proliferation assay. HeLa cells were
plated at 5x103 cells into each well of a 96-well microplate.
After the cells were incubated for 24 h, CHBA at various

concentrations was added to each well as treatment and an
appropriate volume of drug vehicle (DMSO) was used as
the control. The plate was incubated an additional 48 h.
CCK-8 reagent (10 μl) was added and incubated for a further
2 h. Cell viability was assessed by WST-8 [2-(2-methoxy-
4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-
tetrazolium], an indicator that is reduced by dehydrogenases
in cells to give a yellow-colored product (formazan), which
is soluble in cell culture medium. Optical density for living
cells was read at 450 nm in a multi-microplate reader (synergy
HT, BIO-TEK®) (18).

For the cell proliferation assay, cells seeded at 5x103

per ml medium in 96-well plates were treated without or
with CHBA (17.5, 35, and 70 μM) for various times. The
viable cells were determined by Cell Counting Kit-8. Each
experiment was repeated at least 3 times.

Measurement of apoptotic morphology. HeLa cells were
distributed (1x105cells/well) into a 24-well plate and
allowed to adhere overnight. The cells were treated with
CHBA (35 μM) respectively for 12 h. Non-treated wells
received an equivalent volume of DMSO (<0.1%). Optic
phase-contrast photographs were taken with a NikonTM Phase
Contrast-2, ELWD 0.3 inverted microscope. For the Hoechst
33342 nuclear staining assay (19), HeLa cells were seeded
into a 24-well plate containing 10-mm-diameter sterile glass
coverslips. After CHBA treatment, each well was washed
with PBS and fixed with 200 μl of fixing solution (methanol:
acetic acid = 3:1) for 15 min at 4˚C. The cells were rinsed
twice with PBS and stained for 10 min in 500 μl of Hoechst
33342 (5 μg/ml) in the dark. After rinsing with sterile
double-distilled water twice, the coverslips were taken out
and mounted on the slides. Observations were made under
ultraviolet light using a DAPI filter. Each experiment was
repeated at least 3 times.

Annexin V-FITC/PI apoptosis analysis. The cells (5x105

cells in 60 mm2 dish) treated with or without CHBA were
collected by trypsinization and washed with precooled PBS
via centrifugation. The pellet was then resuspended in 100 μl
of binding buffer and stained with 5 μl of Annexin V-FITC
(BD PharMingen) and 10 μl of PI (50 μg/ml) for 15 min at
room temperature (15-25˚C) in the dark. The samples were
then read in a FACS calibur flow cytometer. In each analysis,
10,000 events were recorded. Analyses were performed by
the CellQuest software (Becton-Dickinson Instruments,
Franklin Lakes, NJ).

Western blot assay. The cells (1x106 cells in 100 mm2 dish)
treated with or without CHBA were harvested and washed
with cold PBS. Cell pellets were lysed in protein extraction
solution (PRO-PREP) for 20 min on ice. Lysates were
centrifuged at 13,000 rpm for 5 min at 4 ˚C. Protein contents
in the supernatant were measured using the Bradford protein
assay (Bio-Rad, Hercules, CA). Total cellular protein (50 μg)
was separated on 5-16% SDS-PAGE and electro-phoretically
transferred onto PVDF membranes (Amersham Biosciences,
Buckinghamshire, UK). The membranes were blocked with
3% non-fat milk (Sigma) in Tris-buffered saline containing
0.1% Tween-20 and then incubated with primary polyclonal
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Figure 1. The structure of 3-chloro-2,5-dihydroxybenzyl alcohol (CHBA).
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antibodies (BD PharMingen), including cyto-chrome c,
caspase-9, caspase-3, and actin. The primary anti-body
complex was then stained with horseradish peroxidase-
conjugated secondary antibodies. Protein bands were
detected using an enhanced chemiluminescence detection
system according to the manufacturer's manual (Amersham
Pharmacia Biotech, Amersham, UK). To re-probe the
membrane with another primary antibody, antibodies were
stripped with Blot Restore Membrane Rejuvenation Kit
(Chemicon, CHBA).

DNA content analysis. The cells (5x105 cells in 60 mm2 dish)
treated with or without CHBA were collected by trypsi-
nization and washed with precooled PBS via centrifugation.
The cells were suspended in PBS, fixed with 70% ethanol
(v/v). Samples were washed with PBS and stained with
PI/RNase staining buffer (BD PharMingen) for 15 min at
4˚C. The number of cells in different phases of the cell cycle
was analyzed using a FACScan flow cytometer analysis
system (Becton-Dickinson, San Jose, CA), and 20,000 events
were analyzed for each sample. The percentage of cells in the
different phases of cell cycle was determined using Modfit
software (Becton-Dickinson Instruments). All experiments
were performed in duplicate and yielded similar results.

[3H]thymidine incorporation assay. The [3H]dTTP
incorporation was performed as previously described (20).
Briefly, HeLa cells were applied to 12-well plates in growth
medium (EMEM + 10% FBS). After the cells had grown
to 70-80% confluence, they were rendered quiescent by
incubation for 24 h in EMEM containing 2% FBS. EMEM
supplemented with 10% FBS and 35 or 50 μM of CHBA (or
control) was added to cells and the cultures were allowed
to incubate for 21 and 45 h. [3H]dTTP was added at 1 μCi/ml
and incubated further for 3 h. Incorporated [3H]dTTP was
extracted in cell lysis buffer and measured in a liquid scin-
tillation counter.

Single cell gel electrophoresis. To examine the DNA damage
in these single-cell suspensions, we performed an alkaline
single-cell gel electrophoresis (comet assay). The comet
assay was carried out based on the method of Singh with
some modifications (21). Briefly, the cells (treated without
or with CHBA for 6, 12, and 24 h) were pelleted and
resuspended in 0.5% low melting point agarose at 37˚C and
layered on a frosted microscope slide previously coated with
a thin layer of 1% normal melting agarose and kept for
10 min on ice. After solidification, the slides were immersed
in lysing solution (2.5 M NaCl, 100 mM EDTA, 10 mM Tris,
pH 10, 1% Triton X-100 and 10% DMSO for 1 h and 30 min
at 4˚C). The slides were then incubated in an alkaline buffer
(0.3 M NaOH, 1 mM Na2-EDTA) for 40 min at 4˚C. The
electrophoresis was carried out for 40 min at 25 V. After
electrophoresis, the slides were washed with 0.4 M Tris (pH
7.5) and stained with ethidium bromide (1 μg/ml) and
observed under a fluorescence microscopy (Leica DM LB2).

Statistical analysis. Each experiment was repeated for at
least 3 times and results were expressed as mean ± SEM in
some quantitative experiments. All the results reported

were obtained from at least 3 independent experiments with
similar results.

Results

CHBA induced the inhibition of HeLa cell growth and
apoptotic cell death. To explore the cytotoxicity of CHBA,
we determined IC50 values in HeLa cells using the water-
soluble tetrazolium salt WST-8 as an indicator of cell viability
(18). Treatment of HeLa cells with various concentrations of
CHBA for 48 h caused a dose-dependent decrease in cell
number, with an IC50 ~35 μM (Fig. 2). Cell proliferation assays
were used to investigate the inhibition of growth caused
by CHBA. Low concentration of CHBA (up to 17.5 μM)
resulted in growth inhibition in HeLa cells, but not in cell
death, with approximately 30% growth inhibition being
detected after 48-h treatment (Fig. 2B). However, full-
blown cytotoxicity required CHBA concentrations >35 μM.
Investigations of cells treated with high concentrations of
CHBA by light and fluorescence microscopy revealed the
morphological features of apoptosis. Treatment with 35 μM
of CHBA for 12 h significantly induced apoptotic cell
death as indicated by condensed and fragmented nuclei
(Fig. 2C).

To obtain further evidence for the induction of apoptosis
by CHBA in HeLa cells, Annexin V and PI double staining
assay was performed. Significant differences were observed
between the vehicle and CHBA-treated cells. Under control
conditions, ~89% of HeLa cells treated with vehicle alone
were viable [Fig. 2D(a), Annexin V-PI-], while ~8% were
early apoptotic cells [Fig. 2D(a), Annexin V+PI-]. After 12-h
treatment with 35 and 50 μM CHBA, only 8.13 and 19.69%
were apoptotic, respectively, but after 48 h, the proportion of
apoptotic cells increased to 14.40 and 31.91% respectively.
In addition, the percentage of late apoptotic cells (or necrosis
cells) stained both by Annexin V-FITC and PI (Annexin
V+ PI+) showed no differences. Therefore, in comparison
with control cells, CHBA-treated HeLa cells displayed an
increase in apoptosis in a concentration- and time-dependent
manner.

CHBA-induced apoptosis is caspase-dependent and associated
with cytochrome c release. Caspases comprise a family of
cysteine proteases with a central role in the executional
phase of apoptosis (22). Initiator caspases (including -8,
-9, -10 and -12) are closely coupled to proapoptotic signals.
Once activated, these caspases cleave and activate down-
stream effector caspases (including -3, -6 and -7), which in
turn cleave cytoskeletal and nuclear proteins, and finally
induce apoptosis. We first evaluated whether caspase-
dependent signal pathways were involved in the apoptotic
cell death induced by CHBA in HeLa cells. We measured
activation of capase-3 and -9 by Western blot assay.
Treatment of HeLa cells with 35 and 50 μM of CHBA for 24
and 48 h resulted in dramatic increases in caspase-3 protein
and decreases in procaspase-9 protein level (Fig. 3). To
address the question of whether CHBA was able to induce
cytochrome c release from mitochondria, a cytoplasm
fraction prepared from HeLa cells was incubated in the
presence (35 and 50 μM) or absence of CHBA for 24 and
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48 h. The cytoplasm fraction markedly increased the cyto-
chrome c protein level in a concentration-dependent manner
(Fig. 3), suggesting that the CHBA-induced apoptosis of HeLa
cells was via caspase-dependent mitochondrial pathway.

CHBA-induced apoptosis is associated with an increased
S phase population. The cell growth and inhibition are
both tightly mediated through cell cycle control (23), and
dysregulation of cell cycle progression has been implicated
in the initiation of apoptosis (24-26). To determine whether
CHBA-induced apoptosis is associated with cell cycle-specific
changes, we measured the cell cycle distribution of HeLa
cells that had been treated with 35 and 50 μM of CHBA
for 24 and 48 h. After 48-h treatment, the percentage of cells
in S phase significantly increased from a control value of
29.38% to 35.29% and 37.01% in cells treated with CHBA
(35 and 50 μM, respectively) (Fig. 4D-F). This increase in S
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Figure 2. Induction of apoptosis by CHBA. HeLa cells were treated with various concentrations of CHBA for 48 h (A) or with 17.5, 35 and 70 μM of CHBA
for 12, 24, 36 and 48 h (B). Relative cell viability was determined by WST-8 and 1-methoxy PMS and is presented as the percentage of control cells. Data
are shown as means ± SD of 3 independent experiments. (C) HeLa cells were treated with 35 μM of CHBA for 12 h. Nuclei was characterized under light
and fluorescence microscopy. After fixing, cells were stained with Hoechst 33342 and photographed with a fluorescence microscope using blue filter.
Magnification x160. (D) Measurement of apoptosis population induced by CHBA. HeLa cells were treated with vehicle alone (a), 35 μM of CHBA for 12 h
(b), 24 h (c), 48 h (d), 50 μM of CHBA for 12 h (e), 24 h (f), 48 h (g). Cells were harvested at the indicated time points, and stained with Annexin V-FITC/PI
and analyzed for apoptosis by flow cytometry. The cell populations shown in the lower left represent living cells, lower right represents earlier apoptosis cells,
upper right represents late apoptosis or necrosis cells and upper left represents pre-necrotic cells. All experiments were performed in duplicate and gave
similar results.

Figure 3. Involvement of protein activation in CHBA-induced apoptosis.
HeLa cells were treated with 35 and 50 μM of CHBA for indicated time
periods. Extracts from untreated or CHBA-treated cells were assayed by
Western blot analysis.
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phase cells occurred at the expense of decreasing the G2/M
cell population, while the population of the cells in G0/G1
phase was not affected. We also observed the appearance of a
peak corresponding to a population of cells with apoptotic
DNA content that changed in a time- and concentration-
dependent manner.

CHBA inhibits DNA replication, associated with induction of
DNA damage. Since our data demonstrated that HeLa cells
treated with CHBA accumulated in S phase, we questioned
whether the increased S phase population is due to inhibition
of DNA replication. After treatment with 35 or 50 μM CHBA,
the incorporation of [3H]thymidine decreased by ~40 and
70%, respectively, with exposure times of 12 and 24 h having
essentially the same effect (Fig. 5A). We further hypo-
thesized that CHBA could induce DNA damage that would
lead to the inhibition of DNA replication, which would
then be responsible for blockage of S phase progression.
To test this hypothesis, we implemented an alkaline single-
cell gel electrophoresis comet assay, a sensitive method by
which DNA single strand breaks at the single-cell level can
be monitored. When cells were treated with 35 μM of CHBA
for 6 h, DNA damage started to be evident, as indicated by
the increased tail of DNA migration (Fig. 5B). After 12 h of
treatment with CHBA, almost the entire population of HeLa
cells contained damaged DNA. Under the same conditions, the
S population had slightly increased (Fig. 4), and apoptosis
had just started to be detectable (Fig. 2D). Thus, CHBA
induces DNA strand breaks before S phase accumulation
and apoptosis induction.

Discussion

Successful treatment with chemotherapeutic agents is largely
dependent on the ability of the drugs to trigger cell death in
tumor cells. Therefore, novel inducers of apoptosis provide
a new therapeutic approach for anti-cancer drug design.
Previous studies demonstrated that certain phytochemicals
present in medicinal herbs exert anti-tumorigenic activity
by inducing apoptosis in cancer cells. Toward the goal of
developing novel chemotherapeutic agents, this report
describes the selective in vitro killing of human cervical
carcinoma HeLa cells by CHBA. We found that CHBA
inhibits the growth of human cervical carcinoma HeLa
cells, with the morphological changes of CHBA-treated HeLa
cells showing typical apoptotic phenomena, such as nuclear
condensation and DNA fragmentation. And we also found
that CHBA-induced apoptosis was caspase-dependent,
associating with cytochrome c release. In addition, CHBA-
induced apoptosis was preceded by induction of DNA
damage, and inhibition of S phase progression. The order
of the potency of CHBA to induce DNA damage matched
well with its potency to inhibit S phase progression and to
induce apoptosis.

Mitochondria play essential roles in apoptosis through the
redistribution of intermembranous mitochondrial proteins,
such as cytochrome c. The significance of cytochrome c to
the apoptotic process was revealed by the finding that mito-
chondrial released cytochrome c combines with Apaf-1,
procaspase-9 and dATP in the cytosol, producing active
caspase-9 (15,16). The activation of this initiator caspase
then leads to the proteolytic activation of caspase-3, the
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Figure 4. Effect of CHBA on cell cycle progression of HeLa cells. HeLa cells were treated with vehicle alone or with 35 or 50 μM of CHBA for 24 h (A-C),
and 48 h (D-F). DNA content was analyzed by flow cytometry with PI staining. The cell cycle distribution was calculated as the percentage of cells containing
apoptosis, G0/G1, S and G2/M phase. Data are representative of three independent experiments.
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primary effector caspase of the cell. This pathway is referred
to as the mitochondrial pathway of caspase activation.
Consistent with this pathway, CHBA treatment was able
to induce mitochondrial cytochrome c release along with
caspase-9 and -3 activations (Fig. 3).

Many traditional pharmacological agents induce cell
death in a cell cycle-dependent manner (26-28). We have
found that CHBA at 35 μM induces an S phase arrest,
associated with apoptosis induction (Fig. 4). During S
phase of the cell division cycle, cells replicate their DNA.
In this phase, chromosomal DNA is replicated precisely
once as a prelude to its segregation to the daughter cells at
mitosis. If DNA replication is blocked by inhibitor or the
template is damaged by radiation or other factors, signals
are generated that can induce cell-cycle arrest or apoptosis
(29-31). Therefore, we hypothesized that CHBA-induced S
phase arrest and apoptosis might relate with its effect on
DNA replication. Our exciting finding that [3H]thymidine
incorporation was inhibited by CHBA treatment 12 h after

administration (Fig. 5A) supports this idea. Inhibition of
DNA replication can be caused by multiple mechanisms,
including DNA damage. Indeed, results from comet assay
showed that nearly 100% of the cell population contained
DNA stand breaks after only 6 h of incubation with CHBA
(Fig. 5B). However, no increases of earlier apoptotic cells
as compared to controls after 12-h treatment were noted
(Fig. 2D), suggesting that the apoptosis-associated DNA
fragmentation had not yet occurred. While our data strongly
suggest that CHBA has the ability to induce DNA strand
breaks, the mechanism of breakage remains elusive. Upon
repair of this damage, progression through the cell cycle
resumes. The cell's alternative to repairing damaged cells is
simply to eliminate them through the process of apoptosis.
Thus, as a cell progresses through the cell cycle, it must
determine whether to complete cell division, to arrest
growth to repair cellular damage, or to undergo apoptosis
if the damage is too severe. Therefore, we can conclude
that CHBA induces DNA strand breaks at as early as 6 h
and can also inhibit the incorporation of [3H]thymidine
within 12 h, before any cell cycle change has taken place.
Our data indicate that CHBA induced cell cycle arrest in
order to allow DNA repair. As expected, these mechanisms
also result in S phase arrest and apoptosis.

In conclusion, our study provides experimental evidence
that CHBA-induced HeLa cell apoptosis was accompanied
with a significant DNA condensation and apoptotic body
formation. CHBA induces apoptosis in HeLa cells by
stimulating cytochrome c release followed by activation of
caspase-9 and -3. In this study, CHBA induced S-phase
cell cycle arrest and inhibition of DNA replication. However,
the severe DNA damage is beyond the capacity of the DNA
repair system. In order to eliminate the damaged cells,
the apoptosis was observed after treatment with CHBA
in HeLa cells.

To date, few reports have included the isolation of com-
ponents from marine-derived fungi which have apoptosis
activity, and the present study serves as the first attempt to
evaluate the action of 3-chloro-2,5-dihydroxybenzyl alcohol
on HeLa cells. Although the effect of CHBA on upstream
trigger factor(s) that induce mitochondrial cytochrome c
translocation and ultimately cause cell death should be further
investigated, our current studies indicate that CHBA has
great potential as a lead compound that could be developed
into a novel anticancer drug.
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