
Abstract. Benzylisothiocyanate (BITC), a major phase II
enzyme inducer in the organic solvent of papaya fruit, has
been shown to induce apoptosis specifically in cancer cells.
The exposure of pancreatic, prostate as well as leukemic cells
to this dietary isothiocyanate resulted in significant extent
of apoptosis as evident from PARP cleavage, chromatin
condensation or profound attenuation of procaspase-3 level.
We also investigated whether BITC induces apoptosis by
converging two major pathways: the death receptor mediated
extrinsic and the mitochondrial intrinsic pathway. The
exogenous expression of dominant-negative caspase-8 or
dominant-negative caspase-9 can attenuate BITC-mediated
cell death of prostate cancer cells. In parallel with this
observation, BITC can activate both procaspase-8 and -9 in
pancreatic and prostate cancer cells. Furthermore, flow
cytometry analysis demonstrated the enrichment of sub-G0-
G1 phase population with G2-M arrest in BITC challenged
pancreatic cancer cells. In order to comprehend the molecular
mechanism underlying the relationship between BITC-
mediated cell cycle arrest and apoptosis we report here for
the first time that the anti-apoptotic protein Bcl-xL was
phosphorylated by BITC treatment. Subsequent investigation
using Jun kinase inhibitor exhibits the involvement of Jun
kinase in BITC triggered Bcl-xL phosphorylation and
apoptosis. 

Introduction

The abundant epidemiological studies as well as experi-
mental animal studies noticeably validate that high intake of
cruciferous vegetables protects against tumorigenesis (1-10).
Thus, cruciferous vegetables, a rich source of glucosinolates,
have been of great interest for potential use in the chemo-

prevention of cancer. The glucosinolates are known to be
degraded into isothiocyanates by enzymatic action of
plant-specific myrosinase or intestinal flora in the body. It is
emergent that considerable portion of the chemopreventive
effects of isothiocyanates may be associated with the inhibition
of the metabolic activation of carcinogens by cytochrome
P450s (Phase I), tied with robust induction of Phase II
detoxifying and cellular defensive enzymes (9). Besides,
apoptosis and cell cycle perturbations seem to be yet another
possible chemopreventive mechanisms extracted by iso-
thiocyanates (ITC), especially with respect to the effects on
neoplastic cells (8). Previous studies report that naturally
occurring ITCs can exert chemopreventive effect against
tumors induced by chemical carcinogen in experimental
animals (6,7). High intake of cruciferous vegetables, including
broccoli and cauliflower, may be associated with reduced
risk of aggressive prostate cancer, particularly extraprostatic
disease (10).

Previously multiple pathways involved in apoptosis
induction by ITCs were suggested (11-14). Interestingly,
benzylisothiocyanate (BITC) induced apoptosis was reported
to be linked with G2-M arrest and Bcl-2 phosphorylation in
Jurkat T lymphoma cells. In this report (15), the authors
demonstrated that the p38 MAPK pathway could be operative
in cell cycle arrest induced by BITC, whereas JNK pathway
plays a major role in apoptosis but not in the cell cycle
regulation. The Bcl-2 family comprises of two counteracting
groups of proteins: the pro-apoptotic and anti-apoptotic
(16-18). Among the anti-apoptotic members, Bcl-2, Bcl-xL
or Mcl-1 is phosphorylated by microtubule disarraying agents
such as Taxol, nocodazole or 2-Methoxyestradiol (19-42). In
most cases, phosphorylation of the Bcl-2 family members
leads to the loss of their biological function. The emerging
concept yielded from these studies is that phosphorylation
induced inactivation of Bcl-2 protein on Ser 70 residue inside
the unstructured ‘loop region’ (LR) during mitosis might
work as a checkpoint to permit apoptosis (28,29). The LR of
both Bcl-2 and its close homologue Bcl-xL can negatively
regulate their functions as evident by enhanced anti-death
activity of LR deficient or phosphorylation-defective mutants
(21-25). Of note, the endogenous phosphorylation of Bcl-2
without treatment of any trigger can be detected in M phase
of normally cycling cells (21). Another interesting observation
demonstrates the ability of phosphorylated Bcl-2 to regulate
Ca2+ homeostasis and apoptosis (43). In line with our previous
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finding (19), Bassik et al (43) reported that phospho-Bcl-2
binds less BH3 domain only BIM or multidomain BAX pro-
apoptotic protein. Precisely, phosphorylation of Bcl-2 at
mitosis would increase calcium in endoplasmic reticulum
(ER) and could account for the increased G2/M susceptibility
to apoptosis (43,44). Further mechanistic studies demonstrate
that PP2A phosphatase can regulate Bcl-2 phosphorylation
and proteasome mediated degradation of phospho-Bcl-2 (44). 

We have investigated the effect of BITC on the post-
translational modification (phosphorylation) of Bcl-xL protein
and apoptosis in a panel of human cancer cells. In the current
report, we for the first time document that chemopreventive
agent BITC can invoke death advantage with concomitant
phosphorylation of Bcl-xL on serine 62 residue.

Materials and methods

Cell lines. Human pancreatic cancer cells (CFPAC-1, Hs 766T),
human lymphoid cells 697 (pre-B-cell line harboring a t(1;19)
chromosomal translocation) and Jurkat T lymphoma cells
were grown in RPMI supplemented with 10% fetal bovine
serum (FBS) and 50 μg/ml gentamycin. Hormone-independent
human prostate carcinoma cells (PC-3 or DU145) were
cultured in MEM with 10% FBS and 50 μg/ml gentamycin. 

Apoptosis assay. Cells (5x106) were seeded (in triplicate
plates) in the growth medium and, the next day, were treated
with BITC in the presence or absence of Jun kinase inhibitor
(EMD Biosciences, San Diego, CA), for designated time
periods. Dominant-negative cDNA constructs encoding
caspase-8 and -9 (45) in mammalian expression vectors
were transiently transfected (21,45) prior to BITC exposure.
Subsequently, cells were either processed for chromatin
condensation analysis by DNA binding dye, 4',6'-diamidino-
2-phenylindole (DAPI) fluorescence (23-26,45) or PARP
cleavage analysis (23-25,45) by immunoblotting with mono-
clonal antibody against PARP (BD Biosciences, La Jolla,
CA). For DAPI staining, cells were washed, fixed, and perme-
abilized followed by mounting in a fluid containing 2 μg/ml
DAPI (Vector Laboratories, Burlingame, CA). A Nikon
Eclipse E600 Fluorescence microscope was used to visualize
nuclear stain (23-26,45). 

Immunoblotting. Cells at 5x106 per 100-mm dish were seeded
and treated 1 day later with specified concentrations of BITC.
Cells were preincubated for 2-6 h with 10 μmol/l JNK
inhibitor II (EMD Biosciences) followed by 24-h exposure of
5 μmol/l of BITC. Following treatment, total cellular proteins
were extracted (23-26,45). After normalization for total protein
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Figure 1. BITC induces apoptosis in a panel of human cancer cells. Pancreatic cancer (CFPAC-1, Hs 766T), prostate adenocarcinoma (PC-3) or Pre-B
leukemia (697) cells were exposed to BITC for 24 h. A, PARP degradation. Western blotting of vehicle control (DMSO) and BITC-treated cell lysate using
monoclonal antibody against PARP. B and C, Apoptotic cell death visualized by DAPI staining. Percentage of fragmented nuclei indicated in B and C was
determined by scoring ~500 cells from randomly chosen field. For PC-3 and 697 cells, 5 μmol/l BITC was used while CFPAC-1 and Hs 766T cells were
treated with 2.5 and 7.5 μmol/l BITC respectively (A-C).
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content, the resulting lysate was subjected to SDS-PAGE and
blotted into nitrocellulose membranes (Amersham Bio-
sciences, Piscataway, NJ). Membranes were probed with the
following antibodies: phospho-Bcl-xL (46), phospho-Bcl-2
(23), procaspase-8 and -9 (Santa Cruz Biotechnology,
Santa Cruz, CA), procaspase-3 and PARP (BD Biosciences).
Immunodetection was accomplished by enhanced chemi-
luminescence method (Amersham Biosciences). Immuno-
blotting with ß-actin antibody (Sigma, St. Louis, MO) was
performed for protein loading control.

Cell sorting. Control or BITC-treated pancreatic cancer cells
were sorted by using a fluorescence activated cell sorter at the
Case Comprehensive Cancer Center's core facility. Cells were
stained with Hochest 33342 (Sigma) at a concentration of
15 μg/ml for 1 h at 37˚C. In order to increase the resolution
of DNA distribution, 3,3'-dipentyloxacarbocyanine iodide
(Molecular Probes) was added at a concentration of 0.2 μg/ml
simultaneously with Hochest 33342 (20,21).

Results

Chemopreventive agent BITC and apoptosis of cancer cells.
Initially, the potential apoptosis inducing effect of BITC was
investigated in different actively proliferating human cancer

cells that exhibit aggressive clinical behavior. The caspase
family of cysteine proteases plays a key role in mediating
apoptosis through proteolysis of specific target. Among the
targets are Poly-(ADP-ribose) polymerase (PARP) and nuclear
lamins. PARP is a 116-kDa nuclear protein that is specifically
cleaved by caspase-3 into a signature 85-kDa fragment (45).
In response to BITC treatment, pancreatic carcinoma, prostate
carcinoma as well as pre-B leukemic cells showed elevated
level of 85-kDa fragmented PARP, which is considered to be
the hallmark of apoptosis (Fig. 1A). Since PARP is activated
in the presence of nicked or damaged DNA, we stained the
control and BITC-treated pancreatic (CFPAC-1)/prostate
(PC-3) cancer cells with 4,6-diamidino-2-phenylindole,
DAPI (26,42,45). Both CFPAC-1 and PC-3 cells, which
underwent enhanced PARP cleavage, also exhibited significant
increase in apoptotic nuclei in response to BITC treatment
compared to vehicle control (Fig. 1B and C). 

BITC-mediated apoptosis requires activation of both initiator
and executioner caspases. As mentioned previously, the
activation of caspases results in cleavage and inactivation of
key cellular proteins. Subsequently, we examined whether
BITC-induced cell death was mediated by caspases. Exposure
of pancreatic cancer cells Hs766T or pre-B leukemic cells 697
to BITC resulted in the disappearance of procaspase-3 (Fig. 2A

INTERNATIONAL JOURNAL OF ONCOLOGY  33:  657-663,  2008 659

Figure 2. BITC-mediated apoptosis requires activation of procaspase-8, -9 and -3. A, Diminished procaspase-3 level following BITC exposure. Total protein extract
from control and 24 h BITC-treated Hs 766T/697 cells were subjected to immunoblot analysis with caspase-3 antibody. B and C, BITC induced activation of
procaspase-8 and -9. Hs 766T and PC-3 cells were challenged with BITC for 24 h and subsequently cellular extract was immunoblotted with procaspase-8 and -9
antibodies. D, Attenuation of BITC induced apoptosis by dominant negative constructs of caspase-8 and -9. Cells were transfected with either vector (pcDNA3) or
the indicated constructs by calcium phosphate co-precipitation method. Twenty-four hours post transfection, cell culture media was replaced with the media
containing 5 μmol/l BITC. Following 24 h of BITC treatment, cells were harvested and stained with DAPI for scoring apoptotic nuclei as described above in Fig. 1.
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and B). Next, we examined whether activation of both
initiator and executioner caspases are necessary for BITC-
mediated cell death of prostate and pancreatic cancer cells.
Fig. 2A and C demonstrate the activation of both pro-
caspase-8 and -9 in BITC challenged prostate carcinoma
cells PC-3 as well as metastatic pancreatic carcinoma cells
Hs 766T. The activity was assessed by the disappearance of
the inactive forms procaspase-8 and -9 on Western blotting.
The two species of procaspases are previously reported
isoforms (45). BITC treatment caused a decrease in the levels
of both procaspase-9 and -8. We also determined apoptosis in
PC-3 cells transfected with pcDNA3 vector, DN-caspase-8
and -9 respectively. In contrast to empty vector, both
dominant negative constructs inhibited BITC induced
apoptosis (Fig. 2D). These results pointed toward involvement
of both caspase-8 and -9 pathways in execution of BITC-
induced apoptosis.

BITC exposure causes cell cycle arrest and Bcl-xL phos-
phorylation. The growth inhibition of cancer cells by many
dietary agents, including ITCs and garlic-derived organo-
sulfides has been observed to be associated with block of
cell cycle progression and apoptosis (8,15). Accordingly,
we assessed the effect of BITC on cell cycle distribution,
by flow cytometry following staining with Hoechst 33342
(20,21). Representative histograms for cell cycle distribution
in CFPAC-1 cells following a 24-h exposure to DMSO

(control) or 5 μM BITC are presented in Fig. 3. As shown in
Fig. 3A, treatment of pancreatic cancer cells CFPAC-1 to
5 μM BITC for 24 h resulted in statistically significant
enrichment of sub-G0-G1 fraction, an indicator of DNA
fragmentation. Furthermore, BITC caused ~2.4-fold increase
in G2-M population compared to DMSO-treated control. 

In the present study, we initiated the investigations on
understanding the regulatory mechanisms of cell death
elicited by BITC in prostate adenocarcinoma cells, PC-3 or
pancreatic adenocarcinoma cells, CFPAC-1. The oncoprotein
Bcl-xL, like Bcl-2, is phosphorylated at mitotic phase of the
cell cycle (23,38,46). BITC is also known to arrest cells at
mitotic phase of cell cycle (15). As shown in Fig. 3B and C, the
ability of BITC at pharmacological concentration (2.5-5 μM) to
induce Bcl-xL phosphorylation is quite evident in both PC-3
and CFPAC-1 cells. Bcl-xL phosphorylation was determined
by Western blotting using phospho-Bcl-xL specific anti-
serum (46). The ability of phospho-Bcl-xL (Ser 62) specific
antibody to detect enhanced Bcl-xL in BITC exposed cancer
cells suggests Ser 62 of Bcl-xL to be the phosphorylation
target of BITC. Thus our studies indicate that BITC induced
cancer cell death is mediated by activation of caspases and is
accompanied by simultaneous phosphorylation of anti-
apoptotic protein Bcl-xL. 

JNK pathway is responsible for BITC triggered Bcl-xL
phosphorylation and cell death. The phosphorylation site(s)
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Figure 3. BITC induces Bcl-xL phosphorylation with simultaneous cell cycle arrest. A, Cell cycle distribution of BITC-treated CFPAC-1 cells. Approximately
2.5-fold greater population of cells are at G2 phase in BITC-treated in comparison to control. B and C, Western blotting with phospho-specific Bcl-xL
antibody (46). B, Appearance of phospho-Bcl-xL in CFPAC-1 cells as early as 8-h treatment of 2.5 μmol/l BITC. C, Status of phospho-Bcl-xL in prostate
cancer cells PC-3-treated with 0-5 μmol/l BITC for 24 h. Immunoblots of α-tubulin and ß-actin were presented as internal controls.
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for Bcl-2/Bcl-xL conforms to the consensus motif for substrates
of MAP kinase and JNK/SAPK (22,46). The pretreatment of
JNK inhibitor II can successfully abrogate the phosphoforms
of Bcl2/Bcl-xL in a concentration-dependent manner
(22,23,46). When DU145-2 cells (prostate cancer DU145
cells genetically engineered to overexpress wild-type Bcl-xL;
23) were pretreated with 10 μM of JNK inhibitor II, BITC
induced Bcl-xL phosphorylation was significantly decreased
(Fig. 4A, lane 3). This inhibitor is known to effectively block
the accumulation of phospho-Jun in response to cytokines (47).
Subsequently, we examined whether blocking of Jun kinase
activity can prevent BITC initiated cell death in DU145-2
cells. As shown in Fig. 4B, co-incubation with 10 μM JNK
inhibitor II rendered the cells more resistant to BITC-triggered
apoptosis. To summarize, our results indicate that Jun kinase
mediated Bcl-xL phosphorylation on Serine 62 residue
inside ‘loop region’ of Bcl-xL is critical for rendering death
advantage against BITC.

Discussion

The epidemiological studies demonstrate an inverse correlation
between consumption of fruits and vegetables with the
development of various human malignancies. A score of
preclinical investigations link isothiocyanates to exerting
anti-cancer effect (1-9). The studies presented herein
describe the ability of BITC to induce apoptosis in human
cancer cells by phosphorylation of anti-apoptotic protein
Bcl-xL. Among the two major apoptotic pathways the
mitochondrial ‘intrinsic’ and transmembrane ‘extrinsic’, the
latter comprises of activation of death receptors (DR) such
as Fas, TNF receptor 1, DR4 or DR5 (45,48). Upon activation
by interacting with their respective ligands such as FasL,
TRAIL (45,48), a signal transduction cascade ensues by the
recruitment of DR associated molecules such as FADD.
Subsequent activation of initiator caspases such as caspase-8
can lead to cleavage of a proapoptotic protein Bid. Truncated
Bid (t-Bid) can translocate to mitochondria and can orchestrate

mitochondrial events that can result in biochemical as well
as morphological alterations implicated with programmed
cell death. Since our preliminary studies demonstrate the
involvement of both caspase-8 and -9, it is very likely that
both death receptors and mitochondrial machinery are
responsible for BITC triggered apoptosis of prostate cancer
cells. Future investigations will be directed towards establishing
cross-talk between extrinsic and intrinsic pathway to execute
BITC-mediated cell death of cancer cells as observed in the
cases of other chemopreventive agents such as EGCG (49-51).
Interestingly, epigallocatechin-3-gallate (EGCG), the major
polyphenolic constituent of green tea, sensitizes TRAIL-
resistant LNCaP cells to TRAIL-mediated apoptosis through
modulation of intrinsic and extrinsic apoptotic pathways.
When combined with EGCG, Apo2L/TRAIL exhibited
enhanced apoptotic activity in LNCaP cells (50). 

The investigation on the dissection of the molecular
mechanism of the apoptosis-inducing effect of BITC is
important because BITC is quickly and continuously
accumulated into cells, and the intracellular concentration of
BITC increased up to 300 μM (52). The studies depicted
here have potential clinical significance. The anti-apoptotic
proteins Bcl-2/Bcl-xL play an important role in tumor cell
survival. The overexpression of Bcl-2/Bcl-xL in chemo-
resistant tumors is well known (16,53). Given the synergistic
involvement of phospho-Bcl-2/Bcl-xL and death receptors in
BITC-mediated demise of cancer cells should be helpful to
identify biomarkers for future prevention trial. The results
yielded from our investigation significantly contribute
towards the understanding a blueprint of signaling network
involving BITC and apoptosis in human cancer. 
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Figure 4. JNK inhibitor can diminish BITC induced Bcl-xL phosphorylation as well as apoptosis. A, DU145-2 cells (genetically engineered to overexpress
wild-type Bcl-xL) were pretreated for 8 h (23) with JNK inhibitor II (10 μM) followed by treatment with 1 μM BITC for 24 h. Lane 1, control; lane 2, 1 μmol/l
BITC for 24 h; lane 3, BITC and JNK inhibitor II. For analyzing Bcl-xL phosphorylation (A), phosphorylation site-specific Bcl-xL antibody (46) was used.
Under identical conditions, apoptotic nuclei were visualized by DAPI staining (B). Approximately 500 cells were scored in each category. Results are mean
± SD of three independent experiments.
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