
Abstract. New computational approaches are needed to
integrate both protein expression and gene expression profiles,
extending beyond the correlation analyses of gene and protein
expression profiles in the current practices. Here, we developed
an algorithm to classify cell line chemosensitivity based on
integrated transcriptional and proteomic profiles. We sought
to determine whether a combination of gene and protein
expression profiles of untreated cells was able to enhance the
performance of chemosensitivity prediction. An integrative
feature selection scheme was employed to identify chemo-
sensitivity determinants from genome-wide transcriptional
profiles and 52 protein expression levels in 60 human cancer
cell lines (the NCI-60). A set of 118 anti-cancer drugs whose
mechanisms of action were putatively understood was
evaluated. Classifiers of the complete range of drug response
(sensitive, intermediate, or resistant) were generated for the
evaluated anti-cancer drugs, one for each agent. The classifiers
were designed to be independent of the cells' tissue origins.
The classification accuracy of all the evaluated 118 agents was
remarkably better (P<0.001) than that would be achieved by
chance. Furthermore, 76 out of the 118 classifiers identified
from integrated genomic and protein profiles significantly

(P<0.05) improved the accuracy of protein expression-based
classifiers identified previously. These results demonstrate that
our integrated genomic and proteomic approach enhances the
performance of chemosensitivity prediction. This study
presents a new analytical framework to identify integrated
gene and protein expression signatures for predicting cellular
behavior and clinical outcome in general.

Introduction

Prediction of chemosensitivity in clinics is of great challenge,
which involves both intrinsic properties of the cells and
acquired resistance from treatment. There are multiple
molecular mechanisms that affect chemosensitivity, which
include alterations in drug influx and efflux, drug inactivation,
expression or mutation of drug targets, DNA damage repair
processes, cell cycle arrest and apoptosis (1). Most of these
alterations are governed by changes in proteins and protein-
genome interactions. There have been several studies
integrating different levels of molecular profiles. A recent study
integrated data on DNA copy number with gene expression
levels and drug sensitivities in cancer cell lines (2). Another
study integrated genomic and proteomic profiles to predict
the tissue origin of cancer cell lines (3). Chemosensitivity
prediction by integrated genomic and proteomic profiling is
needed to reveal the mechanisms of chemosensitivity at
multiple molecular levels. Such an approach could potentially
be utilized to assess an individual patient's response to certain
drugs in personalized cancer care. Previous attempts to
integrate genomic and proteomic cancer profiling have been
focused on the identification of correlated gene and protein
expression patterns (3-6). Only the markers with correlated
RNA and protein expression patterns were included in the
prediction model and the markers without correlated RNA
and protein expression were excluded from the prediction
model (6). While the concordant gene and protein expression
levels confirm the involvement of both genes and proteins in
cancer progression and drug response, the discordant
expression levels also provide insights into the critical
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biological processes. Both proteins and genes modulate their
effects on cells through the changes in expression, activation,
and post-translational modification, as well as the interactions
between protein-protein, gene-gene and protein-gene. Notably,
many DNA binding proteins, transcriptional factors and tumor
suppressors regulate cancer drug sensitivity through protein-
gene interactions. Therefore, a new perspective is needed to
integrate both protein expression and gene expression profiles,
extending beyond the correlation analyses of gene and protein
expression profiles. In this study, we present a methodology
to identify multi-leveled molecular signatures revealing
complex mRNA and protein involvements in chemosensitivity.
This methodology was tested by using an extensive database
developed by the National Cancer Institutes' Developmental
Therapeutics Program in a panel of 60 human cancer cell lines
(the NCI-60). Previously, genome-wide transcriptional
profiling was performed using cDNA microarrays (7). Later,
proteomic profiling of the NCI-60 was carried out by using
high-density reverse-phase lysate microarrays (5). Meanwhile,
these cell lines were analyzed for their sensitivity to a broad
range of chemical compounds, including anticancer drugs that
were used either in clinics or in late development stages.
These data are publicly available from the National Cancer
Institute's Discover website (http://discover.nci.nih.gov/
datasets.jsp).

We investigated the feasibility of chemosensitivity
prediction by integrating transcriptional and proteomic
profiles. The goal was to identify multiple expression-leveled
molecular signatures of drug response to reveal the interrelated
and collaborative molecular mechanisms for chemosensitivity.
We hypothesized that relevant gene and protein expression
signatures would enhance the accuracy in drug sensitivity
prediction. To test this hypothesis, the expression profiles of
9,706 genes and 52 proteins in each of the 60 cancer cell lines
were analyzed. Two feature selection algorithms were explored
to identify gene and protein chemosensitivity determinants.
A panel of 118 anticancer drugs was selected to develop and
test our methodology. Our methodology employed the random
forests algorithm (8,9) implemented in open source software R
(10) (http://www.r-project.org/). To obtain an unbiased
evaluation, a bootstrapped out-of-bag method (8) was used to
assess the prediction performance. Compared with random
prediction, all chemosensitivity classifiers for the evaluated
118 drugs were significantly accurate (P<0.001). Seventy-six
of the 118 integrative gene-protein expression-based classifiers
were more accurate (P<0.05) than the classifiers exclusively
based on protein expression levels (11). Our results showed
that the multi-leveled gene and protein expression signatures
remarkably increased the accuracy of drug response prediction.
This study suggests that chemosensitivity mechanisms are
more readily dissected by a systems perspective combining
bioinformatics, genomics and proteomics.

Materials and methods

Database sources
Gene expression data. The gene expression data were
generated by Scherf et al (7). Cell collection and mRNA
purification were described previously (7). Gene expression
levels were quantified using cDNA microarrays (Synteni, Inc.;

now Incyte, Inc., Wilmington, DE) consisting of robotically
spotted, PCR-amplified cDNAs on coated glass slides (7,12).
Expression profiles of 9,706 genes were assayed and the data
file is available on-line (http://discover.nci.nih.gov/datasets
Nature2000.jsp).

Protein expression data. The protein expression data file was
generated by Nishizuka et al (5). A protocol was developed
for making reverse-phase protein lysate microarrays with a
larger number of spots than previously feasible. The data
points for 52 antibodies were analyzed by using P-SCAN and
a quantitative dose interpolation method on the 60 human
cancer cell lines (NCI-60). The data file is available online
(http://discover.nci.nih.gov/host/2003_profilingtable7.xls).

Drug activity data. The drug activity profiles of 118 anti-cancer
agents were screened by Scherf et al (7). Growth inhibition
was assessed from the changes in total cellular protein after
48 h of drug treatment using a sulphorhodamine B assay. Drug
activities (log10 GI50) were recorded across the 60 human
cancer cell lines. GI50 is the concentration required to inhibit
cell growth by 50% compared with untreated controls. The
activity profile of an agent consists of 60 such activity values,
one for each cell line. The drug activity profiles of 118 agents
are available online (http://discover.nci.nih.gov/nature2000/
data/selected_data/dataviewer.jsp?baseFileName=a_matrix11
8&nsc=2&dataStart=3).

Data preprocessing
Gene screening and identification. The original gene
expression data screened 9,706 genes in 60 human cancer
cell lines. For data quality control, 1,374 genes were selected
for analysis after removing genes that had more than four
missing values in the 60 cancer cell lines. The missing values
resulted from insufficient resolution, image corruption, dust, or
scratches on the slides, etc. All these selected genes showed a
strong pattern of variation across the 60 cancer cell lines. Since
only IMAGE Clone ID was provided for each gene in the
original data, we used MatchMiner (13) to search for the gene
symbols.

Missing value replacement. A nearest neighbor method (14)
was used to provide accurate and robust estimate of missing
values. Suppose gene g had missing values on array i. The
weighted average of k nearest genes with values on array i was
used to replace this missing value. Imputation results were
found to be stable and accurate for k = 10-20 neighbors
(15). We experimented k from one to 20 and found that the
substituted values tended to converge starting from k = 11.
We chose k = 13 which is within the convergence range.
Correlation was used as the similarity metric to search for
the neighbors. The EMV package (14) in R was applied to
replacing the missing values.

Defining drug sensitivity and resistance. The data file
containing drug activity data of 118 anti-cancer agents was
processed to define drug resistance and sensitivity of the
NCI-60 lines. Specifically, for each drug, log10 (GI50) values
were normalized across the 60 cell lines. Cell lines with log10

(GI50) at least 0.5 SDs above the mean were defined as
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resistant to this drug. Those with log10 (GI50) at least 0.5 SDs
below the mean were defined as sensitive to the drug. The
remaining cell lines with log10 (GI50) within 0.5 SDs were
defined as intermediate in the range of drug responses.

Constructing chemosensitivity classifiers
Biomarker identification and classifier construction. The
random forest algorithm is an ensemble of tree classifiers. The
basic step of random forests is to form diverse tree classifiers
from a single training set. Each tree is built using a different
bootstrap sample from the original data. About one-third of
the cases are not used in the construction of a tree. These cases
are called out-of-bag (OOB) cases. Random forests introduce
two sources of randomness into the algorithm: i) each tree is
grown out of a random sample of the original data and ii) each
node in the tree is split by the best variable from a randomly
selected subset of variables. In this study, two functions of
random forests implemented in R were used to identify
chemosensitivity determinants and to construct drug response
classifiers. The feature selection experiments were performed
using the varSelRF package of R (9). The feature subset with
the smallest OOB error was chosen as the optimal feature
subset. Using the identified feature subset, the random forests
algorithm was used to obtain a classification error using the
OOB error rates. The OOB samples were not used in the
feature selection.

Classification accuracy evaluation. In order to assess the
significance of our prediction results, it is necessary to
demonstrate that our prediction results are significantly better
than those of random predictions. For each drug (each data
file), the class labels of the 60 cell lines were randomly
permuted while keeping the number of instances in each group
fixed. The matches between the rearranged class labels and the
original ones were recorded. The percentage of the matches
was calculated as the overall accuracy for the random
prediction. This procedure was repeated 1,000 times. The

p-value was calculated as the number of random predictions
that exceeded our prediction accuracy in 1,000 test runs. The
experimental details and prediction results are provided in
Appendix (http://www.hsc.wvu.edu/mbrcc/fs/GuoLab/
publications.asp).

Results

In this study, we sought to predict drug response by integrated
analyses of transcriptional profiles and proteomic profiles. In
clinics, treatment response to chemotherapy is categorized
into complete response (CR), partial response (PR), stable
disease (SD) and progressive disease (PD) according to the
RECIST guidelines (16). A patient's response to treatment is
defined based on the change in the tumor size before and
after the chemotherapy. Responders include patients with
complete response (CR) and partial response (PR). In this
study, we used cancer cell lines to investigate chemosensitivity.
Chemosensitivity was defined based on the drug activity
profiles in 60 human cancer cell lines (the NCI-60). For each
evaluated agent, the complete range of drug responses across
these 60 cancer cell lines was partitioned into three classes
(sensitive, intermediate, or resistant) based on the normalized
growth-inhibitory activities (GI50 values) (11,17) (Materials
and methods). Chemosensitivity prediction was approached as
a supervised multi-classification problem.

The NCI-60 set includes the cell lines derived from
leukemias, melanomas, as well as carcinomas of ovarian, renal,
breast, prostate, colon, lung and central nervous system origin.
The transcriptional profiling of 9,706 genes was performed
using cDNA microarrays in the NCI-60 (7). The proteomic
profiles were generated using 52 antibody reverse-phase
protein assays in the NCI-60 (5). In this study, a panel of
118 anticancer drugs was selected to develop and test our
methodology. The mechanisms of action of these 118 agents
were putatively understood (7). The overall scheme of our
model system is depicted in Fig. 1. To construct the supervised
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expression-based classifiers for chemosensitivity prediction,
we created a new database by merging the transcriptional
profiles, proteomic profiles and the responses of the NCI-60
cell lines to the 118 drugs (Fig. 1). For each drug, the data
file contained the expression levels of 1,374 genes (after data
preprocessing), the protein expression levels measured by
52 antibodies and the response of each cell line to this drug.
For each cell line, the gene and protein expression levels
were predictors, whereas the drug response was the
predicted variable. A classifier was constructed for each drug,
independent of the tissue origin of the cells. We sought to
identify collaborative gene and protein expression patterns to
increase the accuracy in chemosensitivity prediction.

The feature selection and classification evaluation was
performed in following steps: i) leave six samples out and refer
to them as the out-of-bag (OOB) samples; ii) perform feature
selection to identify the optimal subset using the remaining
samples; iii) create a random forest with the identified feature
subset using the remaining samples; iv) classify the OOB
samples and note the error rates; v) repeat for another set of
OOB samples (the procedure was repeated for 10 times); and
vi) compute the average error.

Two feature selection schemes were employed to identify
the chemosensitivity determinants for each of the evaluated
drugs (Fig. 2). Two functions of the random forests algorithm
were used in the feature selection and classifier construction.
Specifically, in the NCI-60 transcriptional data file, an
expression profile xi = xli,...xGi) is associate with each cell line i.
Gene expression data on G genes for n cell lines can be
represented by a G x n matrix, X = (xgi), where xgi denotes the
expression level of gene g in cell line i. In this study, X has
dimension 1,374 x 60 after data preprocessing. Using similar
notation, protein expression data on P proteins for n cell lines
can be denoted as a P x n matrix, Y = (ypi), where ypi is the
expression level of protein p in sample i. Y has dimension
52 x 60, representing 52 proteins assayed in the 60 human
cancer cell lines. Each cell line has a class label with three
values (i.e., three drug response categories: sensitive,
intermediate, or resistant). Each cell line has an integrated
gene-protein expression profile ei = (xli...xGi,yli,...yPi)' and a
class label corresponding to a drug response. These expression
profiles were handled by matrix transpose functions in random
forests.

In feature selection Method I, for each drug, the gene
expression and protein expression profiles in the NCI-60 panel
were first combined into a single file. Then, feature selection
was performed on this combined data file using a backward
elimination to identify the optimal feature subset (9). This
optimal feature subset contained top-ranked gene and/or
protein attributes that generated the highest prediction
accuracy in the integrative feature selection (Fig. 2A). In the
backward elimination, a random forest was first generated
with 2,000 trees to obtain an importance rank of the gene and
protein variables. Based on this importance rank, we repeatedly
eliminated 20% of the least important variables from the
remaining dataset until two variables left. In each iterative
step, a new forest of 1,000 trees was constructed. The
classification of drug response for a cancer cell line was
determined by the majority vote of these 1,000 trees in the
forest. The subset with the smallest OOB error rate was

identified as the optimal feature subset. In Method II, for each
drug, feature selection was performed separately on the gene
expression profiles and the protein expression profiles to find
the top gene subset and top protein subset, respectively, using
the backward elimination as described above. Then, the
identified top gene features and top protein features were
integrated in a stepwise manner to build the classifier (Fig. 2B).
Specifically, the top-ranked protein attributes were added to
the top gene subset one by one (starting from the most
important protein attribute) until the optimal accuracy was
achieved. The feature subset that generated the highest
prediction accuracy is the optimal subset. If the addition of
protein attributes did not increase the prediction accuracy, then
the optimal subset was the top gene subset. The second method
was designed to account for unbalanced data. In this study,
the available gene variables outnumber the protein variables.
After selecting the top gene set and top protein set, different
feature entities are reduced to comparable dimensions. In
both approaches, the optimal feature subset was identified as
the one with the smallest OOB error rate in the feature
selection process using the varSelRF function in R (9)
(Fig. 2C). The reported prediction accuracy was evaluated
with the OOB error rates using the random forests algorithm
(9,18). The OOB samples used in the evaluation were not
included in the feature selection. The reported chemosensitivity
classification performances were not the OOB error rates in
the feature selection.

During the feature selection process, we did not follow the
‘1-Standard Error (1-SE) rule’ as suggested by Diaz-Uriarte
et al (9). This rule chooses the smallest gene subset, whose
error rate is within one standard error of the minimum error
rate of all forests. Instead, we used ‘0-Standard Error (0-SE)
rule’, which identifies the gene subset with the smallest OOB
error rate. As the random forests algorithm does not guarantee
the same feature subsets in each run, we chose the feature
subset with the lowest prediction error in three runs with the
varSelRF function.

Both feature selection methods have certain advantages
in constructing the chemosensitivity classifiers for the
evaluated drugs. Therefore, the optimal classifiers from
both methods were chosen as the results. The optimal
classifiers used between two and 40 predictors, with an
average of 10 predictors in each classifier. Eighty-nine optimal
classifiers were constructed exclusively based on gene
expression profiles, while 29 optimal classifiers used a
combination of gene expression and protein expression
profiles. The overall accuracy of the optimal classifiers is
summarized in Fig. 3A. We evaluated the prediction results
by comparing them with the random prediction in 1,000 test
runs (see Materials and methods for details). The results
showed that, for all the evaluated 118 drugs, none of the
random predictions in 1,000 iterations achieved our accuracy
(P<0.001). Compared with the previous study on protein
expression-based chemosensitivity prediction (11), 76 of the
classifiers identified using this integrated approach
performed better (P<0.05) than the classifiers exclusively
based on protein expression levels (Fig. 3B). These results
demonstrate that the integrated analyses of transcriptional
profiles and proteomic profiles can enhance the performance
of chemosensitivity prediction.
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Figure 2. Integrative feature selection scheme for identifying gene expression and protein expression signatures for chemosensitivity prediction. (A) Feature
Selection Method I: the genomic and proteomic profiles were combined first, and the feature selection was performed on this combined profile. (B) Feature
Selection Method II: feature selection was first performed separately on the genomic profile and proteomic profile. Then, the identified top gene subset and
top protein subset were integrated in a stepwise manner, until the optimal accuracy was achieved. (C) The OOB error rate during feature selection. The
optimal feature subset was the one with the smallest OOB error rate. In this example, the subset with top 10 features was the optimal feature subset.

C
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The identified protein markers for chemosensitivity
classification are listed in Table I. Literature review found
that the changes in protein expression of all these identified

protein markers either are correlated to or are directly involved
in the sensitivity of various cancers to chemotherapy.
Anticancer chemotherapy mainly targets a variety of signaling
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Table I. Identified chemosensitivity protein markers for the evaluated anticancer drugs.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Protein markers Antibody Function Drugs
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
ISGF3g ISGF3g Transcriptional factor Porfiromycin

Interferon signaling Morpholino-adriamycin

STAT3 Stat3 Transcriptional factor Porfiromycin
Interferon signaling

NME1 Nm23 Tumor suppressor Mitozolamide
Integrin signaling Piperazine mustard

Azacytidine
5-Hydroxypicolinaldehyde
thiosemicarbazone

MGMT MGMT Ab-1 DNA metyl/alkyl-transferase PCNU
DNA repair

CCNE Cyclin E (G1- and S-phase  Cyclin) Ab-2 Cell cycle protein Semustine (MeCCNU)
Mechlorethamine

EP300 p300/CBP Ab-1 Transcriptional co-factor Cisplatin
Tumor suppressor Camptothecin,20-ester (S)

FN1 Fibronectin Ab-1 Cell adhesion protein Piperazinedione
Integrin signaling

MSN Moesin Ab-1 Cytoskeleton protein Mitoxantrone
Integrin signaling Thiopurine (6MP)

Dolastatin-10

PGR Progesterone receptor Steroid receptor Morpholino-adriamycin
(PgR) Ab-2 Transcriptional receptor

STAT1 Stat1 C-terminus) Transcriptional factor Morpholino-adriamycin
Inteferon signaling

STAT6 Stat6 Transcriptional factor Morpholino-adriamycin
Inteferon signaling

CASP2 Caspase-2/ICH-1L Apoptosis protein 5-6-Dihydro-5-azacytidine

CDH1 E-Cadherin Cell adhesion protein ß-2'-Deoxythioguanosine
A parameter of cell 
metastasis

MCP CD46 (Mambrane Cofactor Protein) Ab-2 Immune response Methotrexate
Inhibition of complement
activation

KRT18 Keratin 18 Ab-1 Structural protein Fluorouracil (5FU)
A biomarker of cell death Colchicine

Colcichine-derivative
Taxol (Paclitaxel)
Taxol analog

TP53 p53 tumor suppressor Tumor suppressor Fluorouracil (5FU)
protein Ab-8 Cell cycle and apoptosis Taxol  (Paclitaxel)

RELA NF-κB p65 Transcriptional factor L-Alanosine
Cell cycle and apoptosis

G22P1 Ku (p70) Ab-4 DNA binding protein N-phosphonoacetyl-L-
DNA repair aspartic-acid
DNA repair

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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transduction pathways to induce genome-wide response and
ultimately leads to tumor clearance. The alteration of cell
signaling transduction, either intrinsically inherent or acquired
during treatment, plays a major role in modulating a particular
cancer's sensitivity to chemotherapy (1). Our identified protein
markers include eight transcription factors, three tumor
suppressor proteins, two DNA repairing proteins, three cell
cycle/apoptosis proteins, five cell cytoskeleton/adhesion
proteins and one immune regulator protein (Table I).

In this study, 29 classifiers used a combination of gene
expression and protein expression profiles. For instance, Taxol
(Paclitaxel; NSC 125973) is used in the treatment of ovarian,
breast and non-small cell lung cancer. The chemosensitivity
classifier for Taxol contained seven gene markers and two
protein markers (Table II). The overall accuracy of chemo-
sensitivity prediction was 0.817, which was significantly

(P<0.02) higher than the protein expression-based classifier
identified previously (11). One of the selected protein markers
is p53 protein, which affects cell functions through regulating
many downstream gene expression. It has been well-
established that p53 plays major roles in DNA repair, cell
cycle arrest, cell apoptosis induction and cell pro-signaling
alteration. Interestingly, it was found that p53 has a regulatory
role in our selected gene markers MMP2 (19,20) and PYCR1
(21). MMP2 gene encodes MMP2 protein, a member of
peptidase enzyme families responsible for the degradation of
extracellular matrix components. The change in MMP2
expression is directly related to angiogenesis, tumor growth
and metastasis (22). PYCR1 encodes pyrroline-5-carboxylate
reductase (P5CR), which catalyzes the reduction of Δ(1)-
pyrroline-5-carboxylate (P5C) to praline using NAD(P)H as
the cofactor (21). This enzyme may be involved in oxidation
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Figure 3. Overall accuracy for the 118 chemosensitivity classifiers. (A) Distribution of classification accuracy for the 118 drugs. The prediction accuracy is
the percentage of correctly classified instances. (B) Performance improvement of the integrative chemosensitivity classifiers over protein expression-based
classifiers identified in a previous study (11).

Table II. Identified gene and protein chemosensitivity markers for Taxol (Paclitaxel) (NSC 125973).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Chemosensitivity markers        Protein name Function
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Gene markers
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
MMP2 Matrix metalloproteinases 2 Breakdown extracellular matrix

TXNDC5 Thioredoxin domain containing 5 Protein disulfide reductases, isomerases or oxidases

LEPROT Leptin receptor overlapping transcript Unknown

OSBPL1A Oxysterol binding protein-like 1a Sterol sensors

TWSG1 Twisted gastrulation homolog 1 Submandibular salivary gland ontogenesis

GALNT2 Udp-n-acetyl-alpha-d-galactosamine: Glycosylation
polypeptiden-acetylgalactosaminyl-
transferase 2

PYCR1 Pyrroline-5-carboxylate reductase 1 Metabolism
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Protein markers
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
KRT18 Keratin 18 Structural protein 

A biomarker of cell death

TP53 p53 tumor suppressor protein Tumor suppressor
Cell cycle and apoptosis

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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of the anti-tumor drug thioproline (21). These results
demonstrated that the complementary classifiers with both
proteomics and genomics information more accurately reflect
the biological nature of cells, which leads to generating a
highly accurate prediction system for chemosensitivity.

Discussion

Chemosensitivity mechanisms involve collaborative biological
processes at the transcriptional level, translational regulation,
posttranslational modification, proteasome function and
protein-protein interactions (17). Current DNA microarrays are
an extremely powerful technology for measuring mRNA
expression of each particular gene. Technologies for globally
and quantitatively measuring protein expression are also
becoming available (5,23,24). Genome-wide transcriptional
profiles of the NCI-60 using Affymetrix U133 and U95 chips
were recently released, together with new proteomic profiles
of the NCI-60 with 162 antibodies for 94 proteins (3).
Although such large-scale data are proven invaluable in
distinguishing cancer types and drug responses, new
computational approaches are needed to integrate these diverse
data types and assimilate them into biological models to
predict chemosensitivity. Previous integrative analyses were
focused on the correlation between different levels of
expression patterns. In those studies, only the markers with
concordant RNA and protein expression were included in the
prediction models, while the markers with discordant RNA
and protein expression were excluded from the prediction
models. Those approaches might potentially miss some
important biological information regarding chemosensitivity
mechanisms, such as protein-protein interactions and protein-
gene interactions. Furthermore, it was not clear whether the
combination of protein and gene expression data could
enhance the prediction accuracy. Here, we developed an
integrated approach, extending beyond the correlation analysis,
to identifying the gene and protein expression signatures. Two
computational feature selection schemes were investigated
in this study. An extensive database including genome-
wide transcriptional profiles and 52-antibody protein assays
on the NCI-60 cell lines was employed to develop and test
our methodology. The results demonstrated that this
integrated approach enhanced the performance of drug
response prediction. The identified multi-level signatures
provided insight into gene-protein collaborations in
chemosensitivity.

A particular challenge of integrative chemosensitivity
prediction is the small amount of available protein expression
data due to the technical difficulties in proteomics (5). By the
time of this analysis was finished, we had only found one
proteomic data set generated from the NCI-60 panel. This
data set contained protein expression levels measured by
52 antibodies (5). The number of the features in the proteomic
data is 4% of that in the transcriptional data set used in this
study. These unbalanced data make it difficult to construct
integrated gene-protein expression-based chemosensitivity
classifiers. We developed two stepwise feature selection
schemes to account for the unbalanced gene expression and
protein expression profiles. The optimal classifiers built from
both approaches were selected as the results. As the variable

importance measures in the randomForest package were not
reliable in situations where variables vary in the scale of
measurement (25), a more robust function, valSelRF by
Diaz-Uriarte et al (9), was used in integrative feature selection
on proteomics and genomics data in this study. After the
feature subsets were identified, the OOB error rates using
random forests were reported as classification performances.
The constructed chemosensitivity classifiers were remarkably
accurate (P<0.001) using the proposed methodologies. In the
evaluation, 76 (64%) classifiers identified from both genomic
and proteomic profiles outperformed the ones exclusively
based on protein expression levels and 29 (25%) integrated
classifiers outperformed the ones exclusively based on gene
expression levels. These results demonstrated that our
analytical approach to integrating protein expression and
gene expression profiles is successful. The majority (75%) of
optimal classifiers were exclusively based on gene expression
profiles, which might result from the unbalanced number of
genes and proteins in the data.

This study presented a new perspective for integrating
different types of microarray data for predicting drug response.
The random forests algorithm was used in this study for two
reasons: i) random forests are well suited for processing large-
scale microarray data and multi-classification problems (9) and
ii) as the majority of previous protein expression-based
chemosensitivity classifiers were constructed with random
forests (11), utilizing random forests for integrative
chemosensitivity classification can minimize the performance
discrepancy due to the use of different analytical methods. It
should be noted that other algorithms, such as support vector
machine, k-nearest neighbor, Relief, and wrapper (26), may
also be used in this general feature selection scheme. In the
analyses, several established packages in R were used,
including the k-NN imputation algorithm (the EMV package)
(14), and the random forests feature selection function (the
valSelRF package) (9). In addition, we developed software
scripts to integrate different types of microarray data for
efficient large-scale computation. After we conducted this
analysis, additional microarray data for the NCI-60 (3),
including the CGH (2) and microRNA profiles (27), as well as
new cancer cell line profiles (28) have become available. This
integrative methodology will be tested with new data in future
research.

In this study, a novel scheme was developed to identify
integrative gene and protein expression signatures to predict
chemosensitivity. This is a general approach to systematically
evaluate genome-wide DNA, RNA, and protein contributions
in cancer progression and drug sensitivity. This methodology
was tested by using an extensive database developed by the
National Cancer Institute. In these large-scale case studies,
cell line chemosensitivity classifiers were constructed for a
broad range of anticancer drugs. The results demonstrated that
our identified integrative gene and protein signatures were able
to enhance the chemosensitivity prediction accuracy. This
study indicated that cancer mechanisms are more readily
revealed by a systems approach integrating genomics,
proteomics, and bioinformatics. This study provides a new
computational model to integrate genomic and proteomic
profiles to predict cellular behavior and cancer outcomes in
general.
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