
Abstract. Acute myeloid leukemia (AML) is a heterogeneous
disease with respect to clinical prognosis and acquired
chromosomal aberrations. After routine banding cytogenetic
analysis 45% of AML patients show a normal karyotype
(NK-AML). For a better understanding of development and
progression in AML, it is important to find markers which
could be primary genetic aberrations. Therefore, in this
study 31 patients with NK-AML were analyzed by new
high resolution molecular cytogenetic approaches. A
combination of multitude multicolor banding and metaphase
microdissection-based comparative genomic hybridization
revealed deletions of the subtelomeric regions in 6% of the
studied cases. According to these results, locus-specific
probes for the subtelomeric regions of chromosomes 5, 9, 11,
12 and 13 were applied on 22 of the studied 31 NK-AML
cases. Surprisingly, 50% of them showed deletions or
duplications. These aberrations occurred in the in vitro
proliferating as well as in the non-proliferating cells. Meta-
analysis of the aberrant regions revealed that they often
include genes known to be associated with tumors, e.g. RASA3
on chromosome 13. These results implicate that aberrations in
the subtelomeric regions of NK-AML occur quite often and
may be considered as primary genetic changes, and should
not be neglected in future diagnostic approaches.

Introduction

The occurrence of acute myeloid leukemia (AML) is based on
acquired genetic alterations, resulting in an accumulation of

hematopoietic progenitor cells. At the time of diagnosis ~55%
of the patients show at least one chromosomal aberration in
their bone marrow blasts where >200 different aberrations are
described until now (1). However, 45% of the patients with
de novo AML still show a cytogenetic normal karyotype
(NK-AML) (2,3). Recent studies gave evidence that in
addition to chromosomal aberrations genetic changes can
occur. These include e.g. mutations in the FLT3 (4), the
NPM1 (5,6) or the MLL gene (7,8). Also acquired isodisomy
were described (9-11). The latter are regions of homo-
zygosity of which the importance for the development of
AML has not been sufficiently clarified yet.

Patients with NK-AML are classified in the intermediate
prognostic group, which allows no precise prediction of the
outcome or an individual therapy for each patient (12,13).
Besides the age of the patients, cytogenetic aberrations are
important for therapy planning and prognosis. However,
bone marrow chromosomes show a poor resolution and
morphology and therefore banding cytogenetic analysis of
such chromosomes is performed on band levels between
200-300 bands per haploid karyotype. Therefore, it is a well
known problem in leukemia cytogenetics that cryptic
chromosomal aberrations can easily be disregarded.

The introduction of molecular cytogenetics, especially of
multicolor fluorescence in situ hybridization (FISH) leads to
better results and identification of previously cryptic
chromosomal aberrations in leukemia cytogenetics and
furthermore make interphase nuclei accessible (1,2). Compared
to whole genome approaches like array-based comparative
genomic hybridization (array-CGH), a further advantage of
FISH is the analysis of single cells. The latter allow also
the study of rare cell lines which are typically found in
leukemia patients. Previous FISH studies (14-18) including
metaphase comparative genomic hybridization (CGH) on
NK-AML (19,20) showed that these approaches are suited to
pick up cryptic chromosomal rearrangements in 5-8% of the
cases.

In the present study, we analyzed 31 cases with NK-AML
with a new, previously not applied combination of FISH
methods. We used two genome-wide FISH approaches, one
interphase, i.e. microdissection-based comparative genomic
hybridization (micro-CGH) (21) and one metaphase cell
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directed approach, i.e. multitude multicolor banding (mMCB)
(22). Furthermore, the results were confirmed by locus-specific
probes, which were used to analyze the proliferating and
the non-proliferating cells of the studied cases. According to
the mMCB and micro-CGH results, subtelomeric probe
sets were subsequently applied on 22 of the 31 NK-AML
cases.

Materials and methods

Patients. Thirty-one patients with de novo AML or AML
derived from MDS (myelodysplastic syndromes) presenting
at diagnosis a normal karyotype after banding cytogenetics,
were included in the present study (for details see Table I).
The age range was 27 to 78 with a median of 55 years and a
male-to-female ratio of 2:4. The number of blasts varied
from 10-100%. According to the French-American-British
Classification, cases from all AML-subtypes except AML-M7
were present.

Banding cytogenetics. Cytogenetic studies applying GTG-
banding was performed according to standard protocols (23).
Two hundred to 350 bands per haploid karyotype and at least
15 metaphases were analyzed per patient. As aforementioned
GTG-banding revealed a karyotype of 46,XX or 46,XY,
respectively.

Fluorescence in situ hybridization (FISH). FISH was done
according to standard protocols described in Liehr et al (26).
The mMCB probe set was used as published in (22). These
probes were further specified later (24). Microdissection-
based comparative genomic hybridization (micro-CGH) (21)

was performed according to the modifications, as previously
described (25). For mMCB and for micro-CGH 15-20
metaphases were evaluated.

Locus-specific DNA probes from the subtelomeric region
of chromosomes 5, 9, 11, 12 and 13 were purchased as BAC
clones from the Children's Hospital Oakland Research Institute
(CHORI), Oakland, CA, USA. Plasmid DNA from BAC
clones was isolated, amplified and labeled by PCR and
subsequently used for FISH, as described (26). In order to have
a probe set that is also reliable in interphase FISH at least
three BAC clones from the same chromosomal region were
combined to a probe-set and labeled in the same color
(Table II). For chromosome 5 only one BAC clone from the
subtelomeric region was available. For each FISH probe
15-20 metaphases and 150 interphase nuclei were analyzed.
The cut-off level for the analyses of interphase nuclei was
determined as 5%.

Meta-analysis. The regions identified to be deleted in the
aforementioned FISH-experiments were analyzed for their
genetic content using database of NCBI (36.2) (http://www.
ncbi.nlm.nih.gov) and database of genetic and cytogenetic in
haematology and oncology (http://atlasgeneticsoncology.
org//index.html).

Results

Micro-CGH. In 17 of 31 NK-AML cases, sufficient amount of
suspension for analysis with micro-CGH was available. In two
cases gain of copy numbers for chromosome 19 and in another
case loss of copy number for parts of chromosome 17 and
whole chromosome 19 were observed. Application of further
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Figure 1. mMCB result of case 28. In (a) the staining of the chromosomes in
three of the five fluorochromomes (TexasRed, cyanine 5 and diethylamino-
coumarine) and (b) the results are depicted in pseudo-colors (ISIS,
Metasystems, Altlussheim, Germany). (c) Inverted DAPI banding of the same
karyogram. In this case no aberrations were detected by mMCB.
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FISH probes (mMCB and subtelomere 19 specific probes)
could not confirm these results. Thus, micro-CGH did not pick
up any aberrations in the 17 studied cases.

mMCB. Metaphases suited for analysis by mMCB were
obtained in 26 of 31 NK-AML cases. The mMCB probe-set
revealed aberrations in 2 of the 26 studied cases which were
confirmed by additional FISH probes. In case 5, three different
cell clones were detectable: 46,XY,del(5)(p15.5)[11]/46,XY,
del(5)(q35)[4]/46,XY[13]. In case 26, a deletion in the
subtelomeric region in 2q could be described. This deletion
occurred in 8% of the metaphases. In the remaining analyzed
NK-AML cases no aberrations were detectable by mMCB
(Fig. 1).

Subtelomeric regions. In 22 of 31 cases, sufficient amount of
suspension was available for the analysis of subtelomeric
regions by interphase and metaphase FISH. In 50% of the
analyzed 22 NK-AML cases aberrations in the subtelomeric
regions were detectable, including deletions and duplications
of the appropriate regions (Table I). For each case the
number of detected cell clones varied from one to three. The
aberrations were found in the proliferating cells, in the non-
proliferating cells or in both cell types. Fig. 2 shows a deletion
on chromosome 13 detected in case number 11.

Discussion

In the present study, 17 NK-AML cases were analyzed by
micro-CGH and no aberrations could be described. These
results are comparable to others using metaphase-based
CGH for analyzing NK-AML (19-20,27). However, as
already described (25) micro-CGH enables the direct
analysis of tumor cells which is more informative than
conventional metaphase-based CGH. Thus, no major copy
number changes can be expected in NK-AML detectable by
metaphase CGH. The false-positive/false negative copy
number changes affected especially chromosome 19 - a
region known to be not reliably informative in CGH-studies
(25,28).
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Figure 2. Hybridization result of a subtelomeric probe contigue (subtel 13q)
with a whole chromosome paint for chromosome 13 (wcp 13) in case 11. The
BAC contigue were labeled in TexasRed (TR), the wcp probe in Spectrum
Green (SG). Due to the deletion the signal of the BAC clones is visible only
on one of the homologue chromosomes. On the left hand of the FISH figures
the inverted DAPI-banding (inv. DAPI) result is shown.
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The application of mMCB could identify deletions in 6%
of the 31 NK-AML cases. The proof of principle for mMCB to
detect cryptic aberrations was done on cases with MDS
(22) and acute lymphoblastic leukemia (29). The FISH
method mMCB is also useful to analyze mixtures of cells such
as in AML cases where the studied cells comprise healthy
and leukemic cells (unpublished data). In previous
multicolor FISH studies whole chromosome paints as probes
were applied on NK-AML cases (14-18). Surprisingly, the
results from the present study are similar to those in the
published studies, even though the FISH-banding approach
(for review see ref. 30) mMCB allows the detection of
aberrations which are not detectable by other cytogenetic
methods. This means, that in NK-AML intrachromosomal
changes are sparse.

A limitation of all multicolor FISH approaches using
whole or partial chromosome paints as well as for CGH is
that they do not provide reliable information on changes
within the subtelomeric regions of the chromosomes.
Therefore, in the present study locus-specific probes for the
subtelomeric regions were applied. The analyzed regions
were chosen according to chromosomes which are often
involved in aberrations in AML (http://atlasgeneticsoncology.
org//index.html). Cryptic aberrations in 50% of the 22 NK-
AML cases were found. These aberrations included deletions
and duplications and occurred in the in vitro proliferating as
well as the non-proliferating cells. The size of the deleted
regions was at least 200 to 600 kb according to the BAC
clones used for FISH. Database analysis of these regions
showed that they include genes known to be associated with
tumors. The deleted region on chromosome 13 has a size of at

least 300 kb and contains the RASA3 gene. The product of this
gene is a GTPase activating protein which stimulates the
GTPase activity of RAS p21 (31). It is further known that
RAS genes have a function as proto-oncogenes and are
involved in a variety of tumors (32,33). The deleted regions
are, excluding those on chromosomes 5 and 9, regions that
contain published copy number variations (34,35). For the
chromosomes 9 and 11 segmental duplications of the
corresponding regions are reported, which are in general
known to be predisposed for non-allelic homologues
recombination (36). The deleted region on chromosome 12 is
known to be often involved in rearrangements in AML
(29,37-39). Our data have shown a correlation between
deletion 12p and AML-subtype M2 which was also described
before (40,41). The remaining aberrations occurred
independently from the AML-subtype, age or percentage of
blasts. Furthermore, aberrations were observed in the
proliferating as well as in the non-proliferating cells with no
correlation to the aberration.

In conclusion, this is the first study using genome-wide
FISH methods as well as locus-specific FISH probes to detect
aberrations in NK-AML. In ~50% of the cases submicroscopic
deletions could be described. These deletions might be primary
genetic aberrations which lead to the development of AML.
Further studies should clarify the prognostic impact of these
aberrations.
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Table II. BAC clones from the subtelomeric regions of the chromosomes 5, 9, 11, 12 and 13 used for interphase and metaphase
FISH, based on NCBI build 36.2.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Chromosome Band BAC clone Accession code Start kb End kb
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
5 q35.3 RP11-240G13 - 180.512 180.626
9 p34.3 RP11-393D13 BH141105.1 236 427
9 p34.3 RP11-1021N5 AQ593522.1 150 333
9 p34.3 2241C11 (Cosmid) - - -

11 p15.5 RP11-1021K7 AQ697676.1 668 668
11 p15.5 RP11-51L17 AQ052363.1 764 942
11 p15.5 RP11-496F2 AZ695077 668 872
11 p15.5 2209A2 (Cosmid) - - -
11 q25 RP11-186N3 AQ422456.1 134.184 134.356
11 q25 RP11-1077G24 AQ744064.1 133.998 134.194
11 q25 RP11-265F9 AQ484019.1 134.272 134.411
11 q25 RP11-267D5 AQ487857.1 133.964 134.130
12 p13.3 RP11-519B13 AZ916624.1 28 214
12 p13.3 RP11-12H17 B75812.1 345 484
12 p13.3 RP11-367L11 AQ529919.1 366 537
13 q34 RP11-63L17 AQ200393.1 113.782 113.954
13 q34 RP11-960N24 AQ739689.1 113.904 114.103
13 q34 RP11-450H16 AZ773446.1 113.958 114.117
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
BAC, bacterial artificial chromosome; Band, chromosomal subband; kb, kilobasepairs and ‘-’, not available.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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