
Abstract. Malignant melanoma is an aggressive tumor of the
skin with a poor prognosis for patients with advanced disease.
It is resistant to current therapeutic approaches. In melanoma,
both the Ras/Raf/MEK/ERK (MAPK) and the PI3K/AKT
(AKT) signalling pathways are constitutively activated through
multiple mechanisms. Mutations of BRAF have been proposed
to contribute to melanoma development. Increased activity of
the MAPK pathway prevents apoptosis and induces cell cycle
progression. PTEN deletion results in Akt activation. Akt
activation can result in the phosphorylation and inactivation of
Raf. This decrease in downstream MEK and ERK activation
may lead to loss of differentiation or senescence. This review
summarizes the most relevant studies focused on the
signalling pathways involved in melanomagenesis. New
therapeutic strategies are also reported.
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1. Introduction

Melanoma is the most aggressive form of skin cancer (1). Its
incidence has increased dramatically worldwide over the last
50 years (2); currently, the risk of developing melanoma is
1/58 for males in the United States and 1/25 for Australian
males (3). It affects predominantly caucasian young and
middle-aged adults (4). The main risk factors for cutaneous
melanoma are intense and intermittent ultraviolet radiation
exposures, phenotypic characteristics (fair skin and blond or
red hair), melanocytic nevi's number, type and location (lower
limbs in females, posterior trunk in males), personal or family
history of melanoma (5).

If melanoma is diagnosed early it can be cured by surgical
excision, and about 80% of cases are dealt with in this way
(6). However, metastatic malignant melanoma is refractory to
current therapies and has a very poor prognosis, with a median
survival rate of 6 months (1). Recent discoveries in the complex
networks involved in melanoma proliferation, progression
and survival have created many opportunities for targeted
drugs and new therapeutic approaches for this disease. These
new targets include signal transduction pathways, oncogenes,
growth factors and their receptors (7). In this review we
summarize the most important studies on signalling pathways
implicated in the pathogenesis of melanoma. New therapeutic
strategies are also reported.

2. Ras/Raf/MEK/ERK pathway

The Ras/Raf/MEK/ERK pathway, also known as the MAPK
(mitogen-activated protein kinase) pathway, is a signal
transduction cascade relaying extracellular signals from plasma
membrane to nucleus via an ordered series of consecutive
phosphorylation events (8). In response to a variety of cellular
stimuli, including growth factor-mediated activation of
receptor tyrosine kinases (RTKs), Ras assumes an activated,
GTP-bound state, leading to recruitment of Raf from the
cytosol to the cell membrane where it becomes activated,
likely via an Src-family tyrosine kinase (9-11). Activated Raf
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causes the phosphorylation and activation of MAP kinase
extracellular signal regulated kinases 1 and 2 (MEK1/MEK2),
which in turn phosphorylate and activate extracellular
signal-regulated kinases 1 and 2 (ERK1/ERK2) at specific
Thr and Tyr residues (12-14). Activated ERK translocate
to the nucleus and phosphorylate several nuclear transcription
factors (Elk-1, Myc, CREB, Fos and others) which bind
promoters of many genes, including growth factor and
cytokine genes that are important for stimulating the cellular
proliferation, differentiation, and survival of multiple cell
types (15-35).

Dysregulation of Ras/Raf/MEK/ERK pathway plays a key
role in pathogenesis of several human cancers (36); mutations
at upstream membrane receptors, Ras and B-Raf as well as
genes in other pathways (e.g., PI3K, PTEN, Akt), which serve
to regulate Raf activity, promote constitutive ERK signalling,
stimulating proliferation and survival and providing essential
tumor growth and maintenance functions (37). Effects of
PTEN deletion on PI3K/Akt and Raf/MEK/ERK activation
in melanoma cancer are shown in Fig. 1. Therapies targeting
mutant activity of components of the MAP kinase cascade
could stop progression of malignant tumors by slowing tumor
growth and inducing tumor cell death (36).

Abnormal activation of the MAP kinase cascade in melanoma.
The MAPK pathway plays an important role in melanoma
cell proliferation and survival, with ERK being constitutively
activated in up to 90% of melanomas (38). In this disease, ERK
hyperphosphorylation is most commonly due to mutations
of NRAS (15-30%) and especially BRAF (50-70%) genes
(39,40). The aberration of NRAS often is a substitution of
leucine for glutamine at residue 61, this change impairs GTP
hydrolysis and maintains the protein in a state of constitutive
activation (41). Mutations in other Ras isoforms are rare in
melanoma, suggesting an activity context dependent on
specific Ras isoforms (42).

The most frequent BRAF mutation, which accounts for
more than 90% of melanomas with alteration of B-Raf, is a
glutamic acid for valine substitution at codon 600 in exon 15
(Val600Glu; B-RafV600E) (39); this mutation introduces a
conformational change in protein structure due to glutamic
acid that acts as a phosphomimetic between the Thr598 and
Ser601 phosphorylation sites, leading to constitutive activation
of the protein with a substantial increase in the basal kinase
activity (43); the resulting hyperactivity of the MAP kinase
pathway promotes tumor development (39,44,45). V600EBRAF
also promotes vascular development by stimulating autocrine
vascular endothelial growth factor (VEGF) secretion (46).
Mutations in ARAF and CRAF have not been found in this
tumor type. Likely, this pattern of mutations is due to the
different mechanism of activation of the three Raf genes:
BRAF requires one genetic mutation for oncogenic
activation, while ARAF and CRAF require two mutations
(47,48), and this is a very rare.

Interestingly, genetic alterations in NRAS and BRAF rarely
coexist in melanoma (39,49,50), suggesting that mutant BRAF
or NRAS alone is able to activate the MEK/ERK pathway.
In Fig. 2 Raf/MEK/ERK and PI3K/Akt pathways and gene
alterations that activate these pathways in melanoma are
described.

3. Additional genetic insults involving other signalling
networks are needed for melanoma tumorigenesis and
progression

The mechanisms by which NRAS or BRAF mutations
promote melanoma cell cycle progression and/or survival
remain unclear. Several studies have shown the presence of
the same mutations also in a high percentage of benign nevi,
suggesting activation of the MAPK pathway is a necessary
event for melanoma development, but it is not sufficient for
malignant transformation (51,52). Therefore, oncogenic
BRAF and NRAS must cooperate with additional genetic
insults to induce invasive cancer development in melano-
cytes. Several candidate cooperative genetic changes have
been identified in melanoma including MITF amplification
and mutation and/or deletion of PTEN, p53 and p16INK4a

(53).

Role of Microphthalmia-associated transcription factor (MITF)
in melanomagenesis. The connection between MITF and
melanoma development is complex. MITF acts as a master
regulator of melanocyte development, function and survival
(54,55); it plays a double role of inducer/repressor of cellular
proliferation (56). High levels of MITF expression lead to G1
cell-cycle arrest and differentiation, through induction of the
cell cycle inhibitors p16INK4a and p21Cip (57,58), whereas very
low, or null, expression levels predispose to apoptosis (6).
Only inter-mediate levels promote cell proliferation.
Therefore, it is thought that melanoma cells have developed
strategies to maintain MITF levels in the range compatible
with tumorigenesis. It has been shown that constitutive ERK
activity, stimulated by V600EBRAF in melanoma cells, is
associated with MITF ubiquitin-dependent degradation (59).

Nevertheless, continued expression of MITF is necessary
for proliferation and survival of melanoma cells, because
it regulates CDK2 and BCL-2 genes, respectively (60,61);
furthermore, BRAF mutation is associated with MITF
amplification in 10-15% of melanomas (62). However, other
mechanisms likely counteract MITF degradation stimulated
by ERK-dependent proteasomal degradation, since MITF
amplification occurs only in few cases of melanomas in
which BRAF and NRAS are mutated. MITF is a downstream
target of ß-catenin, a key effector of the Wnt signalling
pathway, able to stimulate growth of melanoma cells (63);
thus, an alternative mechanism of MITF recovery could
involve stabilizing mutations in ß-catenin leading to
induction of MITF (64-66). Another mechanism could
involve the same mutant BRAF; it has been recently shown
that oncogenic BRAF controls MITF on two levels. It
downregulates the protein by stimulating its degradation, but
then counteracts this by increasing MITF expression through
the transcription factor BRN2 (67).

Role of the PI3K pathway in melanoma tumorigenesis. In
response to activated growth factor receptors, the phospho-
inositide-3-OH kinase (PI3K) phosphorylates phosphatidyl-
inositol-4,5-biphosphate (PIP2) to phosphatidylinositol-3,4,5-
triphosphate (PIP3), leading to activation of the major
downstream effector of the PI3K pathway, Akt (68); once
activated, Akt phosphorylates the downstream cellular proteins
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Figure 1. Effects of PTEN deletion on PI3K/Akt and Raf/MEK/ERK activation in melanoma. AKT activation results in inhibition of Raf and downstream
MEK/ERK. Raf inactivation leads to decreased p21Cip1 levels and increased cell cycle progression. Akt activation results in p21Cip1 phosphorylation and
FOXO3A phosphorylation which prevents transcription of p27Kip1. Inactivation of Raf/MEK/ERK leads to decreased differentiation and proliferation of
immature cells. Decreasing Raf/MEK/ERK cascade by PTEN deletion and Akt hyperactivation results in the continuous proliferation of immature melanoma
cells.

Figure 2. Raf/MEK/ERK and PI3K/Akt pathways and the mutations activating these pathways in melanoma.
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that promote cell proliferation and survival (68-70). The lipid
phosphatase PTEN negatively regulates this cascade through
dephosphorylation of PIP3 (70).

Recent studies have revealed deregulation of the PI3K
signalling in a high proportion of melanomas. Indeed, in about
45% of melanomas, PTEN is deleted and the downstream
Akt gene is amplified (71,72). Both of these mutations result
in overexpression of Akt3 (72), an isoform of Akt. Increased
phospho-Akt expression in melanoma is associated with
tumor progression and shorter survival (73,74). Oncogenic
RAS can also bind and activate PI3K, resulting in increased
AKT activity (75). These data suggest that loss of PTEN and
oncogenic activation of RAS are largely equivalent with
regard to their ability to increase oncogenic signalling through
the PI3K pathway (76). This hypothesis is supported by the
finding that PTEN somatic mutations are seen in melanomas
harbouring mutations in BRAF but not NRAS (77). This is
consistent with the ability of NRAS to activate both the PI3K
and MAPK cascades, so in the presence of oncogenic NRAS
additional mutations in BRAF and PTEN are unnecessary
(6,74). In the recent evaluation of genomic alterations in
primary melanomas, tumors with BRAF mutations had fewer
copies of PTEN than those with NRAS mutations, suggesting
that dual activation of the PI3K and MAPK pathways are
important events in melanoma development (74,78). In Fig. 3
the frequency of NRAS, BRAF, PI3K mutations in our
melanoma case series is reported. The preliminary data
showed that the MAPK and AKT pathways were activated in
all samples having gene mutations (Fig. 4). However, only
the AKT pathway was highly expressed in tumor tissues with
both PIK3CA and BRAF mutations suggesting that some
PIK3CA mutations may block the MAPK pathway by
activating AKT which phosphorylates and inactivates Raf.

Role of the p16(INK4a)-Rb (retinoblastoma protein) pathway
in melanoma tumorigenesis. The p16(INK4a)-Rb pathway is
a critical gatekeeper for cell cycle progression; in the Cdk4/6-
mediated phosphorylated state, Rb drives cells towards G1/S-
phase transition, while in the hypophosphorylated state, Rb
binds and represses the E2F transcription factor and prevents
the progression through the S-phase (79). p16INK4a stops
cell cycle inhibiting the cyclin D/CDK4 complex, thereby
preventing it from phosphorylating Rb (80).

The exit of cells from cell cycle is a physiological process;
indeed, normal somatic cells have a finite lifespan, and after
a finite number of divisions they exit from the cell cycle and
enter a state known as senescence (6,81); senescence also
occurs in response to oncogenic stress, so acting as a cellular
protection mechanism against cancer formation (82,83). It
has been shown that abnormally high activation of the MAP
kinase pathway can inhibit cellular growth in a wide variety
of normal and cancer cells by promoting cellular senescence
(84,85); notably, V600EBRAF was recently found to induce
p16INK4a expression and senescence in primary human melano-
cytes in vitro (84,86). Therefore, senescence can be overcome
only if the p16(INK4a)-Rb pathway is not fully engaged, and
this may occur when p16INK4a is inactivated (87,88). It has
been reported that germline mutations in p16INK4a are linked
to familial melanoma susceptibility (89-91); somatic mutations
in gene encoding p16INK4a are also found in most sporadic

melanomas (92,93). p16INK4a is inactivated by deletions, point
mutations, promoter methylation (94,95) or through trans-
criptional silencing by overexpression of the transcriptional
suppressor, inhibitor of differentiation 1 (ID1) (96). Given
that p16INK4a needs to directly interact with the cyclin-Cdk
complex in order to inhibit its protein kinase activity, changes
in CDK4 that render it resistant to p16INK4a mimic p16INK4a

loss (66). Both somatic and germline mutations in CDK4
have been detected in melanoma cell lines (97) and in
familial melanomas (98).

Recently, another way to circumvent oncogene-induced
senescence during melanoma progression has been discovered,
Akt3 in early melanocytic lesions has been shown to phos-
phorylate V600EBRAF to reduce its activity and the MAP kinase
pathway activity to levels promoting, rather than inhibiting,
proliferation to overcome the senescence block (85,99).

4. Resistance to apoptosis and chemotherapy

It has been shown that melanoma cells have low levels of
spontaneous apoptosis in vivo compared with other tumor cell
types, and are relatively resistant to drug-induced apoptosis
in vitro (6,100). As most chemotherapeutic drugs function by
inducing apoptosis in malignant cells, resistance to apoptosis is
thought to be the main cause of drug resistance in melanoma
(100).

Dysregulation of the intrinsic (mitochondrial-dependent)
apoptotic pathway form the basis for melanoma's resistance
to apoptosis and chemotherapy (101-107). The p53/Bcl-2
signalling network is one of the most important regulators of
cell apoptosis; the Bcl-2 superfamily includes proapoptotic
(BAX, BAK, BAD, BID, Bim, NOXA, PUMA) and anti-
apoptotic (Bcl-2, Bcl-xL, Mcl-1, BCL-w, and A1) members.
In response to irreversible DNA damage, p53 becomes
activated and induces the expression of proapoptotic members
of the Bcl-2 family; these effectors promote mitochondrial
membrane permeabilization and release of cytochrome c,
which binds to Apaf-1 leading to the activation of effector
caspases that result in apoptosis (108).

The loss of p53 function allows the cells that have suffered
DNA damage to survive and divide, propagating pro-cancerous
mutations; unlike many other chemoresistant cancers,
melanomas harbour a very low frequency of p53 mutations
(109-112). Therefore, other components of the p53 pathway,
either upstream or downstream of p53 are likely defective in
melanoma. It has been shown that aberrant methylation lead
to loss of Apaf-1 expression rendering the cells unable to
execute the normal apoptotic response following p53 activation
(66,104). It has also been reported that decreased levels of
Apaf-1 correlate with advanced disease and chemoresistance
(66,113).

High levels of Bcl-2 expression have been found in
melanoma and melanocytes (100,114). Aberrations in various
signalling pathways contribute to elevated Bcl-2 levels in
melanoma (66). In 1999, Borner et al found that mutant NRAS
upregulates the expression of Bcl-2 in vitro and in SCID mice
(101). MITF may also contribute to survival by the trans-
activation of Bcl-2 (61,66).

Alterations in other members of the Bcl-2 family were
demonstrated to be involved in melanoma progression and
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chemoresistance. Several studies have demonstrated that
resistance to a variety of traditional and targeted chemo-
therapeutic agents is largely mediated by Mcl-1 overexpression
(66,115-121); unlike other antiapoptotic Bcl-2 family members,
Mcl-1 suppresses apoptosis induced by BAK but not BAX
(122); Mcl-1 also has the unique property of rapid steady-
state turnover due to proteasomal degradation (66,123); thus,
in the presence of chemotherapeutics that inhibit proteasome
function, such as bortezomib, Mcl-1 can accumulate and result
in decreased sensitivity to these agents (66,118).

5. Emerging target therapies

Recent progress in understanding the signalling pathways
involved in melanomagenesis has led researchers to develop
targeted therapies for this disease. These include selective
inhibitors of the RAF and MEK kinases, inhibitors of the
PI3K pathway and the Hsp90 chaperone protein.

Inhibitors of the RAF kinases. Sorafenib (BAY43-9006) is an
oral multi-kinase inhibitor that decreases activity of RAF,
VEGF receptor 1, 2 and 3, PDGFR, Flt-3, p38, c-kit, and
FGFR-1 (124), so inhibiting both tumor cell growth and
angiogenesis (46,125,126). It has been shown that sorafenib
inhibits the growth of melanoma xenografts in mice (46), while
it has little or no antitumor activity in advanced melanoma
patients as a single agent (127). The reasons why sorafenib
failed in clinical trials are not clear; perhaps it is unable to
reach a concentration sufficient to inhibit B-Raf or it is
possible that proliferation of melanoma cells is driven by
alternative signalling pathways after signalling through RAF/
MEK/ERK has been blocked (127). To improve the efficacy
of sorafenib in the therapy of melanoma, it is being combined
with standard chemotherapeutic drugs; preliminary results
combining sorafenib with carboplatin and paclitaxel were
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Figure 3. (A), NRAS, BRAF, PI3K mutations in a melanoma case series. (B), Hot-spot mutations of these genes.

Figure 4. AKT and MAPK activation in a representative melanoma sample
with both BRAF and PI3K mutations.
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encouraging (128). However, phase III trials have shown that
this combination failed to improve progression-free survival
of patients with advanced melanoma (128). Recently, it has
been seen that sorafenib activates glycogen synthase kinase-
3ß (GSK-3ß) in melanoma cell lines (129,130); constitutive
activation of this kinase correlates with a marked increase in
basal levels of Bcl-2, Bcl-x(L) and decreased antitumor
efficacy of sorafenib. Therefore, sorafenib given in conjunction
with targeted therapies against glycogen synthase kinase-3ß
or the antiapoptotic Bcl-2 family members may prove useful
(66,130).

The limited activity of sorafenib in tumors with oncogene
BRAF prompted the evaluation of the efficacy of more
specific BRAF inhibitors, such as RAF-265 (CHIR-265) and
PLX-4032 (Plexikkon), in a phase I study for stage III/IV
melanoma (http://www.clinicaltrial.gov/ct2/show/NCT
00304525?term=NCT00304525&rank=1) and advanced
solid tumors, respectively (Tsai J, et al, Proc Am Assoc
Cancer Res 47: abs. 571, 2006).

Inhibitors of the MEK kinases. Recently, it has been shown
that melanoma cell lines with mutant BRAF are more sensitive
to MEK inhibition than lines harboring oncogene RAS (131).
In BRAF mutant tumors, MEK inhibition results in down-
regulation of cyclin D1, upregulation of p27, hypophospho-
rylation of RB and growth arrest in G1. MEK inhibition also
induces differentiation and senescence of BRAF mutant cells
and apoptosis in some but not all V600E BRAF mutant models
(53,131,132). Two MEK inhibitors are currently being tested
in clinical trials: PD0325901 (Pfizer Oncology) and ARRY-
142886 (AZD6244).

Inhibitors of the PI3K pathway. CCI-779 (Temsirolimus) and
RAD001 (Everolimus), are the most advanced agents in the
attack on the PI3K pathway (133). They target mTOR, a
serine/threonine kinase downstream of Akt that modulates
protein synthesis, cell-cycle progression, and angiogenesis
(134). Since mTOR is a cytosolic protein expressed by all
tissues, these inhibitors do not have high specificity in
targeting melanoma tumor cells (66). Furthermore, it has
been determined that the mTOR pathway has a complicated
feedback loop that involves suppression of Akt, hence
mTOR inhibitors would potentially activate Akt in some
cells (36).

The MAPK and the PI3K signalling pathways both play a
key role in melanoma cell proliferation and survival (77)
suggesting that parallel inhibition of targets in both pathways
may result in synergistic inhibition of growth in melanomas
(135).

Inhibitors of the Hsp90 chaperone protein. The molecular
chaperone heat-shock protein 90 (Hsp90) is required for the
folding, conformational maturation, and stability of a subset
of signalling molecules, including CRAF, mutant BRAF,
HER2 and AKT. Exposure of melanoma cells to the Hsp90
inhibitor benzoquinone anisomycin 17AAG results in the
proteasomal degradation of mutant BRAF, inhibition of
mitogen-activated protein kinase activation and cell
proliferation, induction of apoptosis, and antitumor activity
(136,137). Furthermore, clinical activity has been shown
with 17-AAG in patients with HER2 amplified breast cancer

and multiple myeloma (53,138,139). Though promising,
17-AAG has limited oral bioavailability and is poorly soluble.
This has necessitated the use of intermittent intravenous
dosing (once or twice weekly) likely limiting its efficacy in
cancer patients. Novel small molecule Hsp90 inhibitors with
improved oral bioavailability have recently entered phase I
clinical testing and clinical evaluation of these compounds in
tumors with a high frequency of mutated BRAF is warranted
(53,140-142).

6. Conclusions

The recent identification of several key molecular pathways
implicated in the pathogenesis of melanoma and induction of
chemotherapeutic drug resistance has led to the development
of new targeted therapies for this devastating disease.
Targeting various effectors of these pathways with
pharmacologic inhibitors may inhibit melanoma cell growth
and angiogenesis; the specific action of these new molecular
targeted agents minimizes unexpected toxicity that is typical
of systemic chemotherapy. Ongoing clinical trials provide
hope to improve progression-free survival of patients with
advanced melanoma.
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