
Abstract. Chemotherapy is often used for breast cancer treat-
ment, but individual outcome varies widely. We hypothesized
that tumor proteomic profiles obtained prior to chemotherapy
may predict the individual tumor response to treatment. The
goal of our study was to explore feasibility of using proteomic
profiling to preselect patients for an effective chemothera-
peutic regimen. Tumors from 52 patients with T2-T4 breast
cancer were prospectively collected before neoadjuvant
chemotherapy, and were analyzed using surface-enhanced
laser desorption ionization/time of flight (SELDI) mass
spectrometry. Mass spectral profiles were obtained from
tumors with various sensitivities to chemotherapy. Both non-
supervised hierarchical clustering and supervised neural

network-based classification approaches were employed to
compare the profiles. The first two thirds of the enrolled
cases (35) were allocated to a training set to select peaks
characteristic of resistant tumors. The candidate peaks were
used to develop a predicting rule to evaluate the remaining
17 specimens in the validation set. In the training set, the
most prominent differences were found between drug resistant
and drug susceptible tumors by non-supervised hierarchical
clustering. In the validation set, the supervised classification
with the K nearest neighbor (KNN) model correctly classified
most tumor responses with an accuracy rate of 92.3% [100%
of resistant tumors (4/4), and 84.6% of the tumors with
favorable response (11/13)]. In the entire group, a single peak
at m/z 16,906 correctly separated 88.9% of the tumors with
pathologically complete response, and 91.7% of the resistant
tumors. The data suggest that breast cancer protein biomarkers
may be used to pre-select patients for optimal chemotherapeutic
treatment.

Introduction

Preoperative chemotherapy (neoadjuvant chemotherapy) has
gained wide acceptance for treating patients with locally
advanced breast cancer. In these patients the most acknow-
ledged benefit is the reduction in tumor size allowing either a
complete resection of an otherwise unresectable tumor or
breast conservation surgery in some patients with large tumors.
Furthermore, tumor response to neoadjuvant treatment has
been shown to be prognostically significant. Other less proven
benefits of neoadjuvant chemotherapy include eradication
of microscopic metastases and improved survivals (1-3).
Postoperative adjuvant chemotherapy has been used success-
fully to improve survival rates in patients with early stage
breast cancer (4). Although many patients benefit from
chemotherapy, some fail to respond. However, the success of
chemotherapy, whether pre- or post-operative, in any given
individual cannot be predicted. The uncertain benefit for a
particular individual, as well as significant toxicity of chemo-
therapy in all patients, calls for development of methods to
select the right patients for treatment and spare those who will
not benefit.
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There already is precedence for using the expression of
specific proteins by tumors to select treatment and to monitor
disease progression. For example, estrogen and progesterone
receptor levels in tumor tissues are now used to predict benefit
of Tamoxifen therapy in women of all ages (5), ovarian
ablation in premenopausal patients (6,7) and aromatase
inhibitor treatment in postmenopausal women (5,8,9). More
recently HER2/neu status also has been used to predict
effectiveness of the combination of chemotherapy and
Herceptin in women with HER2/neu positive breast cancer
(10-12). The Breast Cancer International Research Group
conducted a multicenter phase III trial to investigate the best
combination of chemotherapy and Herceptin treatment for
these patients. The study concluded that Herceptin with
chemotherapy was superior to chemotherapy alone in patients
with HER2 positive early-stage breast cancer (Slamon et al,
29th Annual San Antonio Breast Cancer Symposium, abs. 52,
2006). Estrogen and progesterone receptor levels and HER2/
neu status also were prognostically valuable in these patients.

However, no reliable biomarkers currently are available
to predict the response of an individual to a particular type of
chemotherapy. Several recent studies have attempted to use
gene expression profiling and bioinformatics to predict the
need for adjuvant chemotherapy in patients with early stage
breast cancer (13-15). The Oncotype DX Breast Cancer
Assay uses reverse transcriptase-polymerase chain reaction
to correlate the expression of a panel of 21 genes in hormone
receptor positive and lymph node negative tumors to predict
the risk of disease recurrence. A score calculated from the
expression of these genes predicts the risk of tumor recurrence
after initial Tamoxifen treatment, and is used to assess the
need for further chemotherapy. This study showed that the
difference in the risks of distant recurrence between patients
with low and high scores by the Oncotype DX test was
statistically significant and clinically useful (14).

Similar to the genomic analysis of cancer-related genes,
proteomics has emerged as a potentially powerful tool for
tumor classification through protein biomarker profiling. It is
now widely recognized that proteomics has the potential to
improve disease diagnosis and management (16). However,
the proteome changes constantly due to the influence of many
factors such as aging, disease and environmental exposure.
Thus, studying the cellular or circulating proteome has been
more challenging than the genome (17). The application of
proteomics to monitor tumor response to chemotherapy is
only in the early stages, and our current study was specifically
designed to compare SELDI mass spectra of breast cancer
tissues from chemotherapy responsive and non-responsive
patients receiving the same neoadjuvant treatment.

Evaluation of chemotherapy response in these patients is
measured both by microscopic examination of surgically
removed tissue (pathological examination), and by physical
examination and/or imaging studies (clinical examination).
The pathological response is usually classified as either
pathologically complete response (pCR) or having residual
tumor after neoadjuvant treatment. Clinical responses are
graded as a change in tumor size from baseline to post-
neoadjuvant treatment: complete response (no tumor detected),
partial response (tumor shrinks ≥50%), marginal response
(tumor shrinks 25-49%), stable disease (tumor size changes

<25%), and tumor progression (tumor size increases >25%).
The latter two groups are frequently considered non-responders.
It was our goal to use proteomic technologies to study
differences between drug resistant and sensitive tumors in an
effort to improve tumor classification and patient selection
for individualized chemotherapy.

Materials and methods

Patients and clinical information. Fresh tumor tissues from
52 patients with non-metastatic T2-T4 breast cancer were
prospectively collected for this study. All patients participated
in an Institutional Review Board (IRB) approved phase II
clinical trial to study the efficacy of neoadjuvant Taxotere/
Carboplatin ± Herceptin therapy. The patient inclusion
criteria for the clinical trial were: (i) females aged 18 and
older with a tissue-proven diagnosis of stage II-III invasive
breast cancer; (ii) measurable primary breast cancer; (iii) no
prior chemotherapy for the current breast cancer or prior
radiation of the involved breast; (iv) available tissue estrogen
and progesterone receptor status by immunohistochemical
staining, and HER2/neu status by the fluorescent in situ
hybridization (FISH) test; and (v) completion of the clinical
staging requirements. The patient exclusion criteria included:
(i) refusal of definitive resection of primary tumor; (ii) evidence
of metastasis; (iii) pregnancy or nursing conditions, and fertile
women not on birth control. Written informed consent was
obtained from all participants and baseline clinical assess-
ment of tumor size, tissue diagnosis and tumor biomarker
status was recorded.

Because a baseline tumor size by pathologic evaluation
was not possible, the clinically measured tumor size prior to
chemotherapy was used as baseline. Post-chemotherapy
information including tumor size measured by both clinical
and pathological methods, lymph node staging, and tumor
biomarkers were collected from each definitive breast cancer
surgery. The formula used to calculate tumor regression rate
(TRR) was as follows: (baseline tumor size-residual tumor
size)/baseline tumor size, where the baseline tumor size was
measured clinically and the post chemotherapy residual
invasive tumor size was measured pathologically. The TRR
was categorized into three groups: (i) responders (TRR >75%,
R), (ii) intermediate responders (25% <TRR ≤75%, IR) and
(iii) non-responders with minimal to no response or tumor
progression (TRR ≤25%, NR).

Tumor tissue collection and sample preparation. Breast
cancer tissues were prospectively collected from each patient
at two different time points: (i) at baseline before chemo-
therapy and (ii) at the time of definitive cancer surgery after
completion of neoadjuvant chemotherapy for proposed
proteomic study. Tumor specimens were placed on ice imme-
diately after removal, and transferred to the UCLA Breast
Cancer Tissue Bank. When specimens were obtained from
sites other than UCLA, they were delivered on ice and received
for processing within 24 h of sample collection. Upon arrival,
the specimens were grossly dissected to remove excess adipose
tissue before dividing into three parts and storage at -80˚C.

In the results reported here, tissue specimens collected at
baseline before chemotherapy were extracted by homogenizing
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the frozen tissue in liquid nitrogen, followed by suspension in
1% Triton X-100. The samples were re-frozen at -80˚C and
then thawed on ice for 30 min. The freeze/thaw process was
repeated, and each suspension was subjected to centrifugation
(10,000 x g, 10 min, 4˚C). The supernatants were then
subjected to albumin and immunoglobulin depletion using an
albumin and IgG removal kit (Amersham) as well as

hemoglobin depletion using Ni-NTA magnetic agarose beads
(Qiagen). Briefly, 20 μl of the tissue homogenate supernatant
was added to a 320 μl slurry containing the antibody-coated
beads to first remove IgG and albumin. The mixture was first
incubated at room temperature for 30 min with gentle rotation,
then transferred to a microspin column, and centrifuged
(10,000 x g, 5 min, room temperature). Forty microliters of the
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Table I. Patient characteristics.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Characteristics Total patients (%) Training set (%) Validation set (%)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Age, years

≥50 26 (50.0) 18 (51.4) 8 (47.1)
<50 26 (50.0) 17 (48.6) 9 (52.9)
Mean age 49.4 49.3 49.7

Tumor histologya

IDC 42 (80.8) 27 (77.1) 15 (88.2)
ILC 8 (15.4) 7 (20.0) 1 (5.9)
IDC+ILC 1 (1.9) 0 1 (5.9)
ITC+IDC 1 (1.9) 1 (2.9) 0

Tumor stage
T2 5 (9.6) 0 5 (29.4)
T3 32 (61.5) 26 (74.3) 6 (35.3)
T4 15 (28.8) 9 (25.7) 6 (35.3)

Tumor differentiation
Poor 13 (25) 8 (22.9) 5 (29.4)
Moderate 7 (13.5) 6 (17.2) 1 (5.9)
Well 6 (11.5) 3 (8.6) 3 (17.6)
Unknown 26 (50) 18 (51.4) 8 (47.1)

Tumor grade
High 16 (30.8) 11 (31.4) 5 (29.4)
Intermediate 11 (21.2) 7 (20) 4 (23.5)
Low 6 (11.5) 5 (14.3) 1 (5.9)
Unknown 19 (36.5) 12 (34.3) 7 (41.2)

Tumor IHC markerb

ER positive 33 (63.5) 21 (60.0) 12 (70.6)
PR positive 21 (40.4) 14 (40.0) 7 (41.2)
HER2/neu positive 21 (40.4) 15 (42.9) 6 (35.3)

Neoadjuvant chemotherapyc

TC 31 (59.6) 20 (57.1) 11 (64.7)
TCH 10 (19.2) 8 (22.9) 2 (11.8)
TC/H 11 (21.2) 7 (20.0) 4 (23.5)

Ethnicity
Asian 8 (15.4) 5 (14.3) 3 (17.6)
Black 4 (7.7) 2 (5.7) 2 (11.8)
Hispanic 8 (15.4) 7 (20.0) 1 (5.9)
White 32 (61.5) 21 (60.0) 11 (64.7)

Surgeryd

Mastectomy 33 (63.5) 22 (62.9) 11 (64.7)
Breast-conserving treatment 19 (36.5) 13 (37.1) 6 (35.3)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aIDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; ITC, invasive tubular carcinoma. bER, estrogen receptor; PR,
progesterone receptor. cTC, preoperative Taxotere 75 mg/m2, carboplatin (AUC=6) every three weeks for four cycles; TCH, preoperative TC
with weekly Herceptin at a loading dose of 4 mg/kg and subsequent dose of 2 mg/kg; TC/H, TC preoperatively with Herceptin given after
surgery. dMastectomy includes modified radical mastectomy (MRM) and simple mastectomy (SM).
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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filtrate was then added to 20 μl of Ni-NTA magnetic agarose
beads and the mixture was incubated with gentle rotation. A
magnetic particle concentrator (Dynal) was used to remove the
beads. Two microliters of the final supernatant was mixed
with 2 μl of freshly prepared sinapinic acid solution (20 mg/ml
in water/acetonitrile/trifluoroacetic acid, 30/70/0.1, v/v/v),
and 2 μl of the mixture was loaded in duplicate onto NP20
ProteinChips (Ciphergen Biosystems Inc.).

Surface enhanced laser desorption ionization mass spectro-
metry (SELDI-MS). Linear time-of-flight mass spectra were
recorded without time-lagged source focusing (Model PBS
II, Ciphergen Biosystems Inc.) using external calibration
with bovine cytochrome C (12,230.9 Da), ß-lactoglobin A
(18,363.3 Da), bovine serum albumin (66,410.0 Da) and IgG
(147,300.0 Da). Data acquisitions were made using the
instrument-supplied automated protocol with the following
settings: high mass for acquisition, 100 kDa; optimization
range 10-100 kDa; laser intensity 250 arbitrary Units; detector
sensitivity 9. The raw data were collected using the instrument-
supplied software (Ciphergen ProteinChip® Software 3.1).

Normalization of the mass spectra and peak alignment. After
baseline subtraction, the spectra were normalized by dividing
the raw signal intensities by the area under the curve (AUC)
between m/z 10,000 and 35,000. Data outside of this range
were omitted from each profile. The intensities of signals
beyond m/z 35,000 were close to zero, and the signal intensities
below m/z 10,000 were unusable because in most cases
individual peaks could not be distinguished in this range. This
normalization process is equivalent to total ion current (TIC)
normalization since the number of observations between m/z
10 K and 35 K were about the same in all samples (data not
shown).

Peak alignment/clustering was carried out using the
maximal clique method of Li and Gentleman (18) using the
within duplicate error equation to form the boundaries around
each m/z signal. Analysis of m/z error showed that the error
was a linear function of m/z of the form duplicate m/z error =
e = a + b average m/z. For a given signal, the m/z bounds
were defined as [m/z - e, m/z + e]. The ith cluster (ith ‘clique’)
was defined as the union of all signals whose m/z bounds

overlap with the bounds of any other signal. Signals in the
same cluster were assumed to have the same true m/z, and
were aligned by assigning the peak the average m/z value of
all the signals in the cluster. If a sample did not have a peak
in a given cluster, the non-peak normalized intensity value at
the cluster mean m/z was used.

Univariate analysis/comparison. The distribution of the
aligned and normalized peak intensities were compared
between any two patient groups at each m/z signal using the
non-parametric Wilcoxon rank sum test. Comparison among
the three patient groups (NR, IR and R) at each m/z signal
was made using the parametric F statistic. In addition, a
receiver operator characteristic (ROC) analysis was carried out
for each m/z signal. In the ROC analysis, a candidate threshold
value was chosen and the percent of intensities less than the
threshold in each group was computed. The threshold was
varied until the value of the threshold that maximizes the
difference in the percentage between the two groups was found.

Multivariate bioinformatic analysis. Multivariate bioinformatic
analysis of the normalized and aligned spectral peaks was
performed using Gene Expression Pattern Analysis Suite
v4.0 (GEPAS, http://gepas.bioinfo.cipf.es), a web-based
microarray software package. The cohort was arbitrarily
divided into two groups: the first two thirds of the enrolled
patients (35 cases) were allocated to a training set to select
the m/z peaks that appeared to be characteristic of tumor
susceptibility to chemotherapy. The remaining 17 cases were
assigned to the validation set to confirm the classification of
each tumor by the candidate m/z signals.

First, the 35 cases in the training set were divided into the
NR, IR and R groups according to the residual tumors found
after chemotherapy. An analysis of variance (ANOVA) test
was used to compare the spectral differences at each peak
location among the three groups with a liberal significance
criterion p<0.25 (FDR-indep). The preprocessed data were
then used to select significant spectral peaks differentiating
the groups. According to the bioinformatic analysis criteria
used in our two previous studies (19,20), we selected both the
fold difference of at least 2 and statistical significance <0.05
to define significant m/z peak differences.
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Figure 1. Normalized median intensity SELDI-TOF mass spectra of
resistant (NR) and susceptible (ST) tumors. SELDI-TOF spectra of breast
cancer tissue extracts from the chemotherapy resistant (NR, blue; n=12) and
susceptible (ST, pink; n=40) groups.

Figure 2. Normalized median intensity SELDI-TOF mass spectra of resistant
(NR) and pathologically complete response (pCR) tumors. SELDI-TOF
spectra of breast cancer tissue extracts from the chemotherapy resistant (NR,
blue; n=12) and pathologically complete response (pCR, pink; n=9) tumors.
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The subset of peaks meeting the median 2-fold difference,
and p<0.05 by Wilcoxon rank sum test criteria, were then
used to build a classification rule. The rule was built using
four different supervised classification algorithms in the
GEPAS software: (i) Diagonal Linear Discriminant Analysis
(DLDA), (ii) K-Nearest Neighbor Clustering (KNN), (iii)
Support Vector Machines (SVM), (iv) Prediction Analysis
with Microarrays (PAM). The accuracy for each of these
methods during predictor building was estimated by the
leave-one-out permutation method in the training set. In the
validation data set, the method with the highest accuracy was

selected as the optimal predicting algorithm. In both the
univariate and the multivariate analyses, accuracy was defined
as the percent of a given group that was correctly classified.
Overall (unweighted) accuracy was defined as the average
accuracy across all groups.

Results

Clinical response of breast tumors to neoadjuvant chemo-
therapy. The characteristics of the 52 patients and their tumor
histopathologic features are summarized in Table I. The
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Figure 3. Heat map display of m/z signals with significant differences among NR, IR and R groups in the training data set (n=35). The 35 cases in the training
set were classified into three groups based on tumor regression rate (TRR): NR group (TRR ≤25%), 8 cases; IR group (25% <TRR ≤75%), 16 cases; R group
(TRR >75%), 11 cases. Normalized m/z values were compared by multi-class ANOVA statistics using the T-REX tool set of the GEPAS software. Each
column represents a case as labeled on top, and each row represents a normalized m/z signal as indicated at the right. ANOVA statistics and adjusted p-values
using the FDR procedure of Benjamini and Hochberg are presented at the left. Sixty-eight peaks with FDR indep. <0.25 are displayed.
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Table II. Differential m/z signals separating drug resistant (NR, n=8) from more susceptible breast cancers (ST, n=27) in
training set.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Signal NR median ST Median NR/ST Wilcoxon p-value
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
m/z 10085 13.552 55.207 0.245 0.010
m/z 10290 15.934 37.951 0.420 0.025
m/z 10318 11.658 40.645 0.287 0.007
m/z 10373 11.248 24.366 0.462 0.031
m/z 10436 8.459 19.550 0.433 0.012
m/z 10500 5.629 17.697 0.318 0.005
m/z 10542 4.322 11.621 0.372 0.045
m/z 10821 7.045 20.499 0.344 0.005
m/z 10841 5.031 29.447 0.171 0.003
m/z 11124 4.413 10.914 0.404 0.018
m/z 11171 5.621 16.857 0.333 0.020
m/z 11197 5.427 17.027 0.319 0.041
m/z 11370 5.025 11.535 0.436 0.045
m/z 11644 13.724 42.135 0.326 0.003
m/z 11717 18.920 41.174 0.460 0.008
m/z 11747 14.819 48.286 0.307 0.003
m/z 11937 5.626 13.663 0.412 0.013
m/z 11969 6.103 13.868 0.440 0.020
m/z 12991 6.375 3.114 2.047 0.028
m/z 13838 36.200 13.824 2.619 0.045
m/z 14019 22.488 7.148 3.146 0.050
m/z 14075 22.362 6.792 3.293 0.050
m/z 14222 10.193 3.486 2.924 0.005
m/z 14272 10.680 2.602 4.104 0.006
m/z 14377 7.356 3.533 2.082 0.020
m/z 14459 9.953 4.700 2.118 0.013
m/z 14960 19.682 48.587 0.405 0.017
m/z 16793 23.311 46.710 0.499 0.020
m/z 17881 3.785 42.412 0.089 0.007
m/z 18391 10.419 22.691 0.459 0.008
m/z 18610 7.293 14.585 0.500 0.010
m/z 18666 5.670 14.485 0.391 0.005
m/z 18708 5.884 13.414 0.439 0.015
m/z 19744 2.749 6.478 0.424 0.031
m/z 19905 2.344 12.108 0.194 0.000
m/z 19957 4.267 9.181 0.465 0.004
m/z 20098 3.608 7.559 0.477 0.045
m/z 20186 2.459 5.287 0.465 0.006
m/z 20265 1.640 5.828 0.281 0.000
m/z 20434 0.977 2.859 0.342 0.028
m/z 20663 2.169 5.907 0.367 0.028
m/z 22176 3.542 16.807 0.211 0.003
m/z 22212 2.852 13.960 0.204 0.002
m/z 25711 3.363 1.097 3.066 0.002
m/z 25790 4.608 1.803 2.556 0.041
m/z 25836 4.815 1.687 2.854 0.007
m/z 25937 4.044 1.288 3.139 0.041
m/z 25992 4.333 2.003 2.163 0.041
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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average age of the patients was 49.4 (range 29-84) years. After
neoadjuvant chemotherapy, six patients had no evidence of
residual invasive or in situ disease at the primary tumor site,
and no metastasis in lymph nodes; two patients had residual
ductal carcinoma in situ (DCIS) and positive lymph nodes;
one patient had no residual invasive or in situ cancer in the
breast but still had micrometastasis (0.05 mm) in a single
node; and 43 patients had residual invasive cancers with
62.8% (27/43) having positive lymph nodes. Before chemo-
therapy the mean tumor sizes for the 9 pathological complete
tumor response (pCR) and 43 non-pCR patients were 7.17 and
8.40 cm, respectively. Of the 43 non-pCR patients, 12 were
classified as drug resistant with a calculated TRR ≤25% who
were also considered as non-responders (NR). Eight of 12 NR
were used in the training dataset and 4 in the validation dataset.

Comparison of SELDI spectra from non-responders (NR)
and chemo-susceptible tumors (ST). The median intensity
SELDI-TOF spectra of the NR and ST groups from the total
patient cohort are shown in Fig. 1. Fifty-nine of a total of
300 m/z peaks were found to have significantly different
median peak intensity in the ST (n=40) vs. NR (n=12) groups
using the criterion p<0.05 (data not shown). In particular, the
difference in peak intensity at m/z 20,265 correctly classified
91.7% (11/12) of the NR tumors and 75% (30/40) of the ST
tumors with an overall unweighted accuracy of 82.5%
(p=0.0014).

Comparison of SELDI spectra from non-responders (NR)
and pathologically complete responders (pCR). The median
intensity SELDI-TOF spectra of the NR and pCR groups are
shown in Fig. 2. Thirty-one of a total of 198 m/z peaks were
found to have significantly different median peak intensity in
the NR (n=12) vs. pCR (n=9) groups using the criterion
p<0.05 (data not shown). In particular, the median intensity
of the m/z 16,905 peak was 30.6 in the NR group and 17.1 in
the pCR group. With a separating threshold intensity of 20.4,
11 of 12 patients with NR tumors were above, and 8 of 9 pCR
tumors were below the threshold. Thus 88.9% of the pCR
tumors and 91.7% of the NR tumors were correctly classified

by the difference of the peak intensity at m/z 16905. The
overall unweighted accuracy was 90.3%.

Proteomic pattern of tumor responses to neoadjuvant
chemotherapy in the training set. A three-group comparison
was first performed in the training set to explore the spectral
differences between the NR, IR and R groups by ANOVA
using the T-REX toolset of the GEPAS software. A set of 68
peaks was identified with significant changes across the NR,
IR and R groups (FDR-indep. p<0.25, Fig. 3). Noticeably,
more prominent and significant changes appeared between
NR and the other two (R+IR) groups. Therefore, in the
subsequent comparison and in the validation set, the R and IR
groups were collapsed into one ‘susceptible’ (ST) group and
compared to the ‘resistant’ (NR) group.

From the initial 300 peaks, 56 were identified as being
different between NR and ST tumors in the training set as
defined by the criteria of at least a 2-fold difference of peak
intensity, and statistical significance of p<0.05 by Wilcoxon
test (Table II). This set of 56 peaks was employed to build a
classifier using four classification algorithms in the GEPAS
(DLDA, KNN, SVM and PAM) to predict tumor response in
the validation set. In the training set, the performance of
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Table II. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Signal NR median ST Median NR/ST Wilcoxon p-value
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
m/z 26043 4.137 1.602 2.583 0.034
m/z 26136 2.620 1.063 2.464 0.031
m/z 28978 18.523 7.817 2.369 0.037
m/z 30598 3.364 1.663 2.023 0.018
m/z 30892 2.196 1.044 2.104 0.020
m/z 30948 1.905 0.800 2.381 0.006
m/z 31594 2.427 1.144 2.121 0.025
m/z 31848 1.956 0.713 2.744 0.041
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
The m/z signals were selected by both the median-fold difference (minimally 2-fold) and statistical significance (Wilcoxon test, p<0.05).

This produced a set of 56 signals from a total of 300 signals.

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Table III. Comparison of the accuracy of four different
methods used for building the unbiased predictor by permu-
tation tests (the leave-one-out approach) in the training set.
–––––––––––––––––––––––––––––––––––––––––––––––––

DLDA KNN SVM PAM
–––––––––––––––––––––––––––––––––––––––––––––––––
Accuracy (%) 85.7 76.6 69.3 80.0
–––––––––––––––––––––––––––––––––––––––––––––––––
The methods used for building the unbiased predictor include (A)
Diagonal Linear Discriminant Analysis (DLDA), (B) Nearest
neighbor (KNN), (C) Support Vector Machines (SVM) and (D)
Prediction Analysis with Microarrays (PAM). The cross-validation
accuracy for the selected set of signals were tested by the leave-one-
out approach in the training set, and the DLDA method was found to
have the highest accuracy (85.7%).
–––––––––––––––––––––––––––––––––––––––––––––––––
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these algorithms was evaluated by cross-validation using a
permutation test (leave-one-out approach). As shown in
Table III, the accuracy rates of these methods were similar
(69.3-85.7%) with the highest accuracy achieved by the DLDA
method.

Predicting breast tumor responses to neoadjuvant chemo-
therapy in the validation set. The 56 peaks (predictors) derived
from the training set were then used to classify the 17 cases
in the validation data set and predict the chemoresponses.
The performances of the four algorithms (DLDA, KNN, SVM
and PAM) were tested and compared (Table IV). Accuracy
rates of these methods were between 46.2-92.3%. The optimal
prediction was obtained by the KNN model where K=1. The
KNN model correctly classified 100% of resistant tumors
(4/4) and 84.6% of the susceptible tumors (11/13), achieving
an overall accuracy rate of 92.3%.

Discussion

In this study, SELDI-TOF mass spectrometry was used to
compare the protein profiles of 52 breast tumor specimens
derived from patients with large breast cancers who had
known responses to a defined neoadjuvant regimen. To our
knowledge, this is the first attempt to use MS generated
profiles to predict the response of human breast cancer tissue
to chemotherapy. The proteomic differences in groups of
patients with either susceptible or resistant tumors to neoad-
juvant chemotherapy were investigated, and differential
proteomic signals were selected. These candidate signals
appeared to correlate well with clinical response of the tumors
to the neoadjuvant chemotherapy. Using the methods
described, we found that many prominent proteomic
differences existed between drug resistant breast tumors and
those with various degrees of drug response. This result
suggests the presence of a unique proteomic signature
characteristic of tumor chemosensitivity.

Even with these highly selective analytical tools, it was
not possible to accurately predict tumor responses to treatment
in all cases. Two of the 13 chemotherapy susceptible tumors
were misclassified as resistant tumors. The two misclassified
cases were T3 and T4 infiltrating ductal carcinomas

respectively, with one being a triple negative tumor (negative
for estrogen receptor, progesterone receptor and HER2/neu),
and the other being progesterone receptor negative and
HER2/neu negative. From a clinical point of view, it is possible
that triple negative or negative estrogen and/or progesterone
receptors are sufficient to predict a favorable response to
taxotere and carboplatin (21). Our studies suggest that both
proteomic biomarkers and clinical variables should be taken
into account in building future prediction models.

When the four algorithms were compared in the training
set, DLDA was found to have the highest accuracy (85.7%)
by permutation test. However in the validation set, KNN was
shown to have the highest accuracy (92.3%). The inconsistency
of this finding derived from the training and validation data
sets may be due to the small sample sizes. Also with the
limited sample size especially in the validation group, the
accuracy in the DLDA and SVM methods are low. DLDA did
predict 4 out of 4 NR, but failed to predict ST. Meanwhile,
SVM predicted 12 out of 13 ST but missed the NR. A larger
sample size may improve the consistency and accuracy in
building and testing the prediction model.

Several types of proteomic analytical tools are being used
to study disease-related biomarkers. These include the open-
ended technologies such as 2-dimension gel electrophoresis
and mass spectrometry, and closed-ended technologies such
as antibody microarrays, antibody bead arrays, reverse phase
protein microarrays, and tissue microarrays. Mass spectro-
metry-based technologies are being continually refined for
proteomic profiling since their introduction into this field
about a decade ago. SELDI-TOF and MALDI-TOF have been
used to profile serum and plasma with the aim of identifying
proteomic fingerprints that may differentiate individuals
with normal breasts from cancerous breasts (22-26), predict
in vitro response of breast cancer cell lines to chemotherapy
(27,28), and predict the clinical tumor response to chemo-
therapy using plasma samples (29).

However, in recent years SELDI/MALDI based proteomic
profiling has faced criticisms concerning the sensitivity,
reproducibility and inability to identify candidate proteins with
most criticisms directed to serum profiling studies (30-35).
Cancer related proteins when present in serum are trace in
amount because they are diluted in the large volume of blood,
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Table IV. Performance comparison of various supervised classifications of tumor response to neoadjuvant chemotherapy in the
validation set.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Percentage of correctly Percentage of correctly Overall
predicted in NR (%) predicted in ST (%) accuracy (%)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
DLDA 100 (4/4) 0.0 (0/13) 50.0
KNN 100 (4/4) 84.6 (11/13) 92.3
SVM 0 (0/4) 92.3 (12/13) 46.2
PAM 25 (1/4) 84.6 (11/13) 54.8
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
The predictors derived from the training set were used to predict chemo-responses in the validation set (n=17).  The performances of the four
algorithms (DLDA, KNN, SVM and PAM) were tested and compared. Accuracy rates of these methods ranged 46.2-92.3%. The best
prediction was obtained by the KNN model where K=1. The KNN model correctly classified 100% of resistant tumors and 84.6% of the
tumors with favorable response, achieving an overall accuracy rate of 92.3%.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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and masked by numerous other abundant proteins that
normally occur in the circulation. These problems are either
not relevant or are less important for the direct analysis of
tumor tissue, as performed in this study. Standardized
protocols were used for tissue collection, storage and sample
preparation to minimize variability between samples. We
have also previously demonstrated that the SELDI spectra of
the same specimens are relatively stable and reproducible,
with virtually identical spectra produced from the same
sample upon re-analysis several days later (36). Since the
SELDI-TOF technology enables a straightforward analysis of
protein biomarkers, it provides a means to rapidly evaluate
intact protein patterns in a large number of specimens. It was
therefore chosen as the first attempt to profile breast cancer
tissues with different responses to neoadjuvant chemotherapy.

Our results show that SELDI-TOF MS protein profiling
of breast cancer tissue obtained before chemotherapy may
predict the chemoresponse of breast cancer. There were many
prominent proteomic differences between drug resistant
breast tumors and those with various degrees of drug response.
The major disadvantage of SELDI/MALDI is the inability of
direct identification of promising biomarker signals by the
technology. Our future study will concentrate on extending
these findings with larger sample sizes, and simultaneously
identifying the proteins that generate the SELDI signals of
interest using nano-LC-Orbitrap instrumentation from shotgun
digests of the same samples.
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