
Abstract. Tyrosine phosphorylation is one of the key covalent
modifications that occurs in multicellular organisms as a
result of intercellular communication. The family of tyrosine
kinases (PTKs) are responsible for part of the cellular phos-
phorylation and are involved in a broad variety of cellular
functions including differentiation, proliferation, migration,
invasion, angiogenesis and survival under physiological as
well as pathological conditions. Aberration in PTK signalling
occurs in inflammatory diseases and diabetes, and aberrant
expression can lead to benign proliferative conditions as well
as to various forms of cancer. Indeed, more than 70% of the
known oncogenes and proto-oncogenes involved in cancer
code for PTKs. Therefore, these enzymes are now used as
targets in the treatment of different tumours. Ets-1 is a tran-
scription factor expressed in a number of human malignancies
with demonstrated roles within both neoplastic cells and
tumour stroma. These roles include stimulation of tumour cell
proliferation and invasion as well as tumour angiogenesis.
Database searches have revealed that ETS binding sites are
present in several promoters of PTK-encoding genes. We
investigated the role of Ets-1 in transcriptional regulation of a
panel of 89 PTKs in epithelial HeLa tumour cells. In this
study, HeLa cells stably overexpressing and underexpressing
Ets-1 were used for real-time PCR analysis of all known
human PTKs. The results suggest that Ets-1 is an essential
transcription factor that cannot be substituted by other
members of the ETS family. Transcription of most PTKs was
found to be increased by Ets-1. In contrast Ets-1 seems to act
as a transcriptional repressor of other PTKs. The data
presented here underscore the importance of Ets-1 in tumour
development and progression.

Introduction

Protein tyrosine kinases (PTKs) are enzymes that catalyze
the transfer of the Á phosphate of ATP to tyrosine residues on

protein substrates. By phosphorylation of tyrosine residues on
receptors or downstream signalling proteins, their enzymatic
activity is modulated (1,2). PTKs are involved in most cellular
signalling pathways and regulate many key functions such as
proliferation, differentiation, migration, metabolic changes
and apoptosis (3-14). New blood vessel development relies
on the concerted action of several subfamilies of PTKs and
their cognate ligands as well (15). Due to the involvement of
PTKs in such important processes, a stringent regulation of
their expression and activity is necessary for maintaining
normal cellular functions (16). The importance of PTKs in
health and disease is further underscored by the existence of
aberrations in PTK signalling occurring in cancer,
inflammatory diseases and diabetes (17-19). Dysregulation of
PTKs through point mutations or overexpression can lead to
various forms of cancer as well as benign proliferative
conditions (5,20-22). Indeed, more than 70% of known
oncogenes and proto-oncogenes involved in cancer encode
PTKs (23). Another oncogenic mechanism involving PTK
are translocations creating fusion proteins with constitutive
expression or activity. Among such translocations are ETV-6/
ABL1, ETV-6/FRK, TEL/PDGFR-ß fusing translocated
PTKs and members of the ETS transcription factor family
(24-28). ETS family members are widely expressed and are
involved in basic cellular functions such as proliferation,
apoptosis, angiogenesis, differentiation and migration
(29-40). These functions are critical for the development of
cancer (41). All ETS members share a specific DNA binding
domain, called the ETS domain, which consists of approximately
80 amino acids with 4 tryptophane repeats (42). It has been
shown that two-thirds of the 27 human ets genes are expressed
ubiquitously and that the DNA binding of ETS proteins has
overlapping specificities (43).

Several PTKs interact with the Ras/Raf/MAP or with the
MEK1/ERK1/2 pathway which is known to result in
transcriptional activation of Ets-1 (44-50) which is the
prototype of the ETS transcription factor family (51). 

Furthermore, ETS binding sites have been found in several
PTK promoters (52-58) suggesting a role for Ets-1 in the
transcriptional regulation of PTKs. Since an expression
analysis of all known PTKs in correlation to the expression
level of Ets-1 in human tumour cells has not yet been carried
out, we determined expression levels of all known PTKs by
real-time PCR in stably Ets-1-overexpressing and -under-
expressing HeLa cells which we have used and characterized
in previous studies (32). We showed that Ets-1 is an essential
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transcriptional activator for most PTKs including EGFR,
FGFR4, JAK3, c-KIT and MET, while the expression of 10
out of 89 PTKs (including EPHA3, EPHA4, EPHB2, EPHB3
and PDGFR-ß) were suppressed. These data suggest a
regulatory role of Ets-1 in a number of PTKs involved in
tumour development and progression.

Materials and methods

Cell culture. The establishment of Ets-1-overexpressing and
-underexpressing HeLa cell lines has been previously
described (32). Briefly, the plasmids pcDNA3.1h-ets-1 and
pcDNA3.1h-ets-1 inverse, respectively, were transfected into
the cells by the calcium phosphate method (59). Twenty-four
hours after transfection, selection was started using 400 μg/
ml G418 (Invitrogen). Ets-1-overexpressing (HeLa Ets-1) and
-underexpressing (HeLa inverse) cells were selected from
pooled populations of transfected cells in order to avoid clonal
variations.

All cell lines were cultured in Dulbecco's modified Eagle's
medium (DMEM) (Invitrogen) supplemented with antibiotics
and 10% heat-inactivated fetal calf serum.

Reverse transcription polymerase chain reaction (RT-PCR).
Total RNA was extracted from cell monolayers (RNeasy Kit,
Qiagen), and the quality was assessed using the Agilent
Bioanalyzer 2100 (Agilent Technologies).

For samples with a RIN factor >9, cDNAs were
constructed by reverse transcription in a 10-μl reaction
volume containing 2 μg of total cellular RNA, 1 μl dNTPs
(10 mM), 1 μl of random hexamer primers (10 mM), and
RNase-free water. After incubation at 65˚C for 5 min, the
reaction mixture was placed on ice for 1 min. Then 2 μl of
RT buffer (Invitrogen), 4 μl MgCl2 (25 mM), 2 μl of 0.1 mM
DTT and 1 μl RNaseOUT™ Recombinant RNase Inhibitor
(Invitrogen) were added. After incubation at 42˚C for 2 min,
1 μl of Superscript II Reverse Transcriptase (50 units/μl)
(Invitrogen) was added for the transcription at 42˚C for 1 h.
Inactivation of the enzyme was performed by heating at 70˚C
for 15 min. RNA was removed by addition of 1 μl RNaseH
and incubation at 37˚C for 20 min.

Real-time RT-PCR. PCR reactions were performed using the
TaqMan Low Density Array System (Applied Biosystems)
(60-63). Arrays with four sets of 96 genes were designed,
and each reaction was performed in duplicate. Primer/probe
sets were selected from a large pool of TaqMan Gene
Expression Assays (Applied Biosystems) that are
predesigned and tested to strictly match system-immanent
criteria of uniform PCR temperature profile and PCR
efficiency. Beside the 89 tyrosine kinases, 5 putative
endogenous control genes (HPRT1, UBC, G6PDH, RNA-
polymerase II, 18sRNA) were included on each array. All
amplicons span an exon-exon-junction to achieve mRNA
specificity and are of two-digit-bp length. Primer/probe sets
are spotted on a custom 384-well card during fabrication at
the manufacturer. cDNA was diluted to a final concentration
of 8 ng/μl and mixed 1:1 with 2X TaqMan Universal PCR
Master Mix (Applied Biosystems). One hundred microliters
containing 400 ng cDNA was loaded into each fill port and

distributed through microchannels into the 48 reaction wells
per filling port by centrifugation. Subsequent sealing of the
microchannels prevented cross-contamination during PCR.
The arrays were thermal cycled at 50˚C for 2 min and 94.5˚C
for 10 min, followed by 40 cycles at 97˚C for 30 sec and
59.7˚C for 1 min on an Applied Biosystems 7900HT instrument.

Data processing. Absolute Ct-values were calculated using
SDS 2.2 Software (Applied Biosystems) and transferred
into the qBase Software (Micosoft Excel-Plug-In, Jo
Vandesompele) for further analysis. Since normalization
based on single housekeeping genes may not provide accurate
results, we used a geometric mean of RNA-polymerase II
and 18sRNA for normalizing, which showed the most stable
expression across all samples. Calculations were based on an
amplification efficiency of 1.95 which represents quite
exactly the tested amplification efficiency of pre-designed
TaqMan-assays (1.9-2.0, according to the manufacturer's
instructions). The expression levels of the target genes were
given relative to the calibrator sample HeLa Ets-1 with the
standard error of mean calculated from replicate accuracy.

Immunocytochemistry. Cells grown in 1-cm2 culture chambers
(Nunc) were rinsed once with phosphate-buffered saline
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(PBS) (Life Technologies), twice with 70% ethanol and fixed
in a mixture of ice cold methanol and ethanol (1:2 v:v) at
4˚C for 20 min. After washing twice with PBS, cells were
stained with antibodies directed against PDGFR-ß (1:1000
dilution) (Santa Cruz Biotechnology), EGFR (1:25 dilution)
(Dako), ZAP-70 (1:25 dilution) (Biosystems) or c-kit (1:25
dilution) (Dako). The cells were incubated with the primary
antibody at 4˚C for 12 h. Detection of the primary antibody
was carried out using the LSAB-peroxidase System (Dako)
according to the manufacturer's instructions.

Results

We previously demonstrated effective overexpression or
blockade of Ets-1 protein in HeLa Ets-1 and HeLa inverse
cells (32). When examined by Western blotting, expression
levels of proteins with phosphorylated tyrosine residues
showed variations between wild-type (HeLa) cells, HeLa
cells overexpressing (HeLa Ets-1) and underexpressing Ets-1
(HeLa inverse) (data not shown). We then evaluated the effect
of Ets-1 on the mRNA expression of all known human protein

tyrosine kinases (PTKs) by comparing HeLa Ets-1 and HeLa
inverse cells. 

As shown in Fig. 1, a broad variety of PTKs are differ-
entially expressed in Ets-1-overexpressing und -under-
expressing HeLa cell lines. The expression level in HeLa
Ets-1 cells was set to 1. The PTK expression levels in HeLa
inverse cells are shown in relation to the expression rate in
HeLa Ets-1 cells. In Fig. 1A and B the differentially expressed
PTKs are summarized and show only a small difference
(≤1.5) between the two cell lines. In Fig. 1C the PTKs
showing a ≥1.5-fold change in expression are listed. It is
evident that PTKs are regulated at the mRNA level by Ets-1.
Ten PTKs (EPHA3, EPHA4, EPHB2, EPHB3, LTK,
PDGFR-ß, ROR1, SRC, TEC and TEK) had a higher RNA
expression level in the HeLa inverse compared to the HeLa
Ets-1 cells (Fig.1C). This suggests that the transcription of
these PTKs is repressed by Ets-1. In contrast, 16 PTKs
(EGFR, EPHA7, ERHB6, FGFR4, FYN, JAK3, c-KIT,
MERTK, MET, NTRK2, PTK2B, PTK6, PTK7, PTPRC,
ROR2 and STYK1) were found to have a reduced RNA
expression level in the HeLa inverse compared to the HeLa
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Figure 1. Real-time RT-PCR analysis of human PTKs. RT-PCR was performed with total RNA from HeLa Ets-1 and HeLa inverse cells, respectively, using
the TaqMan Low Density Array System. The expression of 89 genes coding for human PTKs was measured in parallel. The mean value of 2 x 2 independent
measurements is shown. The expression level in HeLa Ets-1 cells was set to 1. PTK expression levels in HeLa Ets-1 inverse cells are shown in relation to the
expression rate in HeLa Ets-1 cells. In A and B, differentially expressed PTKs exhibiting a difference of ≤1.5 and in C, ≥1.5 between HeLa Ets-1 and HeLa Ets-1
inverse cells are shown.
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Ets-1 cells (Fig. 1C). For these 16 PTKs, Ets-1 seems to be
an essential transcriptional activator.

Twenty PTKs were not expressed in either cell line.
These PTKs were ABL1, AXL, BLK, BMX, EPHB1, EPHB4,
ERBB2, FES, FGFR2, INSRR, ITK, LCK, LYN, MERTK,
MUSK, NTRK3, SRMS, SYK, VEGFR-1 and VEGFR-3.

The differential expression of selected PTKs was verified
at the protein level by immunocytochemistry for EGFR,
c-KIT, PDGFR-ß and ZAP-70 (Fig. 2). Expression in the
parental HeLa, HeLa Ets-1 and HeLa inverse cell lines is
shown. Expression of EGFR was hardly detectable in HeLa
Ets-1 cells. Wild-type HeLa cells, as well as HeLa inverse
cells did not show any expression of EGFR. 

In contrast, an increased c-KIT expression was found in
HeLa Ets-1 cells compared to HeLa and HeLa inverse cells.
PDGFR-ß expression was enhanced in HeLa inverse cells in
comparison to the two other cell lines. No significant ZAP-
70 expression was detected in the three cell lines correlating
in essence to the results at the mRNA level.

In conclusion, differences in expression of 4 PTKs at the
RNA level were observed at the protein level by immuno-
cytochemistry.

Discussion

The Ets-1 gene has first been identified as the cellular precursor
of the viral Ets-1 oncogene which, together with v-Myb,
induces a mixed erythroleukemia in chickens (64). Ets-1 is
now considered to be the prototype of the ETS family of
transcription factors which now includes approximately 30
members (42,51). All ETS transcription factors share a
specific DNA binding domain composed of approximately
80 amino acids (ETS domain) (42) which mediates trans-
activation or repression of numerous target genes (65-71). In

previous studies, we and others first related Ets-1 to new blood
vessel formation including tumour vascularization (72-75).
Subsequent studies revealed Ets-1 expression likewise within
fibroblasts in the stroma of invasive human tumours (76).
Stromal fibroblasts contribute to tumour invasion by the
secretion of different matrix-degrading proteases. Their
genes have been shown to be Ets-1 target genes in both
fibroblasts and endothelial cells (77-80) which require invasive
properties likewise for early steps of angiogenesis (81,82).
More rarely than in tumour stroma, Ets-1 is expressed within
neoplastic cells themselves, as we previously revealed in
human breast cancers and melanomas as well as in rat C6
glioma and human HeLa cells (32,34,83-85).

In human breast cancer cell lines, Ets-1 expression was
proposed to be associated with in vitro invasiveness and
epithelial-mesenchymal transition, linked to expression of
vimentin, uPA, MMP-1 and MMP-3 and to a loss of E-cadherin
(83). In normal madin-darby canine kidney (MDCK) cells,
Ets-1 was a target of scatter factor/hepatocyte growth factor
(SF/HGF) signalling through met receptor tyrosine kinase
(46-48,86). In these cells SF/HGF-induced Ets-1 expression
was correlated with morphological changes through RAS-
RAF-MEK-ERK signalling which activates Ets-1 (46-49).
By overexpressing and blocking Ets-1 (through RNAi
approaches and decoy oligonucleotides), we demonstrated
that Ets-1 has roles in cell proliferation, migration and
invasion in melanoma, C6 glioma and HeLa cell lines, and
we identified several Ets-1 target genes such as MMP-1, -3, -9
and uPA as well as integrin ß2 and ß3 (32,34,84,85).

It is well established that PTKs are involved in most
cellular signalling pathways and that they regulate cellular
key functions such as proliferation, differentiation, migration,
metabolic changes and anti-apoptotic signalling (3-14). In
diabetes, inflammatory diseases and cancer, unregulated
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Figure 2. Immunohistochemical staining for EGFR, c-KIT, PDGFR-ß and ZAP-70 expression in HeLa, HeLa Ets-1 and HeLa Ets-1 inverse cell lines. Cells
were fixed and stained with antibodies against EGFR, c-KIT, PDGFR-ß and ZAP-70. Images were captured at a 30-fold magnification.
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activation of PTKs is often observed (5,17-22,87). More than
70% of known oncogenes and proto-oncogenes involved in
cancer code for PTKs (23). Furthermore, as mentioned
previously, several types of cancers are caused by fusion
proteins composed of translocated PTKs and members of the
ETS transcription factor family (24-27). Since protein
tyrosine kinases are the main intracellular transducers of
signalling pathways leading to the most basic properties of
tumour cells (proliferation, migration and invasion), we used
HeLa cells to address the question of whether PTK-encoding
genes are among Ets-1 target genes.

Our study specifically addressed Ets-1 effects and ruled
out any indirect effect that could be mediated by an endo-
genous activation of Ets-1. This is of particular interest since
Ets-1 can act as both an upstream and downstream effector of
signalling pathways. As downstream effector its activity is
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Table I. Promoter regions of tyrosine kinases encoding genes
obtained from public available sequences (National Center
for Biotechnology Information or Ensembl Genome Browser)
were searched for the number of potential Ets-1 binding sites
with the PATCH 1.0 public program.a

–––––––––––––––––––––––––––––––––––––––––––––––––
Tyrosine x-fold mRNA No.of Described 
kinase expression potential Ets-1 

differences in Ets-1 binding binding
HeLa inverse sites in the sites in the
compared to promoter literature

HeLa Ets-1 cells region
–––––––––––––––––––––––––––––––––––––––––––––––––
LTK 19.767 2

EPHA3 8.817 6 (55)

TEK 3.575 7

SRC 3.331 3

PDGFR-ß 3.109 2

EPHB2 2.726 2

EPHB3 2.624

4EPHA4 2.445 0

ROR1 2.361 2

TEC 2.124 0

ROS1 1.818 0

INSR 1.786 2 (53)

ZAP70 1.587 2

CSK 1.580 5

TIE 1.568

JAK1 1.544 2

EPHA1 1.526 1

RYK 1.485 1

FGFR1 1.436 6

FGFR3 1.389 1

FRK 1.363 2

BTK 1.353 1 (92)

ERBB3 1.335 2

EPHA8 1.246 2

JAK2 1.242 4

EPHA5 1.241 1

IGF1R 1.241 4

ACK1 1.200 5

ALK 1.200 3

PTK2 1.184 1

ERBB4 1.169 1

FER 1.169 1

TXK 1.145 2

ABL2 1.116 3

RET 1.057 3

TYK2 1.052 2

DKFZp434C1418 1.042 2

YES1 1.035 1

MATK 1.010 6

DDR1 0.907 4

FGR 0.891 2

KDR 0.891 6 (90)

LMTK3 0.891 2
NTRK1 0.891 1

Table I. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––
Tyrosine x-fold mRNA No.of Described 
kinase expression potential Ets-1 

differences in Ets-1 binding binding
HeLa inverse sites in the sites in the
compared to promoter literature

HeLa Ets-1 cells region
–––––––––––––––––––––––––––––––––––––––––––––––––
PDGFRA 0.891 30 (58)

EPHA2 0.866 2

TYRO3 0.823 3

CSF1R 0.820 4 (57)

MCK 0.808

AATK 0.803 3

FLT3 0.764 1

MST1R 0.753 3

TNK1 0.748 1

MET 0.740 5 (54)

LMTK2 0.731 6

DDR2 0.701 2

JAK3 0.696 13 (91)

PTK7 0.665 2

MERTK 0.612 7

EGFR 0.609 3 (52)

NTRK2 0.548 3

FGFR4 0.500 1 (89)

STYK1 0.416 3

ROR2 0.390 1

PTK6 0.379 0

FYN 0.375 4

PTK2B 0.320 15

PTPRC 0.256 2

KIT 0.208 6 (56)

EPHA7 0.058 1

EPHB6 0.042 2
–––––––––––––––––––––––––––––––––––––––––––––––––
aThe results are shown in relation to expression differences of tyrosine
kinase transcripts between HeLa inverse and HeLa Ets-1 cells.
––––––––––––––––––––––––––––––––––––––––––––––––––––––
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directly controlled by specific phosphorylations resulting in
the ability to activate or repress specific target genes (51). As
upstream effector it is responsible for the spatial and temporal
expression of numerous growth factor receptors including
PTKs (88).

The data presented here show that Ets-1 is involved in the
transcriptional regulation of a broad variety of PTKs in HeLa
cells. It seems that Ets-1 is an essential transcriptional
regulator for most PTKs in these cells and that this role
cannot be substituted by other members of the ETS
transcription factor family. One or more ETS binding sites
have been identified in the promoter regions of several PTKs
including EGFR, FGFR4, INSR, MET, EPHA3, c-KIT,
CSF1R, PDGFR-·, JAK3, BTK, VEGFR-1 and VEGFR-2
(52-58,72,89-92). The promoter regions of the other PTKs
(obtained from public available sequences, National Center
for Biotechnology Information or Ensembl Genome
Browser) investigated in the present study were analyzed for
potential ETS binding sites by the use of the PATCH 1.0
public program. In nearly all PTK promoter regions, potential
Ets-1 binding sites were present suggesting direct effects of
Ets-1 on the expression levels of PTK-encoding genes.
Nevertheless, no direct correlation between the numbers of
potential Ets-1 binding sites and the extent of regulation was
evident as shown in Table I. For 6 PTK-encoding genes
(EPHA4, TEC, ROS1, TIE, MCK and PTK6), no Ets-1
binding sites were detected in the promoter regions. In these
cases the effects of Ets-1 on PTK expression was probably
indirect and may have been caused by the regulation of other
transcription factors and/or essential cofactors (93).

According to the present data, Ets-1 may act either as an
activator or repressor for transcription of different PTKs.
Such dual effects, transactivation or repression of different
target genes by one transcription factor, have previously been
described for other transcription factors likewise among
which are members of the ETS family (65-71,94). 

PTK mRNA expression differences were verified by
immunocytochemistry using 4 well-established antibodies
(Fig. 2). The mRNA differences were verified for EGFR, c-KIT
and PDGFR-ß at the protein level. For ZAP-70 no signi-
ficant expression was detected in all cell lines correlating in
essence to the results at the mRNA level. 

In general, gene expression is the result of a cooperated
action of many different factors, including both activators
and repressors and their competition for specific DNA
sequences in promoter regions. The transcription factors or
cofactors determining the effect of Ets-1 as a repressor or
activator for particular PTK genes remain to be identified.

In conclusion. Ets-1 seems to be involved, to a great
degree, in the regulation of expression of many PTKs in
HeLa tumour cells and thereby in many networks of inter-
cellular communication important for cancer. These new
findings, therefore, underscore the importance of the Ets-1
transcription factor for tumour development.
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