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Microarray gene expression profiling in meningiomas:
Differential expression according to grade or
histopathological subtype
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Abstract. Meningiomas, one of the largest subgroup of
intracranial tumours are generally benign, but can progress to
malignancy. They are classified into the three World Health
Organization grades: benign, atypical and anaplastic
meningiomas. Various histopathological features have been
associated with aggressiveness or recurrence. Several genes
have been suggested as prognostic factors, but molecular
signatures have not permitted the classification of the
tumours into the three grades. We have performed a
microarray transcriptomic study on 17 meningiomas of
different malignancy using CodeLink Uniset Human Whole
Genome Bioarrays to try to distinguish the different grades
and histopathological subtypes. Unsupervised hierarchical
clustering classified the meningiomas into groups A, B and
C, which corresponded to the three grades except for 3
benign meningiomas with higher proliferation indexes and/or
recurrence, included in the atypical group. Several genes
involved in cell adhesion (CD44, LOX), cell division (CKS2,
BIRCS and UBE2C), cell differentiation (Notchl) or signal
transduction (ARHGAP28) were upregulated, whereas
tumour suppressor genes (LRIB, DRRI, PLZF, GPX3,
SYNPO, TIMP3 and HOPS) and genes involved in cell
adhesion (PROS1), proliferation (SERPINF1 and PDGFD)
and differentiation (AOXI) were downregulated in groups B
and C compared to group A. In the benign tumours, we
identified genes with signatures specific for fibroblastic
meningiomas (FBLNI, Tenascin C and MMP2 encoding
extracellular matrix proteins) and for meningothelial
meningiomas (MLPH, DEFBI and FAT3), suggesting
different mechanisms involved in the tumorigenesis of these
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subtypes. This microarray-based expression profiling study
revealed candidate genes and pathways that may contribute
to a better understanding of the recurrence of a benign
meningioma. Our results might make it possible to determine
which benign meningiomas might recur despite complete
resection, and will provide helpful information for neuro-
surgeons in the follow-up of the patients.

Introduction

Meningiomas constitute approximately 20% of primary intra-
cranial tumours (1). The World Health Organization (WHO)
classifies them into three grades based on histopathological
criteria. Most, defined as grade I, are benign and do not recur
after surgical resection, while atypical (grade II) and anaplastic
(grade IIT) tumours have worse clinical outcomes, with
frequent recurrence. However, some low-grade meningiomas
also recur despite complete resection. Biological markers, such
as increased expression of cathepsin-B and cathepsin-L
antigens (2), SI00AS protein (3) or c-myc (4) and loss of
expression of progesterone receptor (5) and tumour suppressor
in lung cancer-1 (6), have been identified as predictors of
recurrence in grade I meningioma. Moreover, the presence of
cytogenetic aberrations in meningiomas might also be linked
to increased invasive potential (7). More than 60% of menin-
giomas show mutation or loss of heterozygosity in the NF2
gene and these events are more frequent in fibroblastic and
transitional meningiomas than in the meningothelial subtype
(8). These alterations in the NF2 gene seem to be histotype-,
but not grade-related (9,10). Transcriptome profiles of
meningiomas have been reported that showed a subset of
genes differentially expressed in WHO grade I compared to
WHO grades II and III (11), but, in this study, two high-grade
meningiomas had expression profiles very similar to that of
the non-neoplastic meninges. Another study reported diffe-
rences in gene expression between WHO grades II and III, but
supervised classification of the tumours did not reveal specific
expression patterns for each WHO grade (12). Finally, a
study using combined gene expression microarrays and array
comparative genomic hybridization showed that menin-
giomas of all three grades fall into two main molecular groups
referred to as low- and high-proliferative meningiomas (13).
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We have performed a microarray transcriptomic study on
meningiomas of different malignancy grades using CodeLink
Uniset Human Whole Genome Bioarrays to try to distinguish
the different meningioma malignancy grades and histopatho-
logical subtypes and to more clearly define predictive factors
for the recurrence of meningiomas.

Material and methods

Patients, tumours and histological diagnosis. Tumour
samples from 23 patients (11 females and 12 males, mean age
54.94+2.4 years, range 31-73) were obtained between 1998
and 2005 after surgical treatment at the Pierre Wertheimer
Neurological and Neurosurgical Hospital. At surgery, the
tumour tissue was divided into two fragments, one of which
was frozen and stored in liquid nitrogen in the Neurobiotec
Bank for RNA extraction and the other fixed for histopatho-
logical analysis. Histological examination of paraffin sections
stained with hemalin-phloxin saffron was carried out at the
Department of Neuropathology, Groupement Hospitalier Est,
Bron. Diagnosis and classification into histological subtypes
were based on WHO standard diagnostic criteria (1). In
tumoral specimens fixed in 4% paraformaldehyde containing
15% picric acid or alcohol-formol-acetic acid (AFA), mitoses
were counted in 10 randomly selected fields at high magnifi-
cation (x400); only unequivocal mitotic figures were counted.
Immunohistochemistry with anti-Ki-67 antibody (MIB1
clone, Dako, Trappes, France) was performed on 13 samples
fixed in AFA to estimate cell proliferation.

RNA extraction. Total RNA, extracted from the samples
using the RNA Plus procedure (Qbiogen, Illkirch, France)
based on the method of Chomczinski and Sacchi (14), was
precipitated with ethanol. The quality of the isolated total
RNA was evaluated on nanochips using an Agilent 2100
Bioanalyzer (Agilent Technologies, Massy, France). RNA
from a whole normal adult male human brain (single donor,
72 years) in 0.1 mM EDTA, pH 8.0, was purchased from
Stratagene (Stratagene Europe, Amsterdam, The Netherlands).

RNA amplification. Total RNA (2 pg) was amplified and
biotin-labelled by a round of in vitro transcription using a
MessageAmp aRNA kit (Ambion, Austin, TX, USA)
following the manufacturer's protocol. Before amplification,
spikes of different concentrations of synthetic mRNA were
added to all samples and were used to determine the quality
of the process. aRNA yield was measured with a UV
spectrophotometer and the quality verified on nanochips
using the Agilent 2100 Bioanalyzer.

Array hybridization and processing. Biotin-labelled aRNA
(10 pg) from 17 meningiomas were fragmented using 5 ul of
fragmentation buffer in a final volume of 20 ul, then mixed
with 240 ul of Amersham hybridization solution (GE
Healthcare Europe GmbH, Saclay, France) and injected on to
CodeLink Uniset Human Whole Genome Bioarrays containing
55,000 human oligonucleotide geneprobes (GE Healthcare
Europe GmbH). The arrays were hybridized overnight at
37°C at 15 g in an incubator, then washed in stringent TNT
buffer at 46°C for 1 h before performing the streptavidin-cy5
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(GE Healthcare) detection step. Each array was incubated for
30 min in 3.4 ml of streptavidin-cy5 solution as previously
described (15), washed four times in 240 ml of TNT buffer,
rinsed twice in 240 ml of water containing 0.2% Triton X-
100, then dried by centrifugation at 650 x g. The arrays were
scanned using a Genepix 4000B scanner (Axon, Union City,
CA, USA) and Genepix software, with the laser set at 635
nm, the laser power at 60% and the photomultiplier tube
voltage at 60%. The scanned image files were analysed using
CodeLink expression software, version 4.0 (GE Healthcare),
which produces both a raw and a normalized hybridization
signal for each spot on the array.

Microarray data analysis. CodeLink software was used to
normalize the raw hybridization signal on each array to the
median of the array (median intensity is 1 after normalization)
for better cross-array comparison. The threshold of detection
was calculated using the normalized signal intensity of the
100 negative control samples in the array; spots with signal
intensities below this threshold were referred to as ‘absent’.
The quality of processing was evaluated by generating scatter
plots of positive signal distribution. Signal intensities were
then converted to the log base 2 values. The expression of the
genes in the normal brain was used as the standard and set to 1.

Real-time RT-PCR. RNA samples (0.5 pg) from tumours and
the normal whole brain were heated for 3 min at 75°C, then
immediately placed on ice. First-strand DNA was synthesized
by incubating the RNA with 0.5 mM of each dNTP, 10 mM
DTT, 40 U of RNA-sin (Promega), 20 #M random hexamers,
and 200 U of Moloney murine leukaemia virus (M-MLV)
reverse transcriptase (In Vitrogen, Cergy-Pontoise, France)
for 90 min at 42°C in a final volume of 20 ul of reverse
transcriptase buffer (50 mM Tris-HCI, pH 8.3, 75 mM KCl
and 3 mM MgCl,). The volume was then made to 100 ul with
distilled water. Negative controls were performed by replacing
the enzyme with water.

PCR was performed on a LightCycler instrument (Roche
Diagnostics, Mannheim, Germany). cDNA samples (2, 0.2
and 0.02 ul) were diluted in glass capillaries to a volume of
20 pl with PCR mix (LightCycler Faststart DNA Master Plus
SYBR-Green 1, Roche Diagnostics) containing a final
concentration of 4 mM MgCl, and 0.5 M 3'- and 5' primers.
The oligonucleotide sequences corresponding to selected
gene transcripts were designed using Primer 3 software
(Infobiogen, Villejuif, France) and are available on request
from the authors. The cDNA was denatured for 8 min at
95°C, then amplified by 40-50 cycles of 15 s at 95°C, 5 s at
62°C and 10 s at 72°C. After amplification, the temperature
was slowly raised above the melting temperature of the PCR
products to measure the fluorescence for the melting curve,
demonstrating the purity of the transcripts by their respective
melting temperatures. Non-specific products, such as primer
dimers, could be readily distinguished from the product by
their lower melting point. Negative controls were also
analyzed. The results were calculated from the crossing-point
values and expressed as the amount of test gene product
relative to the amount of GAPDH product, used as a house-
keeping gene, for the same sample. To verify the presence of
a single PCR product of the correct size, the product was
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Table I. Clinical and morphological data for the 23 patients.
Case WHO  Histopathological ~ Sex Age  Surgery Ki-67  Mitosis Recurrence ~ Microarray GEP
grade subtype (%) group
1 I Meningothelial M 61 + nd 0 0 + A
2 I Meningothelial F 47 + nd 0 0 + A
3 I Meningothelial F 50 + 3 2 + + B
4 I Fibroblastic M 57 + 2 1 0 + A
5 I Fibroblastic F 39 + 1 0 0 + A
6 I Fibroblastic F 57 + nd 2 + + A
7 I Fibroblastic M 34 + nd 3 + + B
8 I Transitional F 62 + 1 1 0 + A
9 I Transitional F 67 + 1 0 0 + A
10 I Transitional F 62 + nd 0 + + B
11 I Atypical M 64 + nd 0 + + B
12 II Atypical F 45 + 8 1 + + B
13 II Atypical F 73 + nd 10 + + B
14 II Atypical M 72 + 10 1 + + B
15 II Atypical F 54 + 8 2 0 + B
16 I Atypical M 63 + nd 10 +
17 I Anaplastic F 31 + nd 10 Multi-focal + C
18 I Anaplastic M 52 + 25 10 0 + C
19 I Anaplastic M 55 + 12 15 +
20 I Anaplastic M 46 + 20 22 +
21 I Anaplastic M 70 + nd >20 +
22 I Anaplastic M 44 + 40 >30 0
23 I Anaplastic M 58 + 15 10 +

nd, not done; for surgery, + represents complete exeresis; GEP, gene expression profile.

electrophoresed for 1 h at 70 V in 0.5X Tris-borate-EDTA
buffer, pH 8.3, on a 2% agarose gel (Tebu, Le Perray-en-
Yvelines, France), the DNA band being visualized using
ethidium bromide in the presence of a DNA molecular
weight standard (100 bp, Promega) under UV illumination.

Statistical analysis was performed using the Wilcoxon
test.

Results

Clinical data and histological features. The clinico-
pathological data and histological findings for the 23 patients
are shown in Table I. According to the current WHO classi-
fication, 10 tumours were grade I (3 meningothelial, 4 fibro-
blastic and 3 transitional), 6 grade II (atypical) and 7 grade III
(anaplastic). All tumours were surgically completely resected.
Thirteen recurrences were seen after surgery and one was
multi-focal in a patient with grade III tumour. Of the 10
patients with WHO grade I tumours, 7 had benign tumours
with a very low proliferative index (Ki-67 <2%) or with no,
or only one, mitosis per 10 high power field (HPF). Of these
7, only one (case 10) had a recurrence. The other 3 of the 10
cases also had benign neoplasms, but with either a higher
proliferative index (Ki-67 =3) or more than one mitosis per
10 HPF and all 3 showed recurrence.

Global gene expression pattern. The unsupervised hierarchical
cluster of the 17 meningiomas analysed by microarray (10
grade I, 5 atypical grade II and 2 anaplastic grade III) using
the level of expression of the 53429 genes classified the
neoplasms into three groups, as shown in the dendrogram in
Fig. 1. Group A consisted of 7 cases with grade I meningiomas,
group B consisted of the 3 cases with grade I meningiomas
with higher proliferation indexes and/or recurrence (cases 3,
7 and 10) plus the 5 grade II meningiomas, while group C
consisted of the 2 grade III meningiomas.

Analysis of genes differentially expressed between the three
meningioma groups. Of all the genes on the microarray, 346
and 2995 showed =2-fold over-expression in group B and
group C, respectively, compared to group A. The number of
genes under-expressed by =2-fold was, respectively, 184
and 1380 in group B and group C compared to group A.
Comparing meningiomas in groups B and C, 1953 genes
were upregulated and 508 downregulated in group B (fold
change =2). Only 24 genes were upregulated with a fold
change of =2 in both groups B and C compared to group A
(listed in Table II). These included 5 genes (CD44, COL6A3,
COL7AI, LAMAS5 and LOX) involved in cell adhesion, 5
(CKS2, CCNBI, BIRCS, PLK2 and UBEC2C) involved in
cell division, one (Notchl) involved in cell proliferation/
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Figure 1. Gene expression profiling of meningiomas. Unsupervised hierar-
chical clustering of the expression data for 17 meningiomas of the three
histopathological grades and from total normal brain (NB). Each column
represents one case and each row represents the expression value for an
individual probe.

differentiation, 3 (EIAF, CIP29 and PITXI) which regulate
transcription, 3 (GDF15, TRAF5 and ARHGAP2S8) involved
in signal transduction and 2 (PLTP and PGIS) involved in
lipid metabolism. On the other hand, 226 genes were down-
regulated (fold change =2) in both groups B and C compared
to group A. Of these, only 39 showed a fold change =3
(listed in Table III). Seven of these genes (LRPIB, DRRI,
PLZF, GPX3, SYNPO, TIMP3 and HOPS) have been described
as tumour suppressor genes, 7 (CDON, MFAP4, SVEPI,
COLSAI, LTBP2, PROSI and ADAMTSL3) are involved in
cell adhesion, 6 (KCNMAI, SERPINFI, EMPI, TSPAN7,
IGF1 and PDGFD) have a role in cell proliferation, 2 (BMP4
and AOXI) are involved in cell differentiation, 4 (LMO4,
KLF2, GILZ and SLC39A14) are implicated in the regulation
of transcription and 3 (CORO6, BAMBI and LEPR) act in
signal transduction.

Of the genes which only showed differential expression in
group C compared to group A, 15 are presented in Table IV.
The fold change for these 15 genes ranged from 3.5 to 11.1
for the upregulated genes and from 3.4 to 42.5 for the down-
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regulated genes. Of the former group, 3 (JUNB, FSTLI and
Slit-2) are tumour suppressor genes.

Analysis of genes showing differential expression between
fibroblastic and meningothelial meningiomas. Genes
upregulated (>5-fold) in one histotype compared to the other
are listed in Table V. The 10 genes which showed the greatest
upregulation in fibroblastic meningiomas coded for extra-
cellular matrix proteins. In addition, ERBB4, a member of the
EGF receptor family, was also upregulated. In contrast, the
genes upregulated in the meningothelial meningiomas encoded
proteins with different functions. Three tumour suppressor
genes (DEFBI1, MLPH and FAT3), present only in very low
amounts in fibroblastic variants, were over-expressed more
than 20-fold. Several genes considered as targets of the
Whnt/B-catenin signalling pathway (EDN3, DSG2, APCDDI,
NPM?2, NF2 and NEDD4L) were upregulated, as were three
genes (SSTR2, HOPS and NF2) known to be implicated in
the tumorigenesis of the meningothelial subtype. Interestingly,
all transitional meningiomas presented intermediate mRNA
levels between fibroblastic and meningothelial tumour levels.

gRT-PCR validation of differential gene expression. Of the 6
examined by qRT-PCR, 4 transcripts (HOPS, MMP9,
ARHGAP28 and SPON2) examined in 22 tumours (6 low-
grade, 9 atypical and 7 anaplastic meningiomas) showed
similar patterns of differential expression between group A
and group B or C meningiomas to those seen on the micro-
array, the differences between the tumour groups being
statistically significant (Fig. 2). In addition, the expression of
UBE2C and TFPI2 transcripts in the 3 groups of meningiomas
showed the same pattern as that obtained by microarray, but
the differences did not reach significance.

Discussion

Gene expression profiling of meningiomas belonging to the
three malignancy grades allowed their classification into
three molecular groups, one of low-grade meningiomas
(group A), one of low-grade tumours presenting recurrence
and atypical meningiomas (group B) and one of anaplastic
meningiomas (group C). Some previous attempts at profiling
the expression pattern of meningiomas were sometimes
unable to reliably distinguish the different grades of menin-
giomas and to identify specific expression patterns for each
grade (11,12). Another showed that atypical meningiomas
were not a molecularly distinct group of tumours and the
authors concluded that they were similar to either benign or
malignant meningiomas (13).

We focused on genes showing differential expression
between these 3 groups of tumours and, more particularly,
between benign meningiomas and the two other groups. We
found several genes that could be potential candidates for
markers for classifying the different types of meningiomas.
Interestingly, the 3 patients with grade I meningiomas that
were placed in group B presented a recurrence and two of the
tumours showed a higher number of mitoses than usual for
low-grade tumours. Previous reports have suggested a sub-
division of grade I meningiomas, namely the identification of
a subgroup with a higher risk of recurrence (3,16-18).
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Figure 2. Transcript levels, determined by quantitative RT-PCR, of six selected genes in the three groups of meningiomas. The results are expressed as the
amount of test gene product relative to the amount of GAPDH product (x10-3). *Statistical difference compared to low-grade meningiomas (p<0.05, Wilcoxon

test), means + standard error of the mean.

Moreover, based on c-myc expression and the clinical and
histological features of the tumours, two groups of low-grade
meningiomas have been defined (4). Finally, it has been
shown by molecular classification that atypical meningiomas
can be classed with benign meningiomas (13), suggesting
that the molecular signature approach takes more into account
the biological heterogeneity of meningiomas, which is not
clearly defined by histopathological criteria.

We identified several genes that may represent progression-
associated markers. Among the genes upregulated in non-
benign meningiomas or in those benign meningiomas
presenting recurrence, 3 (CKS2, UBE2C and TFPI2) were
already known to be overexpressed in grade II or grade III
meningiomas (13). Numerous reports have demonstrated that
CKS?2 expression is frequently elevated in tumours of different
tissue origins, including metastatic colon cancer (19), high-
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grade gliomas (20,21) and prostate cancer (22); in these
prostate tumour cells, aberrant CKS2 expression may promote
tumorigenicity by protecting the cells from apoptosis (22).
UBE2C expression has frequently been correlated with tumour
grade. This gene has been shown to be overexpressed in
malignant breast carcinomas (23), in hepatocellular carcinoma,
in which it is associated with tumour progression (24), in
anaplastic thyroid carcinomas, in which it plays a role in
thyroid cell proliferation (25), and in high-grade glial tumours
(26). Since proteasome inhibitors have been considered as
possible drugs for the chemotherapy of various tumours, new
perspectives for the treatment of high-grade meningiomas
based on the suppression of UBE2C function might be
proposed. Moreover, several of the overexpressed genes play
a role in cell adhesion. Strong CD44 expression has been
demonstrated in atypical meningioma cells (27), but no corre-
lation between CD44 immunolabelling and tumour grade was
observed in another report on meningiomas (28). Upregulation
of CD44 in cultures of meningiomas has been demonstrated
by microarray (29). The expression of this hyaluronate
receptor transcript may support a role of this molecule in the
invasive growth potential of neoplastic cells. In addition, the
role of LOX as a promoter of metastasis has been well
documented in different types of tumours (30) but upregulation
of its transcript according to the grade of meningioma has not
been previously reported.

Transcript levels of 39 genes were downregulated in both
group B and C meningiomas, possibly corresponding to a
loss of differentiation of neoplasms in these 2 groups. Of
these, 7 have already been described as tumour suppression
genes showing decreased expression in high-grade neoplasms.
Expression of LRPIB, which belongs to the low density
lipoprotein receptor gene family, is inactivated by genetic
and transcript alterations in non-small cell lung cancer (31)
or altered by deletion in high-grade urothelial cancer (32) and
the region of the chromosome containing the gene is frequently
deleted in squamous cell cervical carcinoma (33). Loss of
DDRI, originally named TU3A, is also frequently seen in
other high-grade tumours, such as renal cell carcinoma (34),
and downregulation of its expression may also contribute to
glioma progression (35). PLZF mRNA expression has been
shown to be downregulated during melanoma progression
(36). Decreased expression of GPX3, SYNPO and TIMP3 has
been previously reported in meningiomas (13). Moreover,
GPX3 is one of the genes most often downregulated or
deleted in prostate cancer and this decreased expression may
be associated with the aggressive behaviour of these tumours
(37). The frequent loss of expression of TIMP3 (a tissue
inhibitor of matrix metalloproteinase involved in regulation
of cell proliferation) as a result of genetic loss or methylation
of the gene has been associated with progression of
oesophageal and gastric adenocarcinomas (38). In these
neoplasms, immunohistochemical analysis showed that loss
of TIMP3 expression is especially frequent in tumours with
poor differentiation (38). In meningiomas, no hypermethy-
lation of the TIMP3 promoter has been detected (39) and no
aberrant gene methylation of this gene has been reported
(40). The silencing of the TIMP3 gene or its deletion, as it is
located in a genomic region, 22q12, that is frequently deleted
in meningioma (41), might be involved in the progression of

FEVRE-MONTANGE et al: MICROARRAY GENE EXPRESSION PROFILING IN MENINGIOMAS

this neoplasm. Interestingly, our results demonstrated a
dramatic downregulation of alkaline phosphatase (HOPS)
mRNA expression in atypical and anaplastic meningiomas,
by microarray and, in a larger number of patients by RT-
PCR. This is in agreement with histoenzymological reports
showing reduced levels of HOPS enzyme in high-grade
meningiomas (42,43). Moreover, reduced HOPS protein
expression had been reported in a grade I meningioma in one
patient who presented recurrence after surgery (42). In our
study, the 3 grade I meningiomas which were included by
molecular clustering in the group of atypical meningiomas
also showed reduced HOPS transcript expression. The
physiologic role of this enzyme is still poorly understood, but
its detection might help in assessing risk of recurrence,
especially in those borderline atypical meningiomas in which
not all criteria are present for their classification as grade II.
Moreover, the high expression of HOPS in meningothelial
compared to fibroblastic meningiomas has not been previously
described. Several other genes (SVEPI, COLSAI, LTBP2,
SLO, SERPINFI, PDGFD, BMP4, LMO4, SFRP2 and
SLC26A2), found to be downregulated in high-grade
meningiomas in this study, have been previously reported
with reduced expression in high-grade meningiomas (13).
The inhibition of expression of some of these genes has been
shown to be involved in tumorigenesis; this has been
demonstrated for SLO in osteosarcoma (44), for SERPINF']
in breast cancer (45) and non-small cell lung cancer (46) and
for LMO4 in several tumour types, including breast, prostate
and pancreatic ductal adenocarcinomas (47). Furthermore,
the frequent presence of ADAMTSL3 mutations has been
reported in colorectal cancer (48) and decreased
ADAMTSL3 mRNA expression, as observed in colorectal
malignancy (48), may contribute to the progression of
meningiomas. Finally, complete loss or reduced expression of
AOX1, a xenobiotic metabolizing enzyme, has been reported
in hepatocellular carcinomas, with a significant correlation
between AOX1 expression and tumour stage (49).

Among the genes only overexpressed in group C
meningiomas compared to group A, CENPF, which encodes
mitosin, a protein involved in cell cycle progression, can be
considered as a marker of early recurrence in intracranial
meningiomas (50) and as a prognostic factor for the recurrence
of meningiomas (51). This molecule has also been described
as a biomarker associated with poor outcome in breast cancer
(52). MMP9, a component of the extracellular matrix, has
been shown to be upregulated in atypical and anaplastic
meningiomas (18,53) and has been proposed as a potential
target for therapy in meningiomas (54). In contrast, the
expression of SPON2, which has been shown to be over-
expressed in ovarian cancer (55), and the expression of AIM2
have not been previously reported in meningiomas. Among
the genes only downregulated in group C meningiomas
compared to group A, 4 (JUNB, FSTLI, TGFBR3 and
MADH?7) involved in the transforming growth factor-
signalling pathway have been previously shown to be down-
regulated in malignant meningiomas (13). The decreased
expression of the protooncogene JUNB, a cell proliferation
inhibitor and a repressor of MMP9, might explain the
upregulation of MMP9 observed in high-grade meningiomas
(56). Furthermore, Slit-2 has been described as a tumour
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suppressor gene because it is frequently inactivated in various
cancers due to hypermethylation of its promoter region (57).
Its expression has been reported to be decreased or abolished
in human oesophageal squamous cell carcinomas compared
to normal tissues, as shown by in situ hybridization (58).
Conflicting results on the relationship between E-cadherin
expression and tumour grade have been reported in menin-
giomas (59). Our data show that loss of expression of E-
cadherin in meningiomas seems to be associated with
increased malignancy, as previously described in an immuno-
histochemical study (60).

Molecular signatures specific for different histopatho-
logical types of meningiomas, more particularly fibroblastic
and meningothelial variants, have not previously been clearly
identified by microarray studies. Only one recent study using
unsupervised RNA cluster analysis of 27 meningiomas
clustered the fibroblastic meningiomas separately from the
other meningiomas and identified several genes, including
BMPRIB, DMD and RAMPI1, with expression signatures
specific for fibroblastic meningiomas (61). Our results confirm
that several genes are differentially expressed in fibroblastic
and meningothelial meningiomas. The presence of a collagen-
rich matrix in fibroblastic meningiomas may be due to the
upregulation of several genes with an extracellular matrix
function in this type of tumour. As many of these proteins,
such as tenascin (62), are expressed in the foetal meninges,
their re-expression in fibroblastic meningiomas may be
involved in the proliferation and adhesion of tumoral cells.
Fibulin-1, known to be required for the directed migration
and survival of cranial neural crest cells (63), is present at
high levels in the matrix of the leptomeningeal anlage (64),
and can suppress the motility of many types of cancer cells
(65). Meningothelial meningiomas overexpress several genes
known to be tumour suppressor genes, such as f3- defensin-1,
which can inhibit cancer cell proliferation in renal cell
carcinoma (66). Other genes overexpressed in meningothelial
meningiomas, such as FAT3 and FAT4, encode proteins
involved in cell-cell junction formation (67). FAT4 has also
been shown to be a tumour suppressor gene in breast cancer
(68). Similarly, the expression of neurofibromatosis 2 (NF2),
a tumour suppressor gene, was found to be increased in
meningothelial meningiomas, in agreement with previous
results (4,10). Merlin, the protein encoded by NF2, regulates
cadherin-mediated cell contacts (69). Finally, higher expression
of sst2 was also observed in meningothelial meningiomas, as
reported previously (4).

Microarray transcriptomic studies might be a useful
complement to conventional diagnosis (70). Our data on the
differential expression of gene transcripts in the three groups
of meningiomas remain to be validated immunohisto-
chemically when antibodies are available for proteins such as
CKS2, UBE2C, GPX3, AOX1 and SERPINF1. We are
currently examining the correlation between gene expression
and patient survival in a large number of meningiomas.
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