
Abstract. Epstein-Barr nuclear antigen 1 (EBNA-1) is con-
sistently expressed in all EBV-associated gastric carcinomas.
We explored its biological effects in gastric carcinoma cells
by expressing the protein in two Epstein-Barr virus (EBV)-
negative gastric carcinoma cell lines (SCM1 and TMC1).
EBNA1-expressing SCM1 and TMC1 cells displayed no
significant differences in growth rates, respectively, compared
to those of vector-transfected SCM1 and TMC1 cells in vitro.
However, EBNA1 was able to enhance tumorigenicity, the
growth rate and the malignant histopathological grade in a
xenograft nude mice test. We also evaluated whether EBNA1
caused EBNA1-expressing cells to have enhanced tumori-
genicity in an immunocompetent host. We showed that
EBNA1-expressing LL/2 cells (derived from lung carcinoma
of a Swiss mouse) had enhanced tumorigenicity and growth
ability in the immunocompetent allograft Balb/c mice test.
These results support the expression of EBNA1 in EBV-
associated gastric carcinoma being able to provide advantages
of EBV-mediated cell growth and transformation, and to
enhance the malignant potential in vivo. In a clonogenic
assay, we showed that EBNA1 could reduce the sensitivity of

gastric carcinoma cells (SCM1 cells) harboring wild-type
p53 to cisplatin, but this was not found in mutant p53-bearing
TMC1 cells. In addition, we demonstrated that EBNA1-
expressing SCM1 cells, but not EBNA1-expressing TMC1
cells, were associated with reduced expression levels of p53.
These findings are compatible with EBNA1 efficiently
competing with p53 for binding to ubiquitin-specific protease 7,
which causes p53 to degrade by the ubiquitin/proteasome
system. These findings suggest that EBNA1 expression is
able to reduce the p53 protein level, resulting in the inhibition
of its functional activities. Finally, our results suggest that
EBV infection with EBNA1 expression in gastric carcinomas
provides advantages for host cell survival, growth ability and
transformation potential involving escape from immunosur-
veillance and a reduction in the sensitivity to DNA damage
or other apoptotic stress stimuli mediated by suppression of
the wild-type p53 protein level; these are distinct from the
pathogenesis of EBV-negative gastric carcinomas.

Introduction

Gastric carcinoma is a common cancer and results in about
876,000 new cases per year making it one of the leading
causes of cancer deaths worldwide (1). Among gastric
carcinomas, 2-16% (mean 10%) of conventional gastric
adenocarcinomas (2), more than 80% of lymphoepithelioma-
like carcinomas (LELCs) of the stomach (3,4), and 35% of
adenocarcinomas of the gastric stump are associated with
Epstein-Barr virus (EBV) infection (5). The worldwide abso-
lute number of EBV-associated gastric carcinomas makes it
the largest group of EBV-associated malignancies (2). This
association is characterized by the presence of EBV infection
in nearly all tumor cells (6), clonality of the EBV genome in
tumor cells and an elevation of EBV-specific antibodies in
patients (7,8). The molecular characteristics of EBV-
associated gastric carcinomas have been explored. Aberrant
hypermethylation of CpG islands is one mechanism of tumor
suppressor gene inactivation in EBV-associated gastric
carcinomas (9). Allelic loss at some chromosomal markers
such as 5q (APC), 17p (p53) and 18q (smad 4) was inversely
correlated with an EBV association. Allelic loss at the p53
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locus is not encountered in EBV-associated gastric carcinomas,
but occurs in 51% of EBV-negative gastric carcinomas (10).
Microsatellite instability, a hallmark of a defective DNA
mismatch repair system, is not related to the EBV status in
gastric carcinomas (11). By comparative genomic hybridiza-
tion, loss of 4p, 11p and 18q was found to be more frequent
in EBV-associated gastric carcinomas than in EBV-negative
gastric carcinomas (12). By a tissue array analysis, EBV-
associated gastric carcinomas were shown to exhibit frequent
loss of expression of some tumor suppressor genes such as
p16, smad 4, FHIT and KAI-1, but usually retained the
expressions of APC, DCC and some DNA-repair proteins
(13). The clinicopathological features of EBV-associated
gastric carcinomas are found more frequently in male and
younger patients, and in the proximal part of the stomach
with a tubular histopathological subtype together with
prominent activated CD8+ lymphocyte infiltration and a
lower frequency of lymph node metastasis (14,15). EBV-
associated adenocarcinomas do not obviously differ in prog-
nosis compared to EBV-negative adenocarcinomas (16,17),
but the prognosis of EBV-associated LELCs of the stomach
is significantly better than that of conventional EBV-negative
gastric adenocarcinomas (18,19). All of these findings
suggest that EBV-associated gastric carcinomas exhibit
specific clinicopathological features, novel genomic and
epigenetic aberrations, and a distinct protein expression
profile. Therefore, EBV-associated gastric carcinomas have a
distinct pathogenic pathway in which EBV infection and its
Epstein-Barr nuclear antigen 1 (EBNA-1) might play crucial
roles.

In EBV-associated gastric carcinomas, EBV shows a
unique latent pattern characterized by transcription of the
transforming BARF1 gene, EBER1/2, Q-promoter-driven
EBNA1, BARF0 and LMP2A, but not EBNA-2, -3A, -3B, or
-3C, leader protein, or other latent membrane proteins (LMPs)
due to gene methylation (7,20,21). EBNA1 is a DNA-binding
nuclear phosphoprotein essentially required for replication
and maintenance of the episomal EBV genome through the
binding of EBNA1 to the origin of viral replication (22).
EBNA1 is consistently expressed in EBV-associated gastric
carcinomas and can act as a transcriptional transactivator
upregulating the Cp and LMP1 promoters (23). EBNA1 also
interacts with the Qp promoter and immediately downstream
regulatory region III to positively and negatively regulate its
own expression (24). The EBNA1 protein can be separated
into amino- and carboxy-terminal domains by a glycine-
glycine-alanine repeat (GAr) sequence, which acts as a cis-
acting inhibitor of MHC class I-restricted presentation and
appears to function by inhibiting antigen processing via the
ubiquitin/proteasome pathway (25,26). In addition, EBNA1
has a well-defined modular structure with no apparent enzy-
matic activity, but may fulfill its functions through interactions
with cellular proteins. Many cellular-interacting proteins
such as importin-·, karyopherin-·1, P32/TAP, EBP2, TAF-
I·, TAF-Iß, CK2, PRMT5 and USP7 were shown to interact
with EBNA1 (27-32), but their exact biological effects are
not well clarified.

Several reports supported the hypothesis that EBNA1 has
oncogenic potential, and these include the fact that EBNA1 is
required as a survival factor in Burkitt's lymphoma (33), that

only EBNA1 is consistently expressed in EBV-associated
Burkitt's lymphoma and gastric carcinomas (34), and that
EBNA1 is able to induce B-cell neoplasia in transgenic mice
(35). Moreover, we showed that the expression of EBNA-1
in an EBV-negative NPC cell line resulted in increased
tumorigenic and metastatic capabilities in vivo (36), thus
suggesting that EBNA-1 may enhance the malignant pro-
gression of EBV-associated epithelial tumors. These findings
suggest that EBNA-1 is the EBV-encoded protein consistently
expressed in all EBV-associated malignancies, which has
biological effects and as such would seem to play a critical
role in viral persistence and EBV-mediated cellular transfor-
mation (37). In contrast, it was also shown that EBNA1 is
unable to induce lymphomas in transgenic FVB mice (38)
and may act as a transforming suppressor of the HER2/neu
oncogene by its N-terminal domain (39). Furthermore, it is
able to sensitize HER2/neu-overexpressing ovarian cancer
cells to topoisomerase II-targeted and paclitaxel drugs (40).
In addition, the expression of EBNA1 in epithelial cells
requires an undifferentiated cellular environment and may
induce cytotoxic effects in some cell lines (41). All of these
divergent findings suggest that the exact biological activities
of EBNA1 may be complicated and result from a diverse
range of biological effects on different cellular systems together
with interactions with various extracellular environmental
factors.

Based on the restricted EBV gene expression in gastric
epithelial cells, EBNA1 is the latent protein consistently
expressed in all EBV-associated gastric carcinomas. Although
EBNA1 would seem to contribute at least some pathogenic
factors to tumorigenesis and/or the modulation of clinico-
pathological features of EBV-associated gastric carcinomas,
its biological effects in gastric carcinoma are still not well
understood. In this report, using in vivo and in vitro studies,
we evaluated the oncogenic potential and alterations in
cisplatin sensitivity between two gastric carcinoma cell lines
(SCM1 and TMC1) that were transfected with a gene expres-
sing EBNA1.

Materials and methods

Cells and animals. The EBV-negative gastric carcinoma cell
lines SCM1 and TMC1 used in this study are derived from
gastric adenocarcinomas and were cultured in RPMI-1640
medium containing 10% fetal calf serum (FCS) as previously
described (42). The LL/2 (LLC1) cell line derived from a
primary Lewis lung adenocarcinoma (43) was cultured in
Dulbecco's modified Eagle's medium (DMEM) with 4 mM
L-glutamine and 1 mM sodium pyruvate containing 10%
fetal bovine serum (FBS). All cell lines were incubated at
37˚C in an incubator with 5% CO2 and water-saturated air.
Pathogen-free nude mice (Balb/c nu/nu) and immunocom-
petent Balb/c mice were used for the tumorigenic test, which
involved subcutaneous transplantation of either EBNA1-
expressing gastric carcinoma cells, EBNA1-expressing LL/2
cells, or vector-transfected cells. All procedures involving
animal experiments and the care of animals in this study
carried out in accordance with an established animal protocol
and were approved by the Experimental Animal Care and
Use Committee at National Defense Medical Center.

CHENG et al:  TUMORIGENESIS AND CISPLATIN SENSITIVITY OF GASTRIC CARCINOMA CELLS152

151-160.qxd  13/11/2009  02:03 ÌÌ  Page 152



Plasmid construction and DNA transfection. The EBNA1
gene was introduced into the pCP4/EBNA1 plasmid and the
control pCP4 vector, and the DNA transfection methods are
as previously described (44). The pCP4/EBNA1 plasmid was
used to transfect SCM1, TMC1 and LL/2 cells to establish
the EBNA1-expressing cells to evaluate the biological effects
of EBNA1 in transfected cells. pCP4 was used to establish
vector-transfected control cells. After transfection for 24 h,
transfected SCM1 and TMC1 cells were subcultured at a
1:10 dilution into selection medium consisting of growth
medium containing 100 μg/ml hygromycin, while transfected
LL/2 cells were subcultured in selection medium consisting
of growth medium containing 20 μg/ml hygromycin. After
long-term selection, stable transfected cells were established.

Immunocytochemical staining. EBNA1 expression in trans-
fected SCM1, TMC1 and LL/2 cells was detected by in situ
immunocytochemical staining, as previously described with
minor modifications (42). For immunocytochemical staining,
normal goat serum (at a 1:20 dilution in TBS) was used as
the blocking reagent. Cells were then incubated with antiserum
(at a 1:30 dilution) from an EBV-positive donor with naso-
pharyngeal carcinoma (NPC) for 2 h; this was followed by
incubation with a biotin-labeled goat anti-human IgG antibody
(Santa Cruz, CA, USA), then streptavidin was linked to
horseradish peroxidase (Vector, Burlingame, CA, USA).
Slides were washed three times in TBS for 5 min each. The
color was developed in AEC solution (Vector), and slides
were slightly counterstained with hematoxylin and mounted
for examination. Substitution of the primary antibody with
neonatal umbilical cord serum or omission of the primary
antibody served as a negative control for all immunostaining.

Western immunoblotting. Western immunoblotting was used
to evaluate EBNA1 expression in the established EBNA1-
expressing SCM1, TMC1 and LL/2 cells, as previously
described with minor modifications (44). In brief, blots were
incubated with blocking buffer containing 2% BSA, 1%
normal goat serum and 0.1% Tween-20 in TBS for 45 min
and then incubated with antiserum (at a 1:200 dilution) from
an EBV-positive donor with NPC for 2 h. The antigen-
antibody complex was detected by an HRP-coupled goat
anti-human immunoglobulin G (IgG) antibody (Santa Cruz)
followed by Western Blotting Luminol Reagent (Santa Cruz).
The same procedures were used to evaluate the expressions
of GSTπ, MDR1, topoisomerase I and II, Her-2/neu, and p53
in EBNA1-expressing gastric carcinoma cells by respectively
substituting the primary antibodies with anti-human GSTπ
(Novocastra, UK), MDR1 (Santa Cruz), topoisomerase I and
II (NeoMarkers, CA USA), Her-2/neu (NeoMarkers) and p53
(DO7, NeoMarkers).

Immunoprecipitation of EBNA1. Immunoprecipitation plus
Western immunoblotting was used to evaluate EBNA1
expression in tumor masses derived from the tumorigenic
assay in nude mice or Balb/c mice as described in a previous
report with minor modifications (36,44). In brief, the extracted
protein concentration was determined by a bicinchonic acid
assay (Pierce, Rockford, IL, USA), and an appropriate amount
of protein was used for immunoprecipitation. Proteins were

pre-cleared by adding neonatal umbilical cord serum (at a
1:30 dilution) and 1.0 μg of normal goat IgGs together with
30 μl of protein A/G-agarose (25% v/v); this was followed
by incubation at 4˚C for 30 min, and then centrifugation at
13,000 rpm for 5 min at 4˚C. The supernatant was transferred
to a fresh tube on ice, and immunoprecipitation was initiated
by the addition of antiserum (at a 1:30 dilution) from an
EBV-positive donor with NPC, followed by incubation over-
night at 4˚C. Incubation was then carried out for an additional
4 h in the presence of protein A/G agarose. The immuno-
precipitate was washed four times in lysis buffer. For sodium
dodecylsulfate polyacrylamide gel electrophoresis (SDS-
PAGE), pellets were resuspended in 30 μl of 3x SDS sample
buffer and then heated at 98˚C for 5 min, followed by SDS-
PAGE. For the Western immunoblot analysis, proteins were
transferred to nitrocellulose; membranes were blocked with
3% BSA and 0.1% Tween-20 in TBS for 90 min and
incubated with antiserum (at 1:300 dilution) from an EBV-
positive donor with NPC. The antigen-antibody complex was
detected by HRP-coupled goat anti-human IgG antibody
(Santa Cruz) followed by luminol reagent (Santa Cruz).

MTT assay. The MTT assay procedures used to evaluate the
difference in growth rates between EBNA1-expressing cells
and vector-transfected control cells were the same as those
previously described (45).

Tumorigenic assay in nude and Balb/c mice. The tumorigenic
assay in nude mice was used to evaluate variations in tumori-
genesis between EBNA1-expressing SCM1 and TMC1 cells
and vector-transfected SCM1 and TMC1 cells, respectively,
as previously described (42). In brief, 4x106 cells were
subcutaneously transplanted into the right and left back
regions of each nude mouse. Animals were sacrificed on the
60th day of the experiment, and the tumor mass was excised,
weighed and divided into two parts. One of them was fixed
in 10% neutralized formalin for the histopathological exami-
nation, and the other was quickly frozen in liquid nitrogen
then stored at -80˚C for studies such as the detection of
EBNA1 expression in tumor cells by immunoprecipitation
and Western immunoblotting. The tumorigenicity of EBNA1-
expressing LL/2 cells and vector-transfected LL/2 cells was
evaluated by an allograft in Balb/c mice according to the
same experimental procedures.

Morphological examination. The morphological characte-
ristics of cultured EBNA1-expressing cells and vector-
transfected control cells were examined under subconfluent
culture conditions. The morphological features of each tumor
mass derived from the tumorigenicity assay were evaluated
by serial tissue sections using hematoxylin and eosin (H&E)
staining.

Clonogenic assay. A clonogenic assay was used to evaluate
differences in cisplatin sensitivity between EBNA1-expressing
and vector-transfected gastric carcinoma cells as previously
described with modifications (46). Cells growing in the log
phase were trypsinized, and viable cells were counted. On a
60-mm culture dish, appropriate cell numbers (1000 SCM1
cells and 2000 TMC1 cells) were seeded in selection medium.
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After a 24-h culture, cells was treated with various concen-
trations of cisplatin (0, 1, 2, 4, 8 and 16 μg/ml) for 20 min, and
then washed with serum-free medium five times to remove
the drug. Cisplatin-treated cells were cultured in selection
medium, and the medium was refreshed every 2-3 days.
After 2 weeks of incubation, cultured cells were washed with
PBS, fixed in 10% neutral buffered formalin and stained with
a 1% solution of crystal violet to determine the colony number.
Each assay was carried out in triplicate and consisted of three
independent experiments. Colonies that consisted of more
than 20 cells were scored under an inverted microscope, and
the number was compared to the untreated control. Cell
survival curves were drawn by plotting the means of three
independent experiments with the SD as an error bar.

Single-stranded conformation polymorphism (SSCP)
analysis. The SSCP analysis was used to detect mutations of
the p53 gene in SCM1 and TMC1 cells. It was performed
using the same procedures as previously reported (47). In brief,
each exon 5-8 of the p53 gene was amplified by 35 cycles of
PCR using 5'-end-labeled primers and Taq polymerase
(Perkin-Elmer/Cetus, Norwalk, CT, USA) and analyzed on
6% polyacrylamide gels after denaturation of the PCR products
by heating at 95˚C for 7 min in the presence of a 15% urea
solution. Then, abnormal band shifts were demonstrated if
the p53 gene had mutated exons.

Statistical analysis. Variations in tumorigenesis between
EBNA1-expressing cells and vector-transfected cells were
tested by Pearson's Chi-square test. Growth rates of tumors
(assessed by tumor weight) induced by EBNA1-expressing
cells and vector-transfected cells were evaluated by the
Wilcoxon signed-rank test. Probability values of <0.05 were
considered statistically significant.

Results

Establishment of EBNA1-expressing cells. After transfection
and selection for 2 weeks, more than 300 drug-resistant
colonies were obtained from the pCP4/EBNA1-transfected
SCM1 and TMC1 cells, and only about 80 colonies were
obtained from pCP4-transfected SCM1 and TMC1 cells.
These colonies were harvested and expanded in selection
medium to give EBNA1-expressing SCM1 and TMC1 cells
and vector-transfected SCM1 and TMC1 cell lines. The
expression of EBNA1 in EBNA1-expressing SCM1 and
TMC1 cells was evaluated by in situ immunocytochemical
staining and Western blotting. About 30 and 90% of EBNA1-
expressing SCM1 and TMC-1 cells, respectively, showed
detectable EBNA1 expression in the nucleus by in situ
immunocytochemical staining (Fig. 1). By Western blotting,
EBNA1-expressing SCM1 and TMC1 cells expressed
EBNA1 at 83 kDa (Fig. 2A). Because the expression level
of EBNA1 in tumor cells was too low for detection by in situ
immunocytochemical staining or the Western blotting method,
EBNA1 expression in the tumors derived from the tumorigenic
assay of EBNA1-expressing SCM1 and TMC1 cells was
evaluated by immunoprecipitation plus Western blotting
(Fig. 2B). Vector-transfected SCM1 and TMC1 cells showed
no EBNA1 expression in either system. In addition, EBNA1-
expressing LL/2 cells and vector-transfected LL/2 cells were
established by the same procedure. EBNA1 expression in
EBNA1-expressing LL/2 cells was undetectable by in situ
immunocytochemical staining due to its lower-level expres-
sion. However, EBNA1 expression could also be detected as
an 83-kDa protein in EBNA1-expressing LL/2 cells by
Western blotting and in the tumor mass derived from the
tumorigenic assay by immunoprecipitation plus Western
blotting (Fig. 2A and B). These results confirmed that SCM1,
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Figure 1. Immunocytochemical staining for EBNA1 expression in EBNA1-expressing gastric carcinoma cells. (A) Vector-transfected SCM1 cells. (B) EBNA1-
expressing SCM1 cells. (C) Subclonal EBNA1-expressing SCM1 cells (B8). (D) Subclonal EBNA1-expressing SCM1 cells (D23). (E) Vector-transfected
TMC1 cells. (F) EBNA1-expressing TMC1 cells.
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TMC1 and LL/2 cells transfected with EBNA1 gene are able
to express EBNA1 in vitro and in vivo, but no such expression
occurred in vector-transfected SCM1, TMC1 or LL/2 cells.

Growth rate of EBNA1-expressing cells. In the MTT assay,
EBNA1-expressing SCM1 and TMC1 cells displayed no
significant difference in growth rates when, respectively,
compared to vector-transfected SCM1 and TMC1 cells (data
not shown). These results suggest that EBNA1 does not
obviously influence the growth ability of gastric carcinoma
cells in vitro. A similar result was also obtained for EBNA-
expressing LL/2 cells and vector-transfected LL/2 cells by
the same assay.

Increased tumorigenicity and growth rate of EBNA1-
expressing cells. Results of the tumorigenic assay are
summarized in Table I. Although the difference did not reach
statistical significance (p=0.06), tumorigenesis of EBNA1-
expressing SCM1 cells (100%) showed a higher frequency
than that of vector-transfected SCM1 cells (75%). The
tumorigenesis frequency of EBNA1-expressing TMC1 cells
(75%) was significantly higher than that of vector-transfected
TMC1 cells (33%) (p=0.04). Growth rates of tumors derived
from EBNA1-expressing SCM1 and TMC1 cells, as assessed
by the tumor weight, were respectively significantly higher
than those of tumors derived from vector-transfected SCM1
(p=0.005) and TMC1 (p=0.008) cells. These results suggest
that EBNA1-expressing gastric carcinoma cells are able to
enhance tumorigenicity and growth rates compared to vector-
transfected gastric carcinoma cells in an immunocompro-
mised nude mice model. In the clinic, patients with EBV-
associated gastric carcinoma always have a normal immune
function (7). To clarify whether EBNA1 causes EBNA1-
expressing cells to have increased tumorigenicity in an immu-
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Table I. Tumorigenesis of EBNA1-expressing gastric carcinoma cells and vector-transfected gastric carcinoma cells in nude
mice, and tumorigenesis of EBNA1-expressing LL/2 cells and vector-transfected LL/2 cells in Balb/c mice.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Mouse EBNA1- Vector- EBNA1- Vector- EBNA1- Vector- 
number expressing SCM1 transfected SCM1 expressing TMC1 transfected TMC1 expressing LL/2 transfected LL/2 

cell-derived cell-derived cell-derived cell-derived cell-derived cell-derived
tumors (g) tumors (g) tumors (g) tumors (g) tumors (g) tumors (g)

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
1 1.03 0.3 2.39 0.38 5.17 0

2 0.14 0 0.89 0.03 0 0

3 0.16 0.40 0.76 0 0 0

4 2.31 0.45 1.05 0 0 0

5 0.27 0 0.3 0 0 0

6 0.59 0.54 0.55 0.46 1.85 0

7 1.09 0.82 1.09 0 3.22 0

8 2.68 1.10 0 0 0 0

9 3.42 2.01 0 0 0 0

10 1.52 0.74 0 0 0 0

11 0.59 0 0.59 0 2.65 0

12 1.25 0.83 1.25 0.83 0 0

Mean of tumor

weight (g)a 1.25 0.74 0.98 0.43 3.78 0

Tumorigenicity (%)b 100 75 75 33 33 0
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aWilcoxon signed-rank test for the growth rate (assessed by tumor weight); the difference was significant at p<0.05. bPearson Chi-square test
for tumorigenicity; the difference was significant at p<0.05.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Figure 2. Western blot analysis of EBNA1 expression in EBNA1-expressing
LL/2, TMC1 and SCM1 cells. (A) EBNA1 expression in EBNA1-
expressing cells demonstrated by Western blotting; aliquots of 20 μg of cell
extract from each representative cell line were used. Lane 1, vector-
transfected LL/2 cells; lane 2, EBNA1-expressing LL/2 cells; lane 3, vector-
transfected TMC1 cells; lane 4, EBNA1-expressing TMC1 cells; lane 5,
vector-transfected SCM1 cells; lane 6, EBNA1-expressing SCM1 cells; lane 7,
subclonal EBNA1-expressing SCM1 cells (B15); lane 8, subclonal EBNA1-
expressing SCM1 cells (D8); lane 9, subclonal EBNA1-expressing SCM1
cells (D23). (B) EBNA1 expression in tumors derived from EBNA1-
expressing cells in a tumorigenic assay demonstrated by immunopreci-
pitation plus Western blotting; aliquots of 20 mg of tumor tissue extract
from each representative tumor were used except in lane 1. Lane 1, whole-
cell lysate of vector-transfected LL/2 cells; lane 2, tumor derived from
EBNA1-expressing LL/2 cells; lane 3, tumor derived from vector-
transfected SCM1 cells; lane 4, tumor derived from EBNA1-expressing
SCM1 cells; lane 5, tumor derived from vector-transfected TMC1 cells; lane
6, tumor derived from EBNA1-expressiong TMC1 cells.
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nocompetent host, we evaluated the tumorigenicity and
growth rates of EBNA1-expressing LL/2 cells using allografts
in immunocompetent Balb/c mice. We found that EBNA1-
expressing LL/2 cells were able to induce tumors (33%), and
these had the ability to grow aggressively. In contrast, no
tumorigenesis was observed in vector-transfected LL/2 cells
(p=0.01). These results suggest that EBNA1-expressing LL/2
cells have increased tumorigenicity and growth ability
compared to vector-transfected LL/2 cells. Therefore, we
concluded that the expression of EBNA1 is able to help host
cells escape from allograft rejection and enhance tumori-
genicity in an immunocompetent host.

Morphological alterations in EBNA1-expressing TMC1 cells
in vivo. Morphological alterations of EBNA1-expressing
gastric carcinomas and LL/2 cells were examined in vitro and
in vivo. Under subconfluent culture conditions, there was no
obvious difference in morphological alterations between
EBNA1-expressing SCM1, TMC1 and LL/2 cells and the
respective vector-transfected SCM1, TMC1 and LL/2 cells
(data not shown). Morphological alterations of induced tumors
in the tumorigenic tests were also evaluated using serial
sections with H&E staining. The morphological features of
tumors derived from EBNA1-expressing SCM1 cells were
similar to those of tumors derived from vector-transfected
SCM1 cells (data not shown), whereas tumors derived from
EBNA1-expressing TMC1 cells displayed a higher histo-
logical grade than tumors derived from the vector-transfected
TMC1 cells, and this was characterized by greater cellular
polymorphism with occasional anaplastic large cell formation,
conspicuous nucleoli and frequent mitosis (Fig. 3). These
findings suggest that the expression of EBNA1 in gastric
carcinoma cells has the potential to induce tumors of a higher
histological grade compared to tumors derived from vector-
transfected gastric carcinoma cells (as observed in EBNA1-
expressing TMC1 cells) in the nude mouse model used.

Reduced sensitivity to cisplatin of EBNA1-expressing SCM1
cells. We also evaluated the potential of EBNA1 to modulate
the chemodrug sensitivity of gastric carcinoma cells by a
clonogenic assay, because patients with gastric carcinoma
usually receive cisplatin as adjuvant therapy. For this assess-
ment, three additional subclonal EBNA1-expressing SCM1
cell lines (B15, D8 and D23) were isolated from EBNA1-
expressing SCM1 cells. In each subclonal cell line, about
80% of tumor cells expressed EBNA1 as an 83-kD protein in
the nuclei as demonstrated by in situ immunocytochemical
stain and Western immunoblotting (Figs. 1 and 2A). In the
clonogenic assay, each subclonal EBNA1-expressing SCM
cell line (B15, D8 and D23) and EBNA1-expressing SCM1
cells displayed reduced sensitivity to cisplatin compared to
vector-transfected SCM1 cells as measured by their IC50

values (a concentration that inhibited 50% of the colony-
forming ability) (Fig. 4A and C). EBNA1-expressing TMC1
cells did not show an obvious change in sensitivity to
cisplatin compared to vector-transfected TMC1 cells (Fig. 4B
and C). These findings suggest that the expression of EBNA1
in gastric carcinoma cells has the potential to down-modulate
sensitivity to cisplatin (as observed in EBNA1-expressing
SCM1 cell lines).

Expression of drug resistance-related proteins in EBNA1-
expressing gastric carcinoma cells. To clarify the mechanism
responsible for the reduced cisplatin sensitivity in EBNA1-
expressing gastric carcinoma cells, expressions of proteins
related to chemodrug resistance such as GSTπ, MDR1 (P-
glycoprotein), topoisomerase I and II, Her-2/neu and p53
were evaluated by Western blotting (48). No obvious changes
in the expressions of these drug resistance-related proteins
were respectively demonstrated between EBNA1-expressing
SCM1 and TMC1 cells and vector-transfected SCM1 and
TMC1 cells except for the p53 protein. We found that the
expression level of p53 was much lower in SCM1 cells than
that in TMC1 cells (Fig. 5). Immunohistochemical staining
demonstrated p53 as a diffuse strong nuclear positive signal
in induced tumors derived from TMC1 cells in nude mice,
but in induced tumors derived from SCM1 cells, the results
were negative for p53 staining (data not shown). An SSCP
analysis was used to evaluate p53 mutations in SCM1 and
TMC1 cells, and results showed an abnormal band shift in
exon 5 of the p53 gene in TMC1 cells, but none was found in
SCM1 cells (Fig. 6). These findings indicate that the p53 gene
in TMC1 cells is a mutant, but it is a wild-type in SCM1 cells.

Reduced p53 expression in EBNA1-expressing SCM1 cells.
EBNA1 was demonstrated to compete with p53 for binding
with ubiquitin-specific protease 7 (USP7). This binding
allows p53 ubiquitination and degradation by the proteosome
system. Such competition is able to protect cells from
apoptotic challenge and provide a mechanism to explain how
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Figure 3. Histopathology of induced tumors derived from vector-transfected
TMC1 cells showing a homogeneous appearance of tumor cells (A) and
from the EBNA1-expressing TMC1 cells showing a higher grade of pleo-
morphic and anaplastic features of tumor cells (B).
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EBNA1 might contribute to the survival and transformation
potential of EBV-infected cells (49-52). We demonstrated
that EBNA1-expressing SCM cells have reduced sensitivity
to cisplatin compared to vector-transfected SCM1 cells,
which possibly resulted from interactions between EBNA1
and p53. To elucidate this possibility, we evaluated the dif-
ference in p53 expression levels between EBNA1-expressing
gastric carcinoma cells and vector-transfected gastric
carcinoma cells. In Fig. 5, we found that the expression level
of p53 was reduced in EBNA1-expressing SCM1 cells and in
each subclonal EBNA1-expressing SCM1 cell line (D23, D8
and D15). In addition, the reduced p53 level was correlated
with the expression level of EBNA1 in EBNA1-expressing
SCM1 cells and each subclonal EBNA1-expressing SCM1
cell line (D23, D8 and D15) as shown in Fig. 2A. These
findings are compatible with EBNA1 being able to compete
with p53 for binding with USP7 and enhance p53 ubiquiti-
nation and degradation by the proteosome system.

Discussion

In the present study, we assessed the biological effects of
EBNA1 in gastric carcinoma cells in vitro and in vivo. We
found that the expression of EBNA1 in SCM1 and TMC1
cells did not obviously influence their growth ability in vitro.
Similar studies demonstrated that the expression of EBNA1
is able to induce cytotoxicity in squamous epithelial cells but
not in glandular epithelial cells (41). The cytotoxicity of
EBNA1 was also shown in SKOV3 ovarian cancer cells which
exhibit growth inhibition and G2/M arrest (39,40). Based on
previous reports and our results, we suggest that the expression
of EBNA1 in epithelial cells seems to be able to induce
diverse cytotoxicity possibly resulting from various states of
the cellular environment.

With xenografts in nude mice, the expression of EBNA1
in SCM1 and TMC1 gastric carcinoma cells was able to
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Figure 4. Clonogenic assay demonstrating the difference to cisplatin sensitivity (IC50 value) between vector-transfected gastric carcinoma cells and EBNA1-
expressing gastric carcinoma cells. (A) SCM1-V, vector transfected SCM1 cells; SCM1-NA1, EBNA1-expressing SCM1 cells; SCM1-NA1(B15), SCM1-
NA1(D8) and SCM1-NA1(D23), different subclones of EBNA1-expressing SCM1 cells. (B) TMC1-V, vector-transfected TMC1 cells; TMC1-NA1, EBNA1-
expressing TMC1 cells. (C) The IC50 value of cisplatin for the EBNA1-expressing SCM1 cells and each subclonal EBNA1-expressing SCM1 cells and
vector transfected SCM1 cells, and the EBNA1-expressing TMC1 cells and vector-transfected TMC1 cells are presented in the bar chart.

Figure 5. p53 expression in the EBNA1-expressing SCM1 cells and each
subclonal EBNA1-expressing SCM1 cells and vector-transfected SCM1
cells, and the EBNA1-expressing TMC1 cells and vector-transfected TMC1
cells were demonstrated by Western blotting. Lane 1, vector-transfected
SCM1 cells; lane 2, subclonal EBNA1-expressing SCM1cells (D23); lane 3,
subclonal EBNA1-expressing SCM1 cells (D8); lane 4, subclonal EBNA1-
expressing SCM1 cells (D15); lane 5, EBNA1-expressing SCM1 cells; lane 6,
vector-transfected TMC1cells; lane 7, EBNA1-expressing TMC1 cells.

Figure 6. Single-stranded conformation polymorphism (SSCP) analysis of
the p53 mutation in exons 4, 5, 6, 7 and 8 of SCM1 and TMC1 cells. p53
gene mutation in exon 5 was observed in TMC1 cells. N, normal control; T,
TMC1 cells; S, SCM1 cells.
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enhance the tumorigenicity and growth rate, but, however,
induced a higher histopathological grade of the tumor only in
TMC1 cells. These results suggest that EBNA1 expression
has the potential to provide advantages that promote tumori-
genesis and the growth ability of EBV-associated gastric
carcinomas in vivo (22,33). Using allografts into immunocom-
petent Balb/c mice, we also showed that the expression of
EBNA1 in LL/2 cells was able to induce tumors (33%) with
aggressive growth ability, but that there was no observable
tumorigenesis in vector-transfected LL/2 cells. These results
further suggest that EBNA1 also helps EBNA1-expressing
cells escape from allograft rejection in an immunocompetent
host, and this is possibly mediated by down-modulation of
allograft rejection responses (53), avoidance of tumor immune
surveillance mediated by the suppression of HLA molecules/
TAA on the tumor cell surface, the production of immuno-
suppressive cytokines, or the expression of lymphotoxic
molecules (i.e., FAS ligand) by cancer cells (54-56), but these
remain to be clarified in future studies. The experimental
tumorigenicity results provide evidence that supports the
hypothesis that expression of EBNA1 in EBV-associated
gastric carcinoma may play an important role in tumori-
genesis and a tumor's ability to escape from host immune
eradication during EBV-mediated cell transformation. In
previous reports, the oncogenic potential of EBNA1 was also
identified in other cellular systems including the induction of
lymphomagenesis in transgenic mice (35,57) and the
enhancement of malignant progression of NPC cells in vivo
(36) at low-level expression only detected by immunopre-
cipitated Western blotting. However, EBNA1 failed to
induce lymphomas in transgenic FVB mice at an expression
level similar to that of latent EBV infection in human B
lymphocytes (38). These discrepant findings might have
resulted from different expression levels of EBNA1. The
GAr of EBNA1 can protect EBNA1 from proteasomal degra-
dation and results in a failure of presentation of EBNA1-
derived epitopes on MHC class I molecules and therefore in
CD8+ T cell recognition. This helps latently infected cells
escape from cell-mediated immune responses during the
transformation or long-term survival in vivo (25,26,58).
Importantly, GAr also inhibits mRNA translation of EBNA1
in cis and minimizes the expression of EBNA1, both in vitro
and in vivo, thus avoiding efficient presentation of respective
MHC class I and II molecules for CD8+ and CD4+ T cell
recognition (59-61). The protective effects of GAr regulation
of EBNA1 expression to a minimized stable level may allow
the persistence of the virus in latently infected cells and make
it more suitable to mediate cell transformation (62).

The oncogenic mechanisms of EBNA1 are not well
clarified, but there are some reports of biological activities of
EBNA1 that provide some reasonable explanations. EBNA1
was shown to have oncogenic potential through different
action mechanisms: a) it interacts with Nm23-H1 and inhibits
its ability to suppress cell migration in lymphoblastoid cells,
which highlights a novel function of EBNA1 that contributes
to malignant transformation and tumor progression (63); b) it
modulates the AP-1 transcription factor pathway in naso-
pharyngeal carcinoma cells and enhances angiogenesis which
implicates EBNA1 in the angiogenic process and might
contribute to the development and aggressively metastatic

nature of NPC (64); c) it promotes genomic instability via
induction of reactive oxygen species, highlighting a novel
function of EBNA-1 which can contribute to malignant trans-
formation and tumor progression (65); and d) it modulates
the STAT1 and TGF-ß signaling pathways to induce a lower
steady-state level of SMAD2 protein, downregulates the
tumor growth factor (TGF)-ß target gene, PTPRK, and
contributes to the growth and survival of Hodgkin lymphoma
cells, suggesting that EBNA1 can influence cellular gene
transcription resulting in effects that may contribute to the
development of EBV-associated tumors (49,50). These
observations support the view that the expression of EBNA1
in EBV-associated tumors might not only reflect a require-
ment for viral persistence but also results in a selective
growth advantage and increased oncogenic potential that
enhances the malignant transformation and progression of
tumor cells.

By a clonogenic assay, EBNA1-expressing SCM cells
were shown to have reduced sensitivity to cisplatin compared
to vector-transfected SCM1 cells, but the same results were
not observed in EBNA1-expressing TMC1 cells. The
underlying molecular mechanisms of these findings are not
easily explained based on the present study, because no
upregulated expression of the drug resistance-related proteins
GSTπ, MDR1 (P-glycoprotein), topoisomerase I and II, or
Her-2/neu was demonstrated in EBNA1-expressing SCM1 or
TMC1 cells. However, we found that the p53 expression
level was much lower in SCM1 cells than in TMC1 cells as
demonstrated by the Western blot assay. By the SSCP
analysis, we showed that a point mutation in the p53 gene
had occurred in TMC1 cells, but the p53 gene remained a
wild-type in SCM1 cells.

EBNA1-expressing SCM cells had reduced sensitivity to
cisplatin compared to vector-transfected SCM1 cells, but that
was not found for EBNA1-expressing TMC1 cells which is
compatible with EBNA1 being demonstrated to play a role as
a survival factor in Burkitt's lymphoma by being able to
inhibit p53-induced apoptosis in vitro (34). These findings
can be explained by EBNA1 possibly competing with p53 for
binding to USP7. This binding allows p53 ubiquitination and
degradation. Such competition may therefore protect cells
from apoptotic challenge and provide a mechanism to
explain how EBNA1 might contribute to the survival and
transformation potential of EBV-infected cells (66,67). Such
protection from apoptotic challenge is predicated to protect
cells from DNA damage induced by apoptosis mediated
through p53 activity. Thus, we suggest that the expression of
EBNA1 in SCM cells in parallel with wild-type p53 ubiqui-
tination and degradation by the ubiquitin/proteasome system
reduces DNA damage by apoptosis induced by cisplatin
treatment. But this was not observed in TMC1 cells because
the mutant p53 in TMC1 cells may be insensitive to EBNA1's
ubiquitination modulation and/or the mutant p53 has greater
potential than EBNA1 to reduce DNA damage induced by
apoptosis. This rationally explains the expression of EBNA1
in SCM1 cells (with wild-type p53) conferring reduced
sensitivity to cisplatin and why no similar finding was
observed in EBNA1-expressing TMC1 cells (with mutant
p53). In addition, this explanation is also compatible with
clinical findings that in EBV-positive gastric carcinomas,
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infrequent overexpression of p53 protein (68) and much
lower frequency of p53 gene mutation (10,69) are displayed,
which are significantly distinct from EBV-negative gastric
carcinomas.

Finally, the present study shows that the expression of
EBNA in gastric carcinoma cells has the potential to enhance
tumorigenicity and induce tumors with higher-grade histo-
pathological features (observed in TMC1 cells) in a xenograft
nude mouse model. EBNA1-expressing LL/2 cells also
showed enhanced tumorigenicity and growth ability in the
allograft immunocompetent Balb/c mouse model. These
results support the hypothesis that the expression of EBNA1
in EBV-associated gastric carcinoma may play an important
role in EBV-mediated cell transformation and allow such
cells to escape from a patient's immune eradication, possibly
by down-modulation of tumor immune surveillance and/or
rejection responses. In addition, EBNA1 is able to reduce the
sensitivity to the DNA damage cytotoxicity induced by
cisplatin in gastric carcinoma cells harboring wild-type p53
and suggests that EBV infection with EBNA1 expression
reduces the sensitivity to apoptotic stimuli of host cells.
Together, our results provide an additional example
highlighting that EBV infection with EBNA1 expression
provides host cells with advantages in terms of survival and
transformation potential, escape from host immunosurveil-
lance, and reduced sensitivity to the DNA-damage stress
and/or apoptotic stimuli from the extracellular environment.
These findings may characterize the pathogenesis of EBV-
positive gastric carcinomas, which is distinct from that of
EBV-negative gastric carcinomas.
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