
Abstract. The granzyme B-induced cell death has been
traditionally viewed as a primary mechanism that is used by
cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells
to eliminate harmful target cells including allogeneic, virally
infected and tumour cells. Granzyme B (GrB) is the most
abundant serine protease which is stored in secretory granules
of CTLs and NK cells. After recognition of the target cell,
the engaged CTLs and NK cells vectorially secrete GrB along
with other granule proteins including perforin into the immuno-
logical synapse. From this submicroscopic intercellular
cleft GrB translocates into the cytoplasm of the target cell.
Although several models have been proposed to explain the
GrB delivery mechanism, conclusive understanding of this
process remains still elusive. Once in the cytoplasm, GrB
cleaves and activates, or inactivates, multiple protein substrates,
resulting eventually into apoptotic demise of the target cell.
This review is focused on the gene structure and expression
of GrB, its biosynthesis and activation, delivery mechanisms
into the target cell cytoplasm, direct proteolytic involvement
in activation of several pro-apoptotic pathways, and on
regulation of its activity in cancer cells. Moreover, emphasis
is given to the GrB-mediated anticancer effects and future
clinical applications of the GrB-based and tumour-targeted
recombinant fusion constructs.
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1. Introduction

Susceptibility of tumour cells to apoptotic death depends on
their capabilities to express the components of apoptosis
pathways and to activate them in response to extrinsic or
intrinsic death signals. The extrinsic death pathways are
represented by the death receptor- and the cytotoxic granule-
mediated pathways. On the other hand, the intrinsic death
mechanisms are represented by the mitochondrial, lysosomal
and PIDDosome death pathways.

The death receptor pathway is triggered by the binding of
a death ligand, such as FasL (also known as CD95L) and
TRAIL (also known as APO-2L) to a specific transmembrane
death receptors, Fas (also known as APO-1/CD95) and death
receptor 4 and/or 5 (DR4, DR5), respectively (1,2). After
binding of the cytosolic Fas-associated death domain adaptor
protein (FADD, also known as MORT1) to the liganded death
receptors, the initiator procaspase-8 and/or -10 are bound
to engaged FADD completing the formation of the death-
inducing signalling complexes (DISCs) (1-4). Within DISCs,
procaspase-8 and -10 are activated via homodimerization and
the active caspase-8 and -10, arising through interdimer proteo-
lytic processing, dissociate from DISCs into the cytoplasm
where they cleave and activate procaspase-3 and -7 (1,2,5,6).
In addition, both caspase-8 and -10 also cleave the cytosolic
BH3-interacting domain death agonist (Bid) protein (7,8). The
C-terminal fragment, t(c)Bid, which is formed binds to mito-
chondria, induces efflux of mitochondrial holocytochrome-c
(cyt-c) and other pro-apoptotic mitochondrial proteins into
the cytoplasm (9).

The mitochondrial pathway is launched in response to
a variety of death stimuli such as DNA damage, chemo-
therapeutic agents or ultraviolet (UV) light. In these instances,
the pro-apoptotic proteins Bax or Bak mediate mitochondrial
outer membrane permeabilization (MOMP) and release
several pro-apoptotic intermembrane mitochondrial proteins
such as cyt-c, second mitochondria-derived activator of
caspases (Smac), high temperature requirement A2 (HtrA2)/
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Omi serine protease, apoptosis inducing factor (AIF) and
endonuclease-G (Endo-G) (10-12). In the presence of dATP
or ATP, cyt-c binds to apoptotic protease-activating factor-1
(Apaf-1) and induces its oligomerization into a large hepta-
meric complex called apoptosome (13-15). The apoptosome
recruits and activates procaspase-9 (16-19). The active
apoptosome-bound caspase-9 then activates the zymogens of
the apoptotic effector caspase-3 and -7 (20-22). Both Smac
and HtrA2 neutralize the anti-apoptotic functions of the
inhibitor of apoptosis proteins (IAPs) (12,23), whereas AIF
and Endo-G, after translocation into the cell nucleus, are
involved in DNA fragmentation (10,24).

Activation of procaspase-2, an another apoptotic initiator,
proceeds within a specific activation multiprotein complex
called PIDDosome (25-27). In response to various cellular
stresses, this complex can be inducibly formed in the cyto-
plasm and/or in the cell nucleus (27,28). The PIDDosome
assembled in the cytosol is build of three layers of homo-
oligomerized proteins. The proteins are an autoproteolytic
carboxyterminal fragment of the p53-induced protein with a
death domain (PIDD-CC), the receptor interacting protein
(RIP)-associated ICH-1/CED-3 homologous protein with a
death domain (RAIDD), and procaspase-2 (26,28,29). The
PIDDosome assembled in the nucleus is composed of PIDD-
C and/or PIDD-CC, the catalytic subunit of DNA-dependent
protein kinase (DNA-PKCS) and procaspase-2 (27). After
release from the RAIDD-PIDDosome, the active caspase-2
cleaves the BH3-only protein Bid, leading to MOMP, and other
protein substrates including Golgin 160, DNA fragmentation
factor subunit A and some cytoskeletal proteins (30,31).

Apoptotic stimuli, such as oxidative stress, tumour necrosis
factor (TNF)-· treatment, lysosomotropic agents, sphingosines,
etoposide, UV light, FasL or TRAIL have been shown to
trigger lysosomal membrane permeability (32-34). The partial
release of some cathepsins including B, K, L, and S into the
cytoplasm results in proteolytic fragmentation of Bid protein
and release of cyt-c from the t(c)Bid-disrupted mitochondria
(35-37).

Both the intrinsic and the extrinsic apoptosis pathways
converge on the activation of the effector apoptotic pro-
caspase-3, -6, and -7 (22,34,38,39) as well as they lead to
MOMP via cleavage of Bid protein and/or the Mcl-1 protein
component of the Mcl-1•Bim complex (7,40-44).

The present review is focused on the role of the serine
proteinase granzyme B (GrB) in the cytotoxic granule-
mediated apoptosis pathway, which is thought to be the most
important mechanism for clearance of cells infected with
intracellular pathogens, allogeneic cells and tumour cells
(45-49). After the cell recognition-based conjugation of
cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells
with their target cells, the cytotoxic secretory granules of
CTLs and NK cells are vectorially transported towards the
conjugation zone and their content is released into a sub-
microscopic intercellular cleft called immunological synapse
(IS) (50,51). The most abundant components of cytotoxic
granules are GrB and the pore-forming protein perforin (PFN).
GrB is considered to be a major effector of target cell killing
by NK cells (52). In addition, the cytotoxic granules of
human CTLs and NK cells contain also other granzymes (A,
H, K and M), which may co-deliver alternative death signals

that operate independently of procaspases activation and
MOMP induction (47,52,53). The precise mechanism of GrB
translocation into the target cell is not known. Once in the
target cell cytoplasm, GrB can trigger several apoptotic
pathways via direct proteolytic activation of their signalling
or executioner components and itself cleaves multiple
intracellular housekeeping proteins (Fig. 1).

Many topics regarding the intracellular versus extracellular
role of GrB in immunity and autoimmunity have been recently
reviewed (53-58). In the present article, we review the gene
structure and expression of GrB, its biosynthesis and activation,
delivery mechanisms into the target cell cytoplasm, and
engagement in activation of several pro-apoptotic pathways.
Special attention is given to the regulation of GrB proteolytic
activity in human cancer cells of solid tumours. Furthermore,
we also discuss the promising clinical applications of the
GrB-based tumour-targeted therapy, alone or in combination
with other anti-tumour treatment.

2. Granzyme B gene organization and regulation of
expression 

The human GrB gene (GZMB) was mapped to the ‘chymase
locus’ on chromosome 14q11.2 (59). This locus contains
other three functional genes: granzymes H gene (GZMH),
cathepsin G gene (CTSG), and mast cell chymase gene
(CMA1). GZMB gene is located at the 5' end of the cluster,
followed by GZMH, CTSG, and CMA1 genes (60). GZMB
gene is approximately 3.2 kb in length and is composed of
five exons and four introns (61). The leader (signal) sequence
of GrB preproprotein is encoded by exon I, the amino acid
residues forming the catalytic triad, i.e., His57, Asp102, and
Ser195, are encoded within the exons II, III and V, respectively
(62).

Studies of the GZMB promoter revealed that it contains
consensus sequences for binding of several transcription
factors, including nuclear factor of activated T cells (NFAT),
Ikaros and activator protein-1 (AP-1) (63,64). Recently, a
novel nuclear factor-κB (NF-κB) binding site, an enhancer
element, responsible for activation of GZMB gene transcription
in NK cells has been identified outside of the GZMB gene,
approximately 10 kb downstream from its transcription start
point (65). Interestingly, interleukin-3 (IL-3) plays a crucial
role in inducible GrB expression in human plasmacytoid
dendritic cells and the expression of GrB is regulated on the
transcriptional level involving Janus kinase 1 (JAK1) and
signal transducer and activator of transcription (STAT)3 and
STAT5 (66).

GZMB gene polymorphism has been described in a
genetic screen of individuals from various racial groups (67).
Compared to the wild-type QPY allele of GZMB gene encoding
GrB preproprotein with Gln48, Pro90, and Tyr247 in its sequence,
the RAH allele of GZMB gene encodes GrB preproprotein
containing Arg48, Ala90, and His247 (67). The RAH allele occurs
at a frequency rate of 25-30% in each of the racial groups
studied and it was proven to represent a neutral GZMB gene
polymorphism (68).

Initially, it was thought that the GrB expression is
restricted to lymphoid cells (45,69,70). However, under certain
pro-inflammatory conditions, for instance at a particular
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composition of the extracellular cytokine milieu, the nature of
various receptors engagement, and the presence of regulatory
CD4+ T cells, GrB can be expressed not only in normal cells
of haematopoietic origin, such as CD4+ T cells, mast cells,
activated macrophages and Kupffer cells, neutrophils, basophils
and dendritic cells, but also in normal cells of non-haemato-
poietic origin, including chodrocytes, keratinocytes, type II
pneumocytes, Sertoli cells, primary spermatocytes, and cells
of granulosa and syncytiotrophoblast (71-87).

Interestingly, GrB has been detected in cancer cells of
primary human breast carcinomas (88,89), lung carcinomas
(88), urothelial carcinomas (90) and in nasal-type NK/T-cell
lymphoma (91). Recently, GrB expression was revealed by
immunohistochemistry in oral squamous cell carcinoma and
it seems to be localized also in cancer cells (92). Considering

these observations, we analysed the expression status of GrB
mRNA in non-small cell lung carcinoma (NSCLC) cell lines
and NSCLC tumours and matched lungs from surgically treated
patients using uncoupled real-time RT-PCR. All examined
NSCLC cell lines expressed GrB mRNA but its level was quite
low and variable (Fig. 2A). However, compared to NSCLC cell
lines, the expression of GrB mRNA in NSCLC tumours was
substantially higher (Fig. 2B). In addition, there was no
statistically significant difference in the GrB mRNA expression
in NSCLC tumours and matched lungs (Fig. 2B) (Krepela
et al, unpublished data). These results indicate that the lung
cancer cells themselves are not the major source of GrB
expression in the lung tumours. This notion is further supported
by undetectable expression of endogenous GrB protein in
NSCLC cell lines (93).
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Figure 1. Granzyme B-induced death pathways in cancer cells. [1], Direct proteolytic processing and activation of the executioner procaspase-3 and -7, followed
by the caspase-3-mediated activation of the executioner procaspase-6. The active executioner caspases cleave many intracellular proteins. [2], Mitochondrial
outer membrane permeabilization (MOMP) via the GrB-mediated proteolytic [2a] conversion and activation of protein Bid to the MOMP-inducing t(c)Bid
fragment, and [2b] disruption of the Bim•Mcl-1 complex, involving fragmentation of the Mcl-1 component, and hence derepression of the MOMP-activity of
Bim, followed by cytosolic release of several pro-apoptotic proteins (cyt-c, Smac, Smac-3, Omi/HtrA2, AIF and Endo-G) and the inhibitor-of apoptosis protein
survivin (Sur). [3a], Proteolytic fragmentation of multiple housekeeping proteins in the cytoplasm (Table I), including [3b] the cytosol-facing signalling domains of
some pro-survival plasma membrane receptors (pSR). [4], Translocation into the nucleus and proteolytic fragmentation of multiple intranuclear proteins (Table I),
including the DFFA subunit of DNA fragmentation factor (DFFA•DFFB), which leads to the homodimerization-mediated activation of its deoxyribonuclease
subunit DFFB. See the text for a more detailed description. CTL, cytotoxic lymphocyte; NKC, natural killer cell; CG, cytotoxic granule; IS, immunological
synapse; PM, plasma membrane; TC, target cell; EV, endocytic vesicle; CY, cytoplasm; MT, mitochondrion; NC, nucleus; NP, nuclear pore; PC, procaspase;
C, caspase.
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3. Granzyme B biosynthesis, subcellular localization and
activation

Human preproGrB mRNA was first identified in 1987 (94)
and one year later human GrB cDNA was cloned (95,96).
The human GrB protein was first purified and characterized
in 1991 (97). GrB and other known human granzymes (A, H, K
and M) as well as the closely related myeloid serine proteases,
such as cathepsin G, are members of the chymotrypsin super-
family. Like other granzymes, GrB is synthesised as a pre-
proenzyme while its signal peptide (i.e., the 18 amino acid
residues long N-terminal pre-part), directing the nascent
polypeptide chain of the protein into the endoplasmatic
reticulum (ER), is removed co-translationally. The resulting
proGrB, covalently modified with a mannose-6-phosphate
(M6P) group, is transported in ER-derived vesicles to the
Golgi apparatus (GA) (62,99). In GA, the M6P moiety serves
for sorting out and targeting proGrB and other progranzymes
to the GA-derived secretory granules (99). Once inside the
secretory granules, proGrB is primarily activated by removal
of the N-terminal dipeptide GlyGlu by co-segregated dipeptidyl
peptidase I (DPPI; cathepsin C) (62,98,100,101). Failure to
remove the GlyGlu propeptide would disrupt the formation
of the GrB catalytic site. Besides the major mode of proGrB
activation by DPPI, there are other less defined mechanisms
of proGrB proteolytic activation (102-104). Recently, the
lysosomal cathepsin H was identified as another activator of
proGrB (105).

Within the secretory granules, granzymes are stored in
association with the chondroitin sulphate containing
proteoglycan serglycin (SG) (106-109). Hitherto evidence
suggests that the active granzymes are secreted in a macro-
molecular complex with SG during the target cell killing
(106-109). Characterization of interaction between GrB and
SG within granules revealed GrB•SG complexes of two
distinct molecular sizes. One of them holds approximately 4-8
molecules of GrB, whereas the other one contained as many
as 32 molecules of GrB or other granule proteins (108).
Storage of GrB in a scaffolded form in the acidic interior of
the secretory granules might minimize the proteolytic activity
of GrB (108,109). The GrB molecule alone has a high
positive surface charge, but when GrB binds to SG its charge
may be substantially neutralized. Therefore, the free GrB
molecule differs from the SG-bound GrB in that the former
might interact with various negatively charged groups exposed
on the cell surface, including phospholipid headgroups and
those in glycosaminoglycans.

The newly synthesised GrB is heterogeneously glyco-
sylated. The mature enzyme has two potential glycosylation
sites at Asn51 and Asn84, where N-linked oligosaccharide
chains can be attached (110). The process of GrB glycosylation
results in generation of both the 32 and 35 kDa glycosylated
forms of GrB. The 32 kDa GrB forms contain high mannose
oligosaccharide moieties and accumulate in CTLs after T cell
receptor (TCR) stimulation (111). Hence, these forms can be
stored in the CTLs secretory granules. In contrast, the 35 kDa
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Figure 2. Expression of granzyme B mRNA in non-small cell lung carcinoma (NSCLC) cell lines and NSCLC tissues and lungs as analysed by uncoupled
real-time RT-PCR. The sequences of the forward primer, the reverse primer, and the fluorogenic TaqMan probe used for quantification of granzyme B mRNA
expression were, respectively: 5'-CTACTGCAGCTGGAGAGAAAGG-3', 5'-CAGCCGGCCACACTGCATGTCT-3', and 5'-(6FAM)GTACTGTCGTAA
TAATGGCGTAAGTC(TAMRA)-3'. The sequences of the forward primer, the reverse primer, and the fluorogenic TaqMan probe used for quantification of
ß-actin mRNA (an endogenous reference transcript) expression were, respectively: 5'-CTGGCACCCAGCACAATG-3', 5'-GGGCCGGACTCGTCATAC-3',
and 5'-(VIC)AGCCGCCGATCCACACGGAGT(TAMRA)-3'. (A), Relative levels of expression of ß-actin mRNA-normalized granzyme B mRNA in NSCLC
cell lines. Data indicated as mean ± SEM from three independent experiments. (B), Comparison of the ß-actin mRNA-normalized granzyme B mRNA
expression in NSCLC cell lines and NSCLC tissues and matched lungs from surgically treated patients. In the box plot, the upper and the lower boundary of
the box and the line within the box indicate the 75th and 25th percentiles and the median, respectively. The error bars above and below the box indicate the
90th and 10th percentiles. Statistical difference (P) between the granzyme B mRNA expression levels was calculated by Mann-Whitney test. 
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GrB forms, which possess only the complex oligosaccharide
groups, are not stored in CTLs and instead they are secreted
through the constitutive and less specific calcium-independent
secretory pathway after TCR activation (111). When a CTL
recognizes its target via the TCR, two events occur: the
vectorial exocytosis of the secretory granules towards the IS,
and the de novo biosynthesis of the lytic proteins, including
granzymes and PFN.

4. Granzyme B structure and substrate specificity

GrB is a single chain and single domain serine protease. The
crystal structure of human GrB was recently determined and
provides some rationale for the substrate specificity of GrB
(112,113). The GrB structure is folded into two six-stranded
ß-barrels, which are connected by three trans-domain segments.
The regular secondary structure elements include a helical
loop between Ala56 and Cys58, a helix involving residues from
Asp165 to Leu172, and a long C-terminal helix from Phe234 to
Arg244. The peptide bond between Pro224 and Pro225 is in the cis
conformation. The cis-conformation of these proline residues
orients the positively charged Arg226 side chain into the S1
subsite (113).

Similar to caspases, GrB has a preference for cleaving
peptide bonds immediately adjacent to Asp residues (97).
This specificity is due to the structure of the GrB active site,
which contains Arg226 residue in the S1 subsite. By the
combinatorial chemistry approach, the tetrapeptide sequence
IEPD has been identified as the preferred P4-P3-P2-P1
recognition motif of GrB for small peptide substrates, although
optimal susbstrate recognition may involve features beyond
this tetrapeptide sequence (113-116). Recent data indicate that
GrB requires an extended substrate sequence, corresponding to
the P4-P4' positions, for specific and efficient binding of
protein substrates (116).

5. Granzyme B delivery mechanism into the target cell
cytoplasm

How granzymes gain entry into the cytosol of target cells
during killer cells attack has been subject of several studies in
the past, but the effective delivery mechanism during target
cell encounter has not been clarified so far. Upon formation
of IS, a temporary intercellular conjugation zone, the lytic
granules rapidly move and polarize towards the IS where the
granzymes and PFN are subsequently released (50,51). The
movement of lytic granules within CTLs towards the target
cells is directional and depends on an underlying Ca2+-activated
microtubule cytoskeleton and other less defined Ca2+-required
molecular events (117). Once arrived at the site of secretion,
the membrane of secretory granules fuses with the plasma
membrane and their content is discharged into a secretory
cleft of IS. The IS functions as a conduit for the transportation
of lytic granules content and other soluble factors between
the CTLs and the target cell (118). It is still broadly debated
whether granzymes enter the target cell cytoplasm through
PFN pores formed at the post-synaptic plasma membrane or
whether both granzymes and PFN are first endocytosed and
the granzymes are subsequently released from endosomes
within the cytoplasm (107,119-132).

Granzyme B secretion. The exact mechanism of granzyme
release from CTLs and NK cells into the extracellular
environment remain enigmatic, but it is likely to involve several
mechanisms. The lymphokine activated killer (LAK) cells
stimulated to undergo granule exocytosis by phorbol myristic
acetate and anti-CD2 monoclonal antibodies released GrB
as a neutral, high macromolecular weight complex, which
possessed pro-apoptotic activity (106). As a single CTL can
kill multiple target cells, it is conceivable that free granzymes
may leak from the immunological synapse during a CTL
degranulation and moving to another target during serial
killing (111,133). Extracellular granzymes may also originate
from constitutive non-specific secretion that is observed
after TCR activation and/or prolonged exposure to inter-
leukin-2 (111,134). TCR triggering induces de novo granzyme
synthesis, and it is thought that a proportion of newly
synthesized GrB is non-specifically secreted through a non-
vectorial pathway. This is due to the absence of accessible
mannose-6-phosphate in the glycan moiety of the secreted
GrB which cannot be targeted to the lytic granules via the
mannose-6-phosphate receptor (111). It was recently found
that a portion of GrB secreted into the IS can be recovered
back into NK cells via clathrin-dependent endocytosis (135).

In the absence of target cell engagement, a proportion of
GrB is constitutively secreted by both CTLs and NK cells. In
NK cells, the protease is primarily released in an active form
through secretory granules, whereas CTLs primarily secrete
inactive GrB zymogen, bypassing the granules (133). To date,
it is not known whether the secreted proGrB can be proteo-
lytically converted to the active GrB. There is a possibility
that an active DPPI and/or cathepsin H, co-secreted by the
CTLs or other adjacent cells, might remove the activation
GlyGlu dipeptide en bloc. In addition to that, two sequentially
acting aminopeptidases might remove the amino acid residues
of the N-terminal dipeptide in a step-by-step fashion.

Mechanism of granzyme B internalization into target cells.
How granzymes and perforin enter target cells in not fully
understood. Several earlier studies provided evidence that
GrB can be taken up first into the endosomal compartment of
the cell, but that PFN (or other endosomolytic agent) co-
entry is necessary for its translocation into the cytoplasm and
the cell nucleus (120-123).

It has been demonstrated that GrB binds to the target cell
surface in the concentration-dependent and saturable
manners and enters the cells via endocytosis (120). This GrB
receptor-mediated endocytosis model has been further
refined with the identification of the cation-independent
mannose-6-phosphate receptor (CI-MPR) as a plasma
membrane receptor for GrB (124,129,136). The process of
the CI-MPR-mediated GrB internalization is clathrin and
dynamin-dependent (124,137). Recently, it has been showed
that PFN triggers a wounded plasma membrane-repair
response, which is the clathrin and dynamin-dependent endo-
cytosis and which removes PFN and granzymes from the
plasma membrane to early endosomes (126,132). Several
groups have proposed alternative mechanisms of GrB receptor-
mediated cell entry, e.g., via CD44 molecules with known
affinity for serglycin (138) or via Hsp70 which can serve as a
GrB receptor (139).
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Table I. Granzyme B protein substrates.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Protein Function Localization Cleavage sites Refs.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Acetylcholine receptor Â subunit (AchRÂ) Acetylcholine receptor Plasma membrane IDID195 (266)
Muscarinic acethylcholine receptor 3 (M3R) Acethylcholine receptor Plasma membrane MDQD330, PSSD387 (277)
ß-Actin Structural protein Cytosol NDa (267,268)
Alanyl tRNA synthetase (ARS) Translation Cytosol VAPD632 (269)
Bcl-2-associated athanogene 1 (Bag-1L) Co-chaperone Nucleus, cytosol VTRD125, VVQD172 (193)
Bid Pro-apoptotic sensor Cytosol IEAD75 (166,270)
CD3 Signal tranducer Plasma membrane Many (274)
Centromere protein B (CENP-B) Mitosis Nucleus VDSD457 (269,275)
Centromere protein C (CENP-C) Mitosis Nucleus ND (269)
DNA-dependent protein kinase DNA repair Nucleus VGPD2698 (269,276)
catalytic subunit (DNA-PKcs)
DNA ligase IV/XRCC4 DNA repair Nucleus SKDD254 (284)
Fibrillarin rRNA processing Nucleolus VGPD184 (269)
Fibroblast growth factor receptor-1 FGFs receptor Plasma membrane ND (190)
(FGFR-1)
Filamin Cytoskeletal protein Cytosol Many (186)
Focal adhesion kinase (FAK) Signal transducer Cytosol VSWD704, DQTD772 (285)
·-Fodrin Cytoskeletal protein Cytosol IVTD1554, AEID1961 (187,277)
Glutamate receptor subunit 3 (GluR3B) Glutamate receptor Plasma membrane ISND388 (280)
Hip Chaperone Cytosol IEPD92, INPD180 (192,193)
Histidyl tRNA synthetase (HRS/Jo-1) Translation Cytosol LGPD48 (269,278)
Hop Protein folding Cytosol LGVD186 (191)
Hsp27 Protein folding Cytosol VSLD100 (193)
Hsp70 Protein folding Cytosol INPD366 (190)
Hsp90· Protein folding Cytosol Many (193)
Hsp90ß Protein folding Cytosol Many (193)
Isoleucyl tRNA synthetase Translation Cytosol VTPD983 (269)
Ki-67 Proliferation Nucleus VCTD1481 (269)
Ku-70 DNA repair Nucleus ISSD79 (269)
La/SSB RNA binding Nucleus LEED220 (269)
Lamin B Structural protein Nuclear lamina VEVD231 (189)
Mi-2 DNA methylation, Nucleus VDPD1312 (269,276)

chromatin remodeling
Mcl-1 Inhibition of MOMPb Mitochondrial PAAD117, EELD127, (41)

outer membrane TSTD157

Notch1 Delta-like and Serrate- Plasma membrane ND (190)
like ligands receptor

Nuclear mitotic apparatus protein 1 (NuMa) Mitosis Nucleus VATD1705 (269,276)
Nucleolus organizing region 90 kDa Transcription factor Nucleolus ND (269)
(NOR-90/UBF)
Nucleophosmin B23 rRNA processing Nucleolus LAAD161, VEVD122 (271,272)
PMScl/EXOSC10 mRNA degradation Cytosol VEQD252 (269)
Poly(ADP)ribose polymerase 1 (PARP1) Ribosylation Nucleus VDPD537 (269,281)
Postmeiotic segregation 1 (PMS1) DNA mismatch repair Nucleus ISAD496 (269)
Postmeiotic segregation 2 (PMS2) DNA mismatch repair Nucleus VEKD493 (269)
Procaspase-3 Apoptosis execution Cytosol IETD175 (151)
Procaspase-7 Apoptosis execution Cytosol IQAD198 (151,152)
Procaspase-8 Apoptosis initiation Cytosol ND (160,273)
Procaspase-10 Apoptosis initiation Cytosol IEAD372 (151)
Procaspase-9 Apoptosis initiation Cytosol PEPD315 (158)
Procaspase-2 Apoptosis initiation Cytosol, nucleus ND (265)
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Although native glycosylated GrB binds to CI-MPR (136),
cells lacking this receptor are readily killed by glycosylated
GrB (124). Therefore, a different model for GrB cell uptake
has been propounded. It suggests that selective GrB receptors
may not be required and that the positively charged free GrB
(having the isoelectric point of approximately 9.5-10) adsorbs
to the targets, having negatively charged surface structures,
mostly via non-specific electrostatic interactions (128,140).
One difficulty with this model is that the high positive charge
of GrB is probably neutralized in vivo by SG, rendering
adsorption to the cell surface much less efficient. It is therefore
to posit that GrB exchanges from SG to more negatively
charged elements on the cell surface, such as phospholipid
headgroups, sulphated lipids, gangliosides, or heparan sulphate
proteoglycans, and is subsequently internalized by absorptive
pinocytosis (125,127).

Even though the experimental evidence for the involvement
of both the receptor-mediated endocytosis and receptor-
independent absorptive pinocytosis of GrB entry into cells is
strongly convincing, it is probable that these GrB uptake
mechanisms can co-exist in the same cell.

The role of perforin in granzyme B delivery into the target cell
cytoplasm. GrB itself does not possess a capacity to bind
and disrupt lipid membranes (131). However, there is clear
evidence that GrB internalization into a target cell depends
on PFN (141). PFN is a pore-forming glycoprotein that can
bind to phospholipid components of target cell membranes in
the presence of Ca2+ ions and subsequently oligomerizes to
form pores with a diameter of 5-20 nm (142-145). Contrary
to progranzymes, which are activated by dipeptidyl peptidase I
(DPPI), proteolytic processing of the perforin precursor

occurs in the absence of DPPI activity (98). There are two
well-founded hypotheses explaining the process of the PFN-
assisted GrB entry into the cytoplasm of target cells. First,
the pore entry hypothesis states that GrB and other granzymes
are primarily translocated from the cell exterior (e.g., IS) into
the cytoplasm through repairable plasma membrane pores by
diffusion (146). However, recent data indicate that GrB likely
does not enter the cytoplasm through PFN pores at the plasma
membrane since inhibiting the PFN-activated endocytosis
increases the number of PFN pores persisting at the cell
surface, but decreases the GrB uptake (132). Nevertheless,
PFN oligomerization and transmembrane pore assembly is a
prerequisite for the GrB-induced apoptosis (147). Second, the
endosome permeabilization/endosomolysis entry hypothesis
claims that GrB and other granzymes are delivered into the
target cell cytoplasm after endocytosis and via a PFN-mediated
disruptive escape from the endosomal compartment (120,
123,126). The precise mechanism of the perforin-assisted
GrB cytosolic translocation from this compartment has not
been elucidated yet.

6. Death pathways activated by granzyme B in cancer
cells

Once GrB is delivered into the cytosol it can proteolytically
attack different protein substrates and initiate programmed
cell death. To date, more than three hundreds intracellular
and extracellular human proteins as potential GrB substrates
have been identified (56,58,148). The list of the proteins
cleaved by GrB during apoptosis is indicated in Table I.
However, only for a few of them the physiological relevance
of their cleavage in the process of cell demise is established.
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Table I. Continued.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Protein Function Localization Cleavage sites Refs.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Pyruvate dehydrogenase complex E2 (PDC-E2) Acetyl-CoA synthesis Mitochondria ND (282)
Rho-associated coiled coil-containing Plasma membrane Cytosol IGLD1131 (188)
protein kinase 2 (ROCK II) blebbing (zeiosis)
RNA polymerase I (RNA Pol I) Transcription Nucleus ICPD448 (269)
RNA polymerase II (RNA Pol II) Transcription Nucleus ITPD370 (269)
Signal recognition particle 72 kDa Translation Cytosol VTPD573 (269)
(SRP-72)
Subunit A of DNA fragmentation factor Chaperone and inhibitor  Nucleus, cytosol DETD117, VTGD6 (175,279)
(DFFA/DFF45) of DFFB (DFF40) 

deoxyribonuclease
Topoisomerase I (Topo-1) Transcription Nucleus IEAD15 (269)
·-Tubulin Microtubule poly- Cytosol VGVD438 (185,268)

merization/aggregation
U1 small nuclear ribonucleoprotein RNA processing Nucleus LGND409 (269)
70 kDa (U1-70 kDa)
UBF/NOR-90 Nucleolar transcription factor Nucleolus VRPD220 (269)
Ubiquitin fusion degradation 2 (UFD2) Ubiquitination Nucleus VDVD123 (283)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
aND, not determined; bMOMP, mitochondrial outer membrane permeabilization.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
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Direct proteolytic activation of executioner procaspases. GrB
has a similar preference as caspases for cleaving protein peptide
bonds C-terminal to Asp residue (114,115). GrB is capable of
direct proteolytic processing and activation of the executioner
procaspase-3 and -7 (43,149-156). On the other hand, there are
contradictory reports on the direct GrB-mediated procaspase-6
proteolytic activation (43,157,158). Moreover, the apoptotic
procaspases including procaspase-8, -10, -9, and -2 were
reported to serve as substrates for the active GrB (43,151,
158-162,265). However, it should be emphasized that GrB
can proteolytically cleave these initiator procaspases but it
cannot activate them. The initiator procaspases are activated
exclusively by homodimerization in specific multiprotein acti-
vation platforms such as apoptosome, DISC and PIDDosome
(1,4,6,19,31).

Mitochondrial outer membrane permeabilization (MOMP).
Some authors believe that GrB preferentially triggers apoptosis
through an alteration of the outer mitochondrial membrane
(OMM) rather than by the direct activation of the executioner
caspases (163). GrB can disrupt OMM at least by two distinct
mechanisms. First, GrB cleaves and activates the cytosolic
BH3-only protein Bid, which C-terminal proteolytic fragment,
t(c)Bid, translocates to outer mitochondrial membrane and
promotes its permeabilization (164-169). Through the t(c)Bid-
mediated MOMP several pro-apoptotic mitochondrial proteins
are released into the cytoplasm and trigger caspase-dependent
and -independent death pathways (see above). Second, the
proteolytic disruption of the Mcl-1•Bim complex at OMM by
GrB may constitute an alternative and/or parallel mechanism
of the GrB-induced MOMP. Herein, GrB cleaves the Mcl-1
component of the complex relieving the OMM-permeabilizing
activity of Bim (40,41). Moreover, it was recently discovered
that GrB translocates into the mitochondria of target cells and
cleaves the HS-1-associated protein X-1 (Hax-1) (170). The
resulting N-terminal Hax-1 fragment is responsible for mito-
chondrial depolarization.

Intracellular housekeeping protein substrates of granzyme B.
GrB has an important role in dismantling the cytoskeleton
by cleaving of several its protein components such as
·- tubulin (43), filamin (186), ß-fodrin (187) and Rho-
associated coiled coil-containing protein kinase 2 (ROCK II)
(188).

Besides that, GrB could disrupt the cohesiveness of the
nuclear lamina by direct cleaving of lamin B (189). This opens
an intriguing possibility that disruption of the nuclear lamina
by GrB and other granzymes facilitates their nuclear entry
through nuclear pore complexes (189). Once in the nucleus,
GrB cleaves several nuclear protein substrates and thus
triggers many critical intranuclear molecular processes
(Table I).

Another class of GrB substrates represent transmembrane
receptors for growth factors, such as Notch1 and fibroblast
growth factor receptor-1 (FGFR-1) that transmit pro-survival
and pro-proliferative signals from the extracellular environment
(190), and members of the heat shock/stress response family
(Hsp) including Hsp70, Hsp90, Bag1-L, Hsp70/Hsp-90-
organizing protein (Hop), and Hsc70/Hsp70-interacting protein
(Hip) (191-193).

The high sequence homology and conserved primary
cleavage specificity of human and mouse granzymes has led
to widespread and interchangeable use of human and mouse
enzymes in experimental conditions, usually without side-by-
side comparisons being made (194-196). Human and mouse
GrB exhibit substantial difference in their ability to cleave
Bid, as well as several other protein substrates, such as DFFA
and procaspase-8 (43,195). Conclusions based on mixing
human enzymes with mouse protein substrates and vice versa
should be always interpreted with caution.

Intranuclear translocation and direct activation of DNA
fragmentation factor. Once delivered into the cytoplasm of
target cells, GrB is rapidly translocated to the nucleus
(171-173). The detailed mechanism by which GrB translocates
into and accumulates within the nucleus and nucleolus is still
unclear. Both unglycosylated and the high-mannose glycan
moiety bearing GrB molecules can be imported into the
nucleus, but GrB molecules containing complex glycan
moieties are exclude from the nuclear entry (171). The nuclear
GrB import is independent of both ATP and GTP, but it seems
to be dependent on certain cytosolic factors including importin
(IMP)-· (171-174). GrB delivered into the cytoplasm is a
target of the cytosolic proteinase inhibitor-9 (PI-9)/serpinB9
which forms with GrB a covalent inhibitory complex (see
below). By competing with free GrB for binding to IMP-·,
the GrB•PI-9 complex may prevent the nuclear import of
active GrB (174).

Within the nucleus, GrB directly cleaves the subunit A of
DNA fragmentation factor (DFF) (175), which is a heterodimer
of the inhibitor/chaperone subunit A (DFFA) and the nuclease
subunit B (DFFB), and is prebound to DNA (10). The DFFB
subunit, escaped from the proteolytically fragmented DFFA
subunit, becomes catalytically competent via homodimerization
and/or oligomerization and cleaves both strands of the genomic
DNA, producing mostly blunt-ended DNA fragments showing
a typical oligonucleosomal ladder pattern upon electrophoresis
(10,176). The GrB-mediated DFF activation can be an
alternative way leading to apoptotic DNA fragmentation in
cancer cells which are unable to translocate the active
caspase-3, a main DFF activator (176), into the nucleus (cf.
177) or carry a loss-of-function mutation of the CASP3 gene
(178). Besides DFF, GrB can cleave several other nuclear
proteins, see Table I.

Detachment of cells from extracellular matrix and anoikis.
Both newly synthesized GrB zymogen and active GrB are
constitutively and non-specifically released from CTLs
(133). Once secreted, the active GrB can cleave extracellular
matrix components including vitronectin, fibronectin and
laminin (179,180). This can induce the detachment-triggered
cell death, i.e., anoikis (179-181). In general, modulation of
cell adhesion by GrB may have important biological and
pathobiological consequences. Due to extracellular matrix
remodelling, GrB may contribute to migration of activated
leukocytes through tissues. Moreover, the secreted GrB may
either inhibit tumourigenesis via inducing anoikis of tumour
cells, e.g., in early stages of tumour development, or it may
facilitate tumourigenesis through promoting tumour cell
spreading, migration and invasion (181-184).
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7. Regulation of granzyme B activity

It remains a puzzle how one CTL can kill multiple target
cells over longer periods of time without self-destruction and
why tumour cells or virus-infected cells became resistant to
granule-mediated apoptosis. Several candidate regulators of
GrB activity have been identified. First, the serpin proteinase
inhibitor-9 (PI-9)/serpinB9 was identified and established as
a powerful inhibitor of GrB (197,198). Second, some
granzymes co-secreted with GrB, such as GrM and GrH,
have a potential to influence the activity of GrB indirectly.
They both can promote GrB activity through the direct
cleavage and inactivation of protein inhibitors of GrB, the
former destroys PI-9 in a variety of target cells (199) whereas
the latter attacks L4-100K protein, the adenoviral GrB
inhibitor, in the virally infected cells (200). Moreover, certain
cell surface-bound and/or secreted proteases, such as
cathepsin B, might play a role in controlling the susceptibility
of various tumour cells to the CTL-mediated killing via the
proteolytic inactivation of PFN (cf. 201).

Viral GrB inhibitors 
Cytokine response modifier A (CrmA). CrmA, a cowpox
virus-derived 39 kDa serpin protein, through the inhibition of
caspase-1 plays an important role in regulating the response
associated with the cowpox virus infection (202). Besides
this anti-inflammatory activity, CrmA also suppresses the
CTL-induced apoptosis of tumour cells via targeting and
inhibiting both the GrB- and caspase-8-initiated death pathways
(203-206). Due to the inhibition of GrB, a serine proteinase,
and some caspases, which are cysteine proteinases, CrmA is
classified as a ‘cross-class’ protein inhibitor of proteinases
(207). Interestingly, CrmA and proteinase inhibitor-9 (PI-9)/
serpinB9, a member of the ovalbumin serpin family, show
extensive structural homology (197), leading to suggestion that
PI-9 might also function as a ‘cross-class’ protein inhibitor of
proteinases (see below).

Adenoviral L4-100K protein. Another member of the viral
family of GrB inhibitors is the adenovirus assembly protein
L4-100K/Ad5-100K, which is involved in the life cycle of
human adenovirus type 5 (Ad5), including virus assembly
and activation of late viral protein synthesis (208,209). This
protein is a substrate for GrB and inhibits the protease through
an unclear mechanism involving interactions of L4-100K
with both the active site and an exosite in the GrB molecule
(209). The inhibitory effect of L4-100K on GrB can be
eliminated by GrH which can proteolytically inactivate this
adenoviral protein (200).

Non-viral granzyme B inhibitors 
Proteinase inhibitor-9 (serpinB9). Human proteinase
inhibitor-9 (PI-9)/serpinB9 is a 42-kDa intracellular protein.
It is a member of the serpin superfamily, an ovalbumin family
serpin (i.e., a clade B serpin) (210,211). Members of this
family lack, by definition, a classical secretory signal peptide
(211,212). PI-9 is an efficient and highly specific physiological
inhibitor of GrB (Kass = 1.7x106 M-1·s-1) that protects CTLs
themselves, as well as bystander cells from misdirected GrB
(198,213,214).

SERPINB9 gene organization and expression, and subcellular
localization and function of proteinase inhibitor-9. SERPINB9
gene has been mapped to a gene cluster on the chromosome 6
at p25. Besides the SERPINB9 gene, the 6p25 region carries
also SERPINB1 gene, encoding monocyte neutrophil elastase
inhibitor (MNEI), and SERPINB6 gene, encoding cyto-
plasmic proteinase inhibitor-6 (PI-6) (215-219). SERPINB9
gene consists of seven exons and six introns (219,220). The
translation start site resides in exon 2 and the reactive centre
(site) loop (RCL), a region of the PI-9 protein which is
proteolytically attacked by GrB, is encoded in exon 7 (220).

PI-9 is expressed abundantly in cells that produce high
levels of GrB, i.e., in CD8+ T cells and NK cells (198,214,221).
The main physiological function of PI-9 is to protect these
cells against the misdirected autogenous GrB (214,222).
Moreover, PI-9 may also defend bystander cells or antigen-
presenting cells likely to be exposed to GrB during an immune
response (214,222). Consistent with such a role is the
expression of PI-9 in B cells (198), monocytes (223), mast
cells (224), endothelial and mesothelial cells (225), smooth
muscle cells (226) and dendritic cells (214,227). Cells at
immune-privileged sites, including the eye lens capsula, testes,
ovary, placenta, and embryonic stem cells, also upregulate
the PI-9 expression (221,225,228).

The expression of PI-9 was also detected at highly
variable levels in human cancer cells of carcinomas of the
breast, cervix, nasopharynx, esophagus, stomach, colon, and
lung, and melanomas (93,229-233). The mechanisms
responsible in vivo for the differential expression of PI-9 in
these cancer cells are not known so far.

In a variety of cells, PI-9 protein is expressed in both the
cytoplasm and the nucleus (234). This provides the PI-9-
expressing cells with efficient protection against the GrB-
mediated damage of target proteins inside of these compart-
ments. The exact mechanisms of PI-9 nuclear import is un-
known so far. On the other hand, sensitivity of PI-9 nuclear
export to leptomycin B points to the involvement of Crm1
protein (234). This is consisted with the presence of a
functionally conserved nuclear export signal in PI-9 protein
(235).

PI-9 expression can be upregulated or induced in CTLs, a
NK cell line YT-N10, endothelial cells, dendritic cells, human
hepatocytes, hepatoma cell lines HepG2 and Huh-7, and
gastric cancer cells by several cytokines and inflammatory
mediators, such as interleukin (IL)-1ß, IL-18, TNF-·,
interferon-· and -Á, 12-O-tetradecanoylphorbol-13-acetate
and lipopolysaccharide (214,224,225,233,236-238). There is
evidence that an activator protein-1 (AP-1) binding site and two
nuclear factor (NF)-κB binding sites in the SERPINB9 gene
promoter are involved in the IL-1ß-mediated PI-9 expression
(236). Moreover, it has been demonstrated that estradiol-17ß
and other estrogens can induce the expression of PI-9 in
human hepatocytes and in the estrogen receptor (ER)-·-
positive hepatoma cell line HepG2-ER7 (239,240). The
estrogen-mediated induction of PI-9 expression in HepG2-ER7
cells and the breast cancer cells MCF-7 protect the tumour
cells against the CTL- and NK cell-triggered apoptosis
(241-243). The estrogen-triggered and ER-·-mediated
induction of SERPINB9 gene transcription occurs through a
unique estrogen responsive unit (ERU) located approximately
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200 nucleotides downstream of the transcription start site.
The ERU consists of an imperfect palindromic estrogen
response element (ERE) being immediately adjacent to a direct
repeat containing two consensus ERE half-sites separated by
13 nucleotides (DR13) (244). 

In our studies, we detected only a weak or no increase of
PI-9 mRNA expression in the IL-1ß-, IL-18-, and estradiol-
17ß-treated NSCLC cell lines (Rousalova et al, unpublished
data). The highly variable PI-9 expression among NSCLC
cell lines (93) together with the lack of PI-9 upregulation in
NSCLC cells in response to ILs and estradiol-17ß (Rousalova
et al, unpublished data) indicate that other factors are involved
in the regulation of SERPINB9 gene expression in these
cancer cells.

So far, there is evidence that the upregulated expression
of PI-9 in cancer cells may contribute to their resistance
against the immune mediated killing and thus it may promote
tumour growth and progression (232,243). High levels of PI-9
are associated with a poor therapeutic response and prognosis
in lymphomas and melanomas (232,245).

Proteinase inhibitor-9 structure and mechanism of inhibition.
PI-9 is composed of 376 amino acids and its tertiary structure
consists of nine ·-helices (denoted A-I) and three ß-sheets
(denoted A-C) (210,220). The regions important for protease
inhibition are located on ß-sheet A and the reactive centre
loop (RCL). The RCL of PI-9 acts as a pseudosubstrate and
contains a GrB cleavage site P1-P1' which equals to the
residues E340-C341 (116). The RCL segment VVAE340-CCME
represents an extended P4-P4' region important for interaction
with GrB, while the P4' residue E344 is required for efficient
binding of PI-9 and GrB (116). PI-9 is a direct and irreversible
GrB inhibitor which reacts with GrB with a stoichiometry of
inhibition of 1:1 (198). Proteolytic cleavage of the PI-9 RCL
by GrB causes a rapid conformational change in the serpin,
resulting in the formation of a stable serpin-proteinase complex.
Thus PI-9 represents a suicide substrate for GrB.

Recent findings indicate that PI-9 can inhibit not only the
GrB/perforin-mediated death pathway but also the TNF-·-,
TRAIL- and FasL-triggered death pathways (246,247). The
inhibition of the death ligand-induced cell killing seems to
reside in direct interaction of PI-9 with the intermediate active
forms of caspase-8 and -10 (247). This observation points to a
possibility to classify PI-9 as a ‘cross-class’ proteinase inhibitor.

Other granzyme B inhibiting serpins. Another member of the
intracellular serpin family, termed raPIT5a, was isolated
from the rat pituitary gland (248,249). This protein, expressed
also in rat tissues other than the pituitary gland (249), showed
a high amino acid sequence similarity to the sequence of PI-9
(248) and its incubation with human GrB resulted in the
formation of an SDS-stable enzyme-inhibitor complex
(248,249).

Recently, Sipione et al discovered that a mouse serpin3n,
which is expressed and secreted by Sertoli cells, is an inhibitor
of mouse and human GrB (250). This serpin also forms an
SDS-stable enzyme-inhibitor complex with GrB (250). In
addition, the study also indicates that serpin3n can be involved
in the extracellular protection of Sertoli cells from harmful
GrB-mediated immune reactions.

8. Granzyme B and anticancer therapy

Cancer disease is still primarily treated by surgery, chemo-
therapy, and radiotherapy in various combinations. Much
hope is currently placed in so-called targeted therapies that
can be directed rather selectively against cancer cells and that
bypass the damage to normal cells of the body. Several
targeting agents have been studied to some extend for clinical
use, including monoclonal antibodies and antibody derivates,
and more recently also non-immunoglobulin scaffold proteins
(251). The utilization of these various affinity proteins in the
tumour-targeted therapy can affect tumour growth and
progression by altering the signal transduction pathways in
cancer cells or by delivery of toxins, cytotoxic drugs or radio-
nuclides to cancer cells.

Granzyme B-protein fusion constructs. The unique mechanism
of action of GrB-based and tumour-targeted fusion agents
may also enable novel effective combinations with other types
of therapeutic agents or with other treatment modalities.
Several reports have been published in which GrB was
similarly used as an effector death inducing domain being
fused to certain tumour targeting sequences (252).

The ErbB receptor family has been extensively studied as
predictors in tumour targeting, primarily for therapy using
monoclonal antagonistic antibodies and specific tyrosine kinase
inhibitors (253). Two receptors in the ErbB family, epidermal
growth factor receptor (EGFR) and epidermal growth factor
receptor 2 (HER2), are overexpressed in various malignancies
and are associated with poor prognosis of cancer patients.
Therefore, they are interesting therapy targets in solid tumours.
Novel chimeric fusion proteins, immunoGrBs, were generated
by sequential fusion of an anti-HER2 single-chain antibody
(e23sFv), the Pseudomonas exotoxin-A translocation domain,
and the active GrB (254,255). Some of these ternary fusion
proteins selectively recognized and destroyed HER2-over-
expressing tumour cells both in vitro and in tumours xeno-
transplanted into nude mice (254,255). They have a therapeutic
potential especially in conditions when the caspase-dependent
apoptosis of cancer cells is inhibited. Dalken and co-workers
employed human GrB as an effector function in chimeric
fusion proteins that contained the EGFR ligand TGF-· or
an ErbB2-specific single-chain antibody fragment (scFv)
for selective therapeutic targeting of tumour cells (256).
Furthermore, a novel vascular-targeting fusion construct was
developed for anti-angiogenic tumour therapy, where GrB was
fused with a non-heparin-binding isoform of VEGF (257).

In addition, several authors coupled the active GrB with
anti-tumour antibodies, e.g., the anti-melanoma antibody
scFvMEL (anti-gp240) (258), the Lewis Y-binding antibody
dsFv-B3 (259) or the antibody directed against CD64 (260).

Finally, another potential mechanism how to enhance
susceptibility of tumour cells to immune-mediated killing is
based on the protection of the caspase-dependent arm of the
GrB-mediated apoptosis by neutralization of the inhibitor
of apoptosis proteins via the second mitochondria-derived
activator of caspase (Smac). This goal can be achieved by
overexpression of a recombinant pro-Smac fusion protein,
containing a GrB-specific cleavage/activation site, in target
tumour cells and subsequent exposure to LAK cells (261).
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SAGA fusion construct. Caldas and colleagues developed a
novel hybrid vector called Survivin and GrB-induced apoptosis
(SAGA). This hybrid cDNA construct contained a fusion of
the minimum human survivin gene (BIRC5) promoter with
the coding sequence of the active form of human GrB. The
growth inhibitory effect of SAGA in vitro was tested on
multiple cancer cell lines, including hepatocellular, colorectal,
lung, breast, cervical and ovarian carcinomas, leukemias,
central nervous system tumours, soft tissue sarcomas, and
osteosarcomas. SAGA alone or in a combination with chemo-
therapeutic agents, such as vincristine or paclitaxel, efficiently
inhibited cell growth in all cancer cell lines tested. Further-
more, the tumour specificity of SAGA was demonstrated
(262). Based on these observations, SAGA could represent in
future a novel alternative treatment option for many human
malignancies which overexpress the survivin gene.

9. Conclusion and the future directions of research

Current evidence indicates that GrB is the main effector of
CTLs and NK cells in their killing attack on cancer cells.
There are multiple protein targets of GrB within cancer cells
and the proteinase, after crossing the membrane of endosomes,
is distributed into several subcellular compartments including
the cytoplasm, the nucleus and mitochondria. Even though our
understanding of GrB involvement in cancer cell apoptosis has
been substantially advanced during the last years, the list of
cell death-related GrB protein substrates is still expanding and
the molecular mechanisms of GrB entry into the cytoplasm,
nucleus and mitochondria remain to be clarified. The efficiency
of GrB-induced apoptosis of cancer cells mainly depends on
the amount of GrB which is delivered into their cytoplasm
and escapes from inactivation by PI-9. Although the presence
of endogenous GrB is detected in cancer cells of some
tumours, it is still unknown whether the proteinase is their
own active product or the gained one from CTLs and/or NK
cells. If some cancer cells were expressing and releasing the
secretory forms of active/activatable GrB, the proteinase
might be involved either in promoting or suppressing of both
tumour growth and progression (see above). The studies
mentioned above demonstrate that delivery of an expressable
cDNA fusion construct encoding an active form of GrB into
tumour cells might be a promising therapeutic tool for cancer
treatment.

Several important questions concerning the involvement
of GrB and its specific inactivator PI-9 in apoptosis of cancer
cells warrant investigation. First, there is a possibility that
certain cancer cell-specific signalling pathways may lead to
upregulation of GrB and perforin expression in tumour
infiltrating CTLs and NK cells and to targeted delivery of these
molecules to cancer cells (cf. 263). Second, studies should
address the question whether proGrB is released into the IS
during vectorial degranulation of cancer cell-conjugated CTLs
and NK cells and whether the proenzyme is subsequently
internalized into the cancer cells and undergoes activation
there. Third, further studies should clarify if the placement of a
hypoxia response element sequence into the survivin promoter
fused with cDNA sequence encoding active GrB can increase
the expression activity and therapeutic effectiveness of such
SAGA construct (262) under hypoxic conditions, which are

typically present in solid tumours. Fourth, the positive
regulation of transcriptional expression of SERPINB9 gene
by estrogens (241-243) deserves systematic investigation in
the estrogen-responsive tumours bearing ER·, especially in
breast, uterine and ovarian carcinomas. The rationale for
these studies is to elucidate whether the overexpression of PI-9
may predict more aggressive and therapeutically resistant
tumours (cf. 232). Finally, because of profound variability of
PI-9 expression in tumours of the same histopathological
type, ranging from very high to barely detectable PI-9 mRNA
levels (cf. 93,229), it is important to determine whether the
SERPINB9 gene is a target for epigenetic reprogramming in
cancer cells (264).
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