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Abstract. Cancer cell resistance, particularly multidrug resis-
tance (MDR), is the leading cause of chemotherapy failure. 
A number of mechanisms involved in the development of 
MDR have been described, including the overexpression 
of ATP-dependent membrane-bound transport proteins. 
The enhanced expression of these proteins, referred to as 
ATP-binding cassette (ABC) transporters, results in an 
increased cellular efflux of the cytotoxic drug, thereby 
reducing its intracellular concentration to an ineffective level. 
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most 
frequently consumed drugs worldwide. NSAIDs are mainly 
used to treat pain, fever and inflammation. Numerous studies 
suggest that NSAIDs also show promise as anticancer drugs. 
NSAIDs have been shown to reduce cancer cell proliferation, 
motility, angiogenesis and invasiveness. In addition to these 
effects, NSAIDs have been shown to induce apoptosis in a 
wide variety of cancer types. Moreover, several studies have 
indicated that NSAIDs may sensitise cancer cells to the anti-
proliferative effects of cytotoxic drugs by modulating ABC 
transporter activity. Therefore, combining specific NSAIDs 
with chemotherapeutic drugs may have clinical applications. 
Such treatments may allow for the use of a lower dose of cyto-
toxic drugs and may also enhance the effectiveness of therapy. 
The objective of this review was to discuss the possible role of 
NSAIDs in the modulation of antitumour drug cytotoxicity. 
We particularly emphasised on the use of COX-2 inhibitors 
in combination with chemotherapy and the molecular and 
cellular mechanisms underlying the alterations in outcome 
that occur in response to this combination therapy.
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1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are primarily 
used as analgesics, antipyretics and anti-inflammatory agents. 
NSAIDs mainly act by inhibiting prostaglandin (PG) produc-
tion. A number of experimental, epidemiological and clinical 
studies have revealed the antitumour properties of NSAIDs, 
particularly of cyclooxygenase (COX)-2 inhibitors (1,2). 
NSAIDs have been shown to inhibit malignant transforma-
tion in several cancer cell lines. Moreover, the frequent use of 
NSAIDs has been associated with a reduced risk of colorectal, 
gastrointestinal, breast, prostate and lung cancer (3-6). The 
mechanism underlying the antitumour activity of NSAIDs has 
not been fully elucidated; however, it may involve the inhibition 
of COXs or other non-COX enzymatic pathways.

2. NSAIDs

The use of herbal extracts containing salicylates dates back 
thousands of years. In 1874, Maclagan successfully used 
salicylic acid isolated from willow bark for the treatment of 
the inflammation associated with rheumatic fever (7). A more 
effective and tolerable synthetic acetylated form of salicylic 
acid was introduced by Felix Hoffman in 1897; this deriva-
tive was named aspirin (8,9). Over time, several other drugs 
with the same antipyretic, analgesic and anti-inflammatory 
properties were introduced, including antipyrine, acetamino-
phen, phenylbutazone, naproxen and indomethacin. As these 
drugs share a similar mechanism of action and are clearly 
distinct from other groups of drugs used in the treatment of 
inflammation (glucocorticoids), they were collectively named 
non-steroidal anti-inflammatory drugs (NSAIDs) (10,11).

The main mechanism through which NSAIDs exert their 
effects is the inhibition of PG biosynthesis. PGs have been 
implicated in a number of physiological and pathological 
disorders, such as inflammation, pain, pyrexia, cancer, 
osteoporosis, cardiovascular diseases and asthma (12,13). 
Following exposure to physiological and pathological 
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stimuli, polyunsaturated fatty acids, including arachidonic 
acid (AA), are released from membrane phospholipids 
through the action of phospholipase A2 enzymes. Free AA 
is subsequently converted via one of three enzymatic 
pathways (14-16) (Fig. 1): In the COX pathway, AA is 
converted to PGs, prostacyclins (PCs) and thromboxanes 
(TXs); in the lipoxygenase (LOX) pathway, AA is converted 
to hydroxyeicosatetraenoic acids (HETEs), leukotrienes 
(LTs) and lipoxins (LXs); lastly, in the cytochrome P450 
(CYP450) monooxygenase pathway, AA release leads to the 
production of HETEs and epoxyeicosatrienoic acids (EETs). 
Additionally, in a non-enzymatic pathway, AA release 
results in the synthesis of isoprostanes. The products of these 
metabolic pathways are referred to as eicosanoids. Eicosanoids 
represent important intercellular and intracellular signalling 
molecules that participate in a wide range of physiological 
processes, such as the regulation of smooth muscle tone, 
vascular permeability, platelet aggregation, transporter 
proteins and proliferation. In addition, eicosanoids are 
involved in inflammation, autoimmunity, angiogenesis, 
allergic diseases and cancer (17-20). Extensive research has 
been focused on PGs and other COX-derived metabolites. 
However, a number of studies suggested that LOX-derived 
products also affect the development and progression of 
several malignancies (21-25).

COXs and their inhibitors in cancer treatment. There are 
3 COX isoforms, commonly referred to as COX-1, COX-2 and 
COX-3. COX-1, also referred to as PGH synthase, is the key 
enzyme responsible for the oxidation of AA to PGG2 and PGH2. 
COX-1 is constitutively expressed, with its levels remaining 
constant under most physiological and pathological conditions. 
By contrast, the expression of COX-2 is highly inducible in 
response to mitogenic and inflammatory stimuli, such as fibro-
blast growth factor (26), transforming growth factor β (27), 
epidermal growth factor (28), vascular endothelial growth 
factor, tumour necrosis factor α and interleukins 1α and 1β (29). 
The function of COX-3 remains unclear (30-32). An aberrant 
constitutive expression of COX-2 has been demonstrated during 
the early stages of carcinogenesis (33,34). There is compelling 
evidence supporting a role for COX-2 in tumour development. 
COX-2 expression has been shown to be elevated in several 
human tumours, including colorectal (35,36), gastric (37) and 
pancreatic cancer (38), oesophageal adenocarcinoma (39), 
lung (40) and breast cancer (41). The tumour-promoting effect 
of COX-2 may be a consequence of the numerous effects that 
COX-2 exerts on cells. COX-2 may promote proliferation, 
angiogenesis and invasiveness, prevent apoptosis and enhance 
cell adhesion and motility (42). Treatment with COX-2-specific 
inhibitors results in a wide range of cellular effects, including 
induction of apoptosis, reduction of cell proliferation, inhibi-
tion of angiogenesis and enhanced anticancer drug-induced 
cytotoxicity (43-46). These findings suggest that NSAIDs 
may exert their anticancer effects through COX-2 inhibition. 
Although the significance of COX-2 inhibitors is well estab-
lished, the mechanism underlying their chemopreventive and 
chemotherapeutic actions is largely unknown. Indeed, there 
is evidence suggesting that the antitumour effect of NSAIDs 
may not only be mediated by the inhibition of COX-2 activity, 
but that other cellular targets may also play a role (46). This 

hypothesis is supported by the observation that NSAID treat-
ment reduced cell survival in COX-2-overexpressing as well as 
COX-deficient cancer cell lines (47-49).

LOXs and their inhibitors in cancer treatment. Information 
regarding the role of LOXs in the promotion of cancer growth is 
limited. The identification of LOX isoforms in cancer, stromal 
and immune cells has led to the hypothesis that these enzymes 
may contribute to tumour development and growth (50), with 
interest mainly focused on 5-LOX, 12-LOX and 15-LOX. Under 
physiological conditions, the expression of 5-LOX is limited to 
immune cells (51,52). 5-LOX may directly control tumour cell 
function or indirectly affect the tumour microenvironment. 
Increased 5-LOX activity has been demonstrated to play a role 
in the early stages of colon cancer (53) and in carcinogenesis 
in human oral cavity tissues (54). It was also reported that 
5-LOX expression may be involved in the development of 
BCR-ABL-induced chronic myeloid leukaemia (55). Moreover, 
the 5-LOX pathway may be involved in the metastatic process 
of pancreatic, intestinal and prostate cancers (56,57). The inhibi-
tion of 5-LOX expression and activity promotes cell apoptosis 
and tumour growth arrest. Additionally, 5-LOX inhibition 
affects epithelial-to-mesenchymal transition in certain cancer 
cell lines and suppresses metastasis in pancreatic cancer. These 
effects are likely due to the upregulation of E-cadherin and 
paxillin (58-61). The finding that 12-LOX is overexpressed in 
murine lung carcinoma and human prostate cancer cells suggests 
a possible role for this enzyme in cancer development (22,62). 
The 12-LOX inhibitor baicalein induces apoptosis in cancer 
cells. This induction is mediated through the regulation of 
the B-cell lymphoma-2 (Bcl-2) protein (63-65). Furthermore, 
12-LOX controls G1/S-phase arrest by inhibiting Akt and 
mitogen-activated protein kinases and regulating the expression 
of nuclear factor (NF)-κB (66). A proangiogenic function for 
12-LOX products has also been suggested. The downregulation 
of 15-LOX expression has been shown in breast and prostate 
cancer and colorectal adenocarcinomas (67-70). The 15-LOX-2 
isoform suppresses cell cycle progression and promotes cell 
senescence (70-72). Taken together, these findings suggest that 
LOXs may be potential targets for anticancer therapy.

P450 monooxygenases and their inhibitors in cancer treat-
ment. CYP450s are monooxygenases that catalyse a variety of 
reactions. These enzymes have variable substrates, including 
fatty acids, steroids and xenobiotics. CYP450 enzymes are 
localised to the mitochondria and the endoplasmic reticulum. 
Mitochondrial CYP450s metabolise endogenous substrates, 
whereas microsomal CYP450s are involved in the metabolic 
reactions of exo- and endogenous substrates. Significant atten-
tion has been focused on the roles of COX- and LOX-derived 
products in carcinogenesis; however, little is known regarding 
the role of CYP450-derived products in this process. CYP450 
activity in cancer cells may lead to the deactivation of antitu-
mour drugs, thereby limiting therapeutic efficacy. The CYP1, 
CYP2 and CYP3 families are important enzymes that metab-
olise a significant number of clinically important drugs (73). 
Aberrant CYP450 enzymatic activity has been detected in 
a variety of human cancer cell lines and has been shown to 
contribute to neoangiogenesis, cancer cell migration, tumour 
growth and metastasis (74-78).
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3. NSAIDs in cancer treatment

Drug resistance is considered to be a major hindrance to the 
success of chemotherapeutic treatment. Multidrug resistance 
(MDR) is a multifactorial phenomenon and is often associated 
with the overexpression of ATP-binding cassette (ABC) trans-
porter proteins (79,80). Accumulating evidence indicates that 
NSAIDs exert a chemosensitising effect; however, the exact 
mechanism underlying this action remains unknown, although 
several molecular mechanisms have been suggested.

Combination of NSAIDs with chemotherapeutic drugs 
in vitro. NSAIDs, particularly COX-2 inhibitors, may supress 
MDR by inhibiting ABC transporters and sensitise cancer 
cells to the antiproliferative effects of anticancer drugs. These 
effects of NSAIDs have been demonstrated in several different 
malignancies (81-85). Permeability glycoprotein (P-gp), which 
acts on a broad substrate range, is one of the most extensively 
investigated and best characterised transporter proteins. 
NSAIDs have been shown to suppress the expression and 
function of this transporter in a variety of cancer cell types. 
Zatelli et al (85) demonstrated that treatment with the selective 
COX-2 inhibitor NS-398 resulted in significantly increased 
doxorubicin accumulation and sensitivity in chemoresistant 
MCF7 breast cancer cells. Those effects depended on the 
inhibition of P-gp expression and function. By contrast, it was 
suggested that NSAIDs are not involved in the regulation of 
P-gp activity and function and that their chemosensitising 
effect is mediated through different mechanisms (86). 
However, the majority of the studies contradict this hypothesis. 
Awara et al (87) reported an enhancement of doxorubicin anti-
tumour activity with celecoxib-induced P-gp inhibition. This 
was demonstrated by a significant reduction in the efflux of the 
P-gp substrate Rhodamine 123. Similar findings were reported 
by other research groups (82,85,88,89). Indomethacin and a 
COX-2 selective inhibitor, SC236, sensitised HepG2 human 
hepatocellular carcinoma cells to the cytotoxic effects of doxo-
rubicin. This effect was the result of increased intracellular 
retention and accumulation of doxorubicin via the inhibition 
of P-gp and MDR associated protein 1 (MRP1) expression 

and activity (90). Kang et al (91) detected an inhibition of the 
MRP1 efflux pump and enhanced doxorubicin cytotoxicity 
with celecoxib treatment. Similar results were obtained by 
Ko et al (92), where celecoxib not only reverted MRP1-related 
drug resistance, but also inhibited the function of breast cancer 
resistance protein (BCRP). Due to its expression in malignant 
hematopoietic and lymphoid cells, BCRP potentially plays an 
important role in drug resistance, not only in breast cancer, 
but also in hematological malignancies. Furthermore, BCRP is 
expressed in leukaemic stem cells, contributing to the resistance 
of these cancers to chemotherapy or targeted therapy (93). The 
drugs used to treat these cancers are often BCRP substrates. 
Little is known regarding the effects of NSAIDs on antitumour 
drug cytotoxicity in hematological malignancies. Accu-
mulating evidence indicates a positive effect of NSAIDs on 
chemotherapeutic drug action in BCRP-overexpressing solid 
tumours. Co-treatment with mitoxantrone and indomethacin 
sensitised resistant MCF-7̸MX cells to mitoxantrone (94). 
Studies that combined NSAIDs with cisplatin-based chemo-
therapy have yielded opposing results. A recent study revealed 
that celecoxib and SC-236 antagonised the cytotoxicity of 
cisplatin in human gastric cells, whereas indomethacin and 
nimesulid exerted no effects (95). By contrast, the use of 
another COX-2 selective inhibitor, JTE-522, in combination 
with cisplatin, resulted in synergistic antitumour activity 
in a gastric cancer cell line (96). In other cancer cell lines, 
celecoxib potentiated the cytotoxicity of cisplatin (97,98). The 
discrepancy regarding the effects of NSAIDs on cisplatin 
action may be partially explained by the different chemical 
structures of the utilised NSAIDs and by the different tumour 
cell types employed (95).

Apart from ABC transporter inhibition, other mechanisms 
have been suggested to explain the chemosensitising effect 
of NSAIDs, including the inhibition of several transcrip-
tional factors, varying functions of COX-2 in cancer cells, 
ceramide production and DNA hypermethylation (Table I). 
NF-κB inhibition may play a role in NSAID-enhanced anti-
tumour drug cytotoxicity (99). NF-κB has been shown to be 
involved in chemoresistance in different cancer types. The 
constitutive expression of this transcription factor in tumours 

Figure 1. Enzymatic arachidonic acid metabolism. PG, prostaglandin; TX, thromboxane; HETE, hydroxyeicosatetraenoic acid; LX, lipoxin; LT, leukotriene; 
EET, epoxyeicosatrienoic acid.
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protects against apoptotic stimuli. Moreover, the inhibition of 
NF-κB activity may affect intracellular drug accumulation 
and transport. The enhanced accumulation of doxorubicin 
in MDA-MB-231 human breast cancer cells upon celecoxib 
treatment was not mediated by changes in COX-2 enzyme 
activity or through P-gp, MRP1 or BCRP inhibition, but rather 
due to the inhibition of NF-κB. Xia et al also demonstrated 
that NSAIDs may sensitise cancer cells to antitumour drugs 
by inducing DNA hypermethylation (100). The ability of 
celecoxib to modulate DNA methylation has also been demon-
strated (101). The expression of the MDR1 gene, which codes 
for the P-gp protein, is regulated through the methylation of 
CpG islands located within the MDR1 promoter (102-104). 
Xia et al observed that treatment with celecoxib significantly 
enhanced CpG island methylation, which led to the suppres-
sion of P-gp expression (100). The ability of celecoxib to 
repress the activity of the transcription factor Sp1 was previ-
ously demonstrated (105). The MDR1 gene promoter contains 
a binding side for this factor. This binding site may be suscep-
tible to celecoxib-induced hypermethylation, thereby limiting 
the ability of Sp1 to bind DNA. Celecoxib, in combination 
with the 5-LOX inhibitor MK-886, exerted a significant addi-
tive cytotoxic effect on Caco-2 and HT-29 cancer cells, which 
was, in part, mediated by ceramide-induced apoptosis (106). 
El-Awady et al (107) demonstrated the diverse effects of 
celecoxib on the anticancer activity of etoposide, cisplatin, 
5-fluorouracil (5-FU) and doxorubicin in five cancer cell lines, 

namely the HeLa, HCT-116, HepG2, MCF7 and U251. In the 
MCF7 breast cancer cell line, the interaction of celecoxib with 
these four chemotherapeutics was antagonistic, indicating that 
celecoxib is of little value when used in combination with anti-
tumour drugs in the treatment of breast cancer. By contrast, 
other data indicate that celecoxib enhances the cytotoxicity of 
anticancer drugs in breast cancer cells (99,108). The interac-
tion of celecoxib with etoposide, cisplatin and 5-FU was shown 
to be dependent on the cancer cell line employed, the drug 
type used and the incubation schedule. The combination of 
celecoxib and the same antitumour drug also exerted different 
effects on different cell lines. One plausible explanation for 
this finding may be that COX-2 has different roles in different 
cancer types (107). In cancers where COX-2 increases tumour 
growth and progression (109), COX-2 inhibitors may be of 
therapeutic benefit. However, in other malignancies, COX-2 has 
been reported to exert proapoptotic and tumour-suppressing 
effects (110-112). In such cancer types, COX-2 inhibition may 
lead to enhanced tumour growth, inhibition of apoptosis and 
decreased efficacy of anticancer drugs (107). Several studies 
reported a direct association between COX-2 expression and 
the ABC transporters P-gp and MRP1. Patel et al (113) demon-
strated that the overexpression of COX-2 led to increased 
P-gp expression and activity, whereas the COX-2 inhibitor 
NS398 was able to block this increase. In colon cancer, a 
resistance to cisplatin resulted from COX-2 overexpression, 
which induced MRP1 expression (114). A positive correlation 

Table I. Effects of NSAIDs on cytotoxic drug efficacy in different cancer cell lines.

NSAIDs/chemotherapeutics Cancer cell line Effect Mechanism of action Author (Refs.)

Celecoxib/doxorubicin ECC Syn Inhibition of P-gp Awara et al (87)
 H460 Syn Inhibition of MRP1 Kang et al (91)
 MDA-MB-231 Syn Inhibition of NF-κB van Wijngaarden et al (99)
 MCF7 Ant DNA damage repair El-Awady et al (107)
Celecoxib/vincristine KB/VCR Syn Inhibition of P-gp Yan et al (88)
Celecoxib/imatinib K562 Syn Inhibition of P-gp Arunasree et al (82)
Celecoxib/cisplatin TMK1 Ant Enhanced efflux, Chen et al (95)
   reduced influx
 MCF7 Ant DNA damage repair El-Awady et al (107)
Celecoxib/5-FU MCF7 Ant DNA damage repair El-Awady et al (107)
JTE-522/cisplatin MKN-45 Syn Inhibition of ABC Sugiura et al (96)
Celecoxib/tamoxifen MCF7 Syn Inhibition of P-pg due Xia et al (100)
   to DNA methylation
NS-398/doxorubicin MCF7 Syn Inhibition of P-gp Zatelli et al (85)
Indomethacin, HepG2 Syn Inhibition of P-gp, Ye et al (90)
SC-236/doxorubicin   MRP1
Indomethacin/mitoxantrone MCF7/MX Syn Inhibition of BCRP Elahian et al (94)

Syn, synergistic effect of combinatory therapy; ant, antagonistic effect; ECC, Ehrlich carcinoma cell line; H460, non-small-cell lung carcinoma 
cell line; MDA-MB-231 and MCF7, breast carcinoma cell lines; MCF7/MX, mitoxantrone-resistant breast carcinoma cell line; KB/VCR, oral 
cancer cell line; K562, erythromyeloblastoid leukaemia cell line; TMK1 and MKN-45, human gastric adenocarcinoma cell lines; HepG2, 
hepatocellular carcinoma cell line; 5-FU, 5-fluorouracil; P-gp, permeability glycoprotein; MRP, multidrug resistance protein; NF, nuclear 
factor; ABC, ATP-binding cassette; BCRP, breast cancer resistance protein.
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between the expression of COX-2 and P-gp was also reported 
by studies on hepato cellular carcinoma, breast and ovarian 
cancer (115-117). COX-2 was found to be involved in the regu-
lation of P-gp, MRP1 and BCRP transporter expression via the 
COX-2/PGE2̸PGE receptor 4̸phosphatidyl inositol 3-kinase 
pathway (116,118).

Synergist ic effects of NSAIDs with hyper icin 
(HY)-mediated photodynamic therapy (PDT) have also been 
reported (119-122). The specific inhibition of COX, LOX 
and CYP450 activity increased the efficacy of HY-PDT in 
the HT-29 cancer cell line (121). An important role for the 
MRP1 and BCRP transporters in HY efflux was also demon-
strated (119). Proadifen, a P450 monooxygenase inhibitor, 
was shown to inhibit these transport proteins, resulting in a 
significant increase in intracellular HY accumulation in HT-29 
cells and MRP1 and BCRP-overexpressing cells.

Taken together, the abovementioned findings indicate that 
the mechanism through which NSAIDs affect the action and 
effectiveness of cytotoxic drugs varies. The exact mechanism 
may depend on the cancer cell line, the structures of the NSAIDs 
and chemotherapeutics, the specific interactions between the 
drugs and the incubation schedule. The mechanism underlying 
the NSAID-induced increase in antitumour drug cytotoxicity 
may be one of the abovementioned processes. However, more 
than one mechanisms are likely involved.

Combination of NSAIDs with chemotherapeutic drugs in vivo. 
A growing amount of evidence from various animal models 
suggests positive effects of NSAID use in combination with 
antitumour drugs (87,123-129) (Table II). However, the exact 

mechanism through which this combined treatment results 
in improved antitumour activity in in vivo models is not 
clearly understood. Given the complexity of animal models 
in comparison to in vitro systems, the effects of the tumour 
microenvironment, tumour angiogenesis, the immune system 
and pharmacokinetic processes must be taken into consider-
ation (123,126,130). As NSAIDs may alter ABC transporter 
expression or activity in cancer cell lines, this mechanism may 
also be involved in vivo. Awara et al (87) reported that the 
inhibition of P-gp activity by NSAIDs is likely responsible 
for the enhanced antitumour effects of doxorubicin. It was 
suggested that NSAIDs exert their growth-inhibitory func-
tions and synergistic effects with chemotherapeutics through 
multiple pathways. Neoangiogenesis plays a key role in tumour 
promotion and progression. Certain studies demonstrated the 
ability of NSAIDs, particularly selective COX-2 inhibitors, to 
suppress tumour growth by inhibiting angiogenesis and cell 
proliferation (131,132). Although the suppression of angio-
genesis that occurs with NSAID treatment alone may not be 
sufficient to inhibit tumour growth, NSAIDs may enhance 
the antiangiogenic and antiproliferative effects of certain 
antitumour drugs (123,125,127). As shown by Irie et al (125), 
celecoxib alone did not significantly inhibit tumour growth, 
although it did exhibit a certain antiangiogenic activity. 
However, in combination with 5-FU, celecoxib enhanced 
the antitumour effect of 5-FU and significantly suppressed 
angiogenesis and tumour growth, likely via the inhibition 
of VEGF and the induction of IFN-γ (125). Treatment with 
celecoxib in combination with doxorubicin and irinotecan 
was also found to be effective in decreasing tumour growth 

Table II. Effects of NSAIDs on cytotoxic drug efficacy in animal models.

NSAIDs/chemotherapeutics Experimental model Effect Mechanism of action Author (Refs.)

Celecoxib/doxorubicin Mouse SEC Syn Inhibition of P-gp Awara et al (87)
 Rat SH-SY5Y Syn Inhibition of angiogenesis Ponthan et al (127)
   and cell proliferation
Celecoxib/irinotecan Mouse MCA Syn Unknown Trifan et al (139)
 Rat SH-SY5Y Syn Inhibition of angiogenesis Ponthan et al (127)
   and cell proliferation
Celecoxib/5-FU Mouse colon 26 cells Syn Inhibition of tumour growth Irie et al (125)
   and angiogenesis
 Mouse HT-29 Syn Cytochrome c-dependent Zhang et al (129)
   apoptotic pathways
Piroxicam/cisplatin Dog TCC Syn Unknown Knapp et al (126)
 Mouse MSTO-211H Syn Enhanced expression of Spugnini et al (128)
   intracellular drug effectors
Aspirin/doxorubicin Mouse HepG2 Syn Reduction of tumour Hossain et al (124)
   growth and weight
JTE-522/docetaxel, Mouse ACC-LC-319 Syn Inhibition of tumour growth Hida et al (123)
vinorelbine

Syn, synergistic effect of combinatory therapy; SEC, solid Ehrlich carcinoma; SH-SY5Y, neuroblastoma cell line; HT-29, human colorectal 
cancer cell line; MCA, mouse colorectal adenocarcinoma; colon 26 cells, colon cancer cell line; TCC, transitional cell carcinoma; MSTO-211H, 
human mesothelioma cell line; HepG2, human hepatocellular carcinoma cell line; ACC-LC-319, human lung adenocarcinoma cell line ; 5-FU, 
5-fluorouracil; P-gp, permeability glycoprotein.
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through the inhibition of cell proliferation and the suppres-
sion of tumour vasculature (127). A number of intracellular 
signalling proteins are involved in cell proliferation, survival 
and apoptosis. Several lines of evidence suggest that COX-2 
may elevate the levels of the antiapoptotic proteins Bcl-2 
and Mcl-1 through mitogen-activated protein kinase activa-
tion, which results in an inhibition of the cytochrome c 
pathway (133-135). Moreover, a study by Zhang et al (129) 
revealed an improved therapeutic benefit of 5-FU via cele-
coxib addition, which occurred through the induction of 
the cytochrome c-dependent apoptotic pathway, as well as a 
possible role for 5-FU in the celecoxib-mediated inhibition 
of COX-2 expression. As previously mentioned, the antipro-
liferative, antiangiogenic and antitumour effects of NSAIDs 
may be, to a certain extent, COX-2-independent. Consistent 
with these findings, piroxicam was able to exert its effect 
via a COX̸PGE2-independent mechanism (128). Moreover, 
piroxicam enhanced cisplatin-induced cytotoxicity via the 
upregulation of endogenous drug effectors and the inhibition 
of certain cell growth regulators. In vitro studies demonstrated 
that NSAIDs may mediate their antitumour effects through 
modulation of the NF-κB signalling pathway (99,136). NF-κB, 
with its dual anti- and proapoptotic functions, plays an impor-
tant role in regulating cellular proliferation and apoptotic cell 
death. The inhibition of NF-κB activity may be responsible 
for the celecoxib-induced doxorubicin cytotoxicity that results 
in decreased tumour volume (99). By contrast, certain studies 
suggested that NSAIDs may activate NF-κB, thereby inducing 
apoptosis (137,138). Apart from enhancing the cytotoxicity 
of chemotherapeutic drugs, the addition of NSAIDs may 
also reduce the severity of chemotherapy-associated adverse 
effects, such as late diarrhoea and cachexia (139).

Combination of NSAIDs with chemotherapeutic drugs in 
clinical trials. Due to the limited effectiveness of certain 
cancer treatments, it is necessary to establish a novel treat-

ment strategy that improves patient response to chemotherapy. 
A large number of studies have demonstrated that COX-2 
may be involved in the development of several cancer types. 
COX-2 may positively affect multiple processes, including 
tumour cell growth, migration and invasiveness, but may also 
downregulate apoptosis and angiogenic stimulation (35-38). 
Moreover, the overexpression of COX-2 may also reduce the 
response of cancer cells to cytotoxic therapy (140). Preclinical 
studies suggested that treatment with NSAIDs, particularly 
COX-2 inhibitors, may affect the outcome of chemotherapy 
through various mechanisms, including the inhibition of 
neoangiogenesis and the induction of apoptosis (130,131,141). 
Despite promising preclinical results with NSAIDs in 
combination with antitumour drugs, little is known regarding 
the effects of this combination on humans. The currently 
available clinical results are contradictory and mainly 
disappointing (142-145) (Table III). For example, several 
combinations did not appear to improve therapy outcome, 
including celecoxib and docetaxel (144,146); celecoxib 
and 5-FU (142,143); rofecoxib, 5-FU and leucovorin (147); 
celecoxib and transtuzumab (148); rofecoxib, cisplatin and 
gemcitabine (149); celecoxib, docetaxel and carboplatin (150); 
and celecoxib and platinum derivates (151). However, certain 
phase II studies have yielded encouraging results. In the case 
of non-small-cell lung carcinoma (NSCLC), the combination 
of celecoxib and chemotherapy was associated with increased 
overall survival (152,153). In the case of heavily pretreated 
recurrent ovarian cancer, the administration of celecoxib 
in combination with carboplatin-based chemotherapy also 
yielded promising results (154). The discrepancy in various 
results may be due to multiple factors, such as complex phar-
macodynamic interactions between NSAIDs and the cytotoxic 
drugs and the varying levels of intratumoural COX-2 and 
ABC transporters (155-159). The role of COX-2 expression in 
the response of cancer cells to combined NSAID and antitu-
mour drug therapy was demonstrated by Edelman et al and 

Table III. Effects of NSAIDs on cytotoxic drug efficacy in clinical trials.

NSAIDs/chemotherapeutics Cancer type Effect Mechanism of action Author (Refs.)

Celecoxib/paclitaxel, carboplatin NSCLC Syn Inhibition of COX-2 Altorki et al (152)
Celecoxib/docetaxel NSCLC None - Schneider et al (144)
 NSCLC Syn Inhibition of COX-2 Nugent et al (153)
Celecoxib/FOLFIRI CRC None - Maiello et al (143)
Celecoxib/FOLFIRI, CAPIRI CRC None - Kohne et al (142)
Celecoxib/platin derivates, NSCLC None Various COX-2 Koch et al (151)
gemcitabine, vinorelbin   expression levels
Celecoxib/carboplatin, docetaxel NSCLC None - Groen et al (150)
Celecoxib/carboplatin OC Syn Potential inhibition of COX-2 Legge et al (154)
Celecoxib/transtuzumab BC None - Dang et al (148)
Rofecoxib/5-FU CRC None - Becerra et al (147)

Syn, synergistic effect of combinatory therapy; NSCLC, non-small-cell lung carcinoma; CRC, colorectal adenocarcinoma; OC, ovarian cancer; 
BC, breast adenocarcinoma; SCLC, small-cell lung carcinoma; FOLFIRI, leucovorin + 5-FU + irinotecan; CAPIRI, capecitabine + irinotecan; 
COX, cyclooxygenase; 5-FU, 5-fluorouracil; -, inadequate dosing.
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has been supported by other studies (155,160). Patients with 
COX-2-overexpressing tumours who did not receive combined 
celecoxib/chemotherapy treatment exhibited a significantly 
worse outcome. Possible adverse effects in patients with 
COX-2-non-expressing tumours that received celecoxib treat-
ment were also demonstrated (160).

4. Conclusion

NSAIDs are potent antitumour drugs, capable of inhibiting 
tumour angiogenesis, proliferation, invasion and motility, 
as well as of inducing apoptosis. Furthermore, a number of 
experimental and preclinical studies indicated that combining 
NSAIDs with antitumour drugs may improve outcome. The 
exact mechanism underlying this synergistic effect has not 
yet been fully elucidated, but may involve several diverse 
processes, including the inhibition of COX-2 expression, 
ABC transporter activity or NF-κB. However, the results of 
combined therapy in clinical trials are mainly disappointing. 
Despite significant efforts to determine the exact mechanism 
through which NSAIDs modulate the efficacy of anticancer 
drugs, there remain several unanswered questions.
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