Comprehensive treatment of unresectable cardiac angiosarcoma: A case report and review of literature

CHAO WANG1, MIN SHI1, CHEN YANG1, TAO MA1, JINLING JIANG1, YING LIU1, WENQI XI1, ZHENGGANG ZHU1,2 and JUN ZHANG1

Departments of 1Oncology and 2Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China

Received February 16, 2017; Accepted June 28, 2017

DOI: 10.3892/mco.2017.1390

Abstract. Cardiac angiosarcoma is a rare but lethal tumor that is difficult to diagnose and treat, due to its rapid local relapse and high incidence of systemic metastasis. The prognosis of cardiac angiosarcoma is dismal, with a mean life expectancy of only a few months. We herein report a case of unresectable angiosarcoma arising from the right atrium. The patient received first-line chemotherapy with weekly paclitaxel, and second-line therapy with vinorelbine and bevacizumab upon disease progression. The progression-free survival was 6 months and the overall survival was 7 months. The patient eventually succumbed to respiratory failure. A study of the present case and a review of the relevant literature suggest that treatment decisions for unresectable locally advanced or metastatic cardiac angiosarcoma are difficult, as the published literature on this disease mainly consists of case reports without sufficient data. Therefore, further clinical trials specific to the treatment of unresectable cardiac angiosarcoma are warranted.

Introduction

Primary cardiac neoplasms are rare, with an incidence of ~0.2%. Primary cardiac angiosarcoma (PCA) comprises 2% of all primary cardiac neoplasms (including benign tumors) and is the most common primary malignant cardiac tumor (1,2). PCA typically presents between the third and fifth decades of life, most often arising in the right atrium (RA) and infiltrating the pericardium, which may cause right-sided heart failure or tamponade, usually with superimposed systemic signs, such as fever, night sweats, chills, fatigue and weight loss. Pericardiocentesis yields bloody fluid that often does not contain malignant cells, even when the tumor cells have invaded the pericardium (3). Diagnostic assessment includes tissue biopsy followed by histological confirmation, transthoracic echocardiography (TTE) to determine the tumor dimensions, pericardial status and cardiac function, computed tomography (CT) imaging to exclude metastatic disease, magnetic resonance imaging (MRI) to depict the extracardiac extent of the disease and delineate the extent of the primary lesion; positron emission tomography (PET) imaging may also be useful for detecting metastases when radical surgery is planned (2,4). However, even radical surgery often yields unsatisfactory results, as >90% of the patients succumb to the disease within 1 year (5). Comprehensive treatment includes neoadjuvant or adjuvant chemotherapy, radiotherapy or targeted therapy with complete surgical resection; even orthotopic heart transplantation may prove beneficial for the patients (6). We herein report a case of unresectable PCA originating in the RA. The patient received first-line chemotherapy with weekly paclitaxel, and second-line therapy with vinorelbine and bevacizumab when the disease progressed. The relevant literature was also reviewed, to compare and summarize the treatment of unresectable locally advanced or metastatic PCA.

Case report

In June 2015, a healthy 41-year-old Chinese woman complained of a 2-month progressive shortness of breath and chest discomfort for no apparent reason, which was relieved by rest. There was no precordialgia, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities. The previous medical history revealed that the patient had presented with unexplained pericardial pain, no radiating back pain, no headache or dizziness, and no edema in the lower extremities.
revealed expansion of the heart shadow (cardiothoracic ratio, 70%) and bilateral pleural effusion (blunting of the bilateral costophrenic angle; Fig. 1B). A CT scan confirmed the presence of a heterogeneous irregularly shaped mass infiltrating the RA, and also detected bilateral pulmonary nodules (Fig. 1C and D). On MRI, the mass exhibited heterogeneous signal intensity enhancement on T1-weighted images, and flow void on T2-weighted images (Fig. 1E and F). The 18F-fluorodeoxyglucose uptake in the tumor reached a standardized uptake value of 13.6 (Fig. 2B). PET-CT also revealed tumor metastasis to multiple organs, including the lungs and bones (Fig. 2A and C-G). CT-guided percutaneous biopsy of a left ilium metastasis revealed poorly differentiated spindle-shaped tumor cells with slit-like or irregular vascular channels containing red blood cells (RBCs; hematoxylin and eosin staining; magnification, x400). Immunohistochemically, the tumor cells were positive for CD31 and CD34 (magnification, x400; Fig. 3). Taken together, these findings confirmed the diagnosis of metastatic PCA (T2N1M1).

Although the patient’s performance status score was 1 on the Eastern Cooperative Oncology Group scale, the tumor had metastasized to other internal organs and total excision of the cardiac tumor was anatomically impossible. Therefore, 90 mg/m² paclitaxel was administered intravenously on days 1, 8 and 15 of a 28-day cycle. Prior to the administration of paclitaxel, the patient received intravenous premedications, including dexamethasone 5 mg, cimetidine 400 mg and phenergan 25 mg. Standard antiemetics (mainly palonosetron 0.25 mg) were prescribed by the treating physician when clinically indicated. Cycles could not be initiated unless the granulocyte count was >1500/µl and the platelets were >100,000/µl. The treatment was well-tolerated by the patient, except for grade II neutropenia (white blood cells 2.41x10⁹/l, neutrophils 1.06x10⁹/l) and prophylactic granulocyte colony-stimulating factor was administered at 150 µg. In December 2015, TTE revealed a shrinkage in the cardiac tumor size (1.5x1.1 cm) and absorption of the pericardial effusion. A CT scan,
However, revealed that the volume of the pulmonary nodules had increased and identified new foci in the liver (Fig. 4). On laboratory tests the CA125 level was 19.00 U/ml, the CA199 level was 37.60 U/ml and the CEA level was 8.13 ng/ml. Therefore, vinorelbine was selected as second-line treatment, with 25 mg/m² vinorelbine administered intravenously on days 1 and 8 of a 21-day cycle. In December 24, bevacizumab was added to the therapy scheme (vinorelbine 25 mg/m² on days 1 and 8 of a 21-day cycle following administration of

Figure 2. Positron emission tomography-computed tomography demonstrated multiple foci of abnormal activity in different organs and in the bones, including (A) the thoracic and lumbar vertebrae (white arrows), (B) heart (white arrowhead), (C) lung (black arrowhead), sacrum, ilium, (D) manubrium sterni (white arrow), (E) ribs (white arrow), (F) lumbar vertebrae (white arrow) and (G) sacrum and ilium (white arrow).

Figure 3. Pathological examination. (A and B) Hematoxylin and eosin stain (magnification, x400) of the biopsy specimen revealed poorly differentiated spindle-shaped tumor cells with slit-like or irregular vascular channels containing erythrocytes; (C) Immunohistochemical staining for CD31 revealed positive endothelial cells (magnification, x400); (D) Immunohistochemical staining for CD34 revealed positive endothelial cells (magnification, x400).

Figure 4. (A, C and E) Computed tomography scan of the heart (white arrow), lung and liver (black arrows) before treatment with weekly paclitaxel and (B, D and F) after the treatment.
bevacizumab 10 mg/kg on day 1). The patient complained of abdominal pain; thus, Oxycontin was administered at 30 mg/12 h to control the symptom. On January 8, 2016, the patient displayed anemia and respiratory failure (hemoglobin 56 g/l, RBC count 2.16x10^{12}, PaO_{2} 9.18 kPa, PaCO_{2} 4.63 kPa, SpO_{2} 91.5%, actual base excess 18.9 mmol/l, standard base excess 19.4 mmol/l, D-dimer 40.00 mg/l, and fibrin degradation products 128.1 mg/l) and was unable to tolerate the chemotherapy; thus, a blood transfusion was performed, with oxygen inhalation and diprophylline injection. The patient succumbed to respiratory failure 7 months after diagnosis.

Discussion

Due to the rapid local relapse and high incidence of systemic metastasis, PCA has a dismal prognosis, with a mean life expectancy of only a few months. The literature focusing on the treatment of unresectable PCA was reviewed. Although the relevant studies were scarce, several case reports and results from phase II trials expanded our knowledge of this rare disease. A summary of most common locations, treatment modalities and outcome is presented in Table I. The cases included in the Table I were almost inoperable, which was undoubtedly among the key factors determining the patients' prognosis. Although there are currently no established guidelines for the treatment of angiosarcoma, no further subgroups have been identified by which adjuvant therapy could be recommended; as previously reported, chemotherapy, radiotherapy and targeted therapy are the most common choices for the treatment of unresectable PCA. In the present case, addition of radiotherapy to the second-line treatment was initially attempted, as several cases of PCA exhibited high sensitivity to radiotherapy (14-16); however, due to the patient's poor physical condition, radiotherapy had to be abandoned. Weekly paclitaxel has been reported to be effective in the treatment of unresectable angiosarcomas (including PCA), with a median progression-free survival (PFS) of 4 months and a median overall survival of 8 months (17). Vinorelbine

Table I. Cases of unresectable cardiac angiosarcoma reported in the English literature identified through a PubMed search.

<table>
<thead>
<tr>
<th>First author, year</th>
<th>Location</th>
<th>Pericardial extension</th>
<th>Treatment</th>
<th>Outcome (months)</th>
<th>(Refs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ram Prabu, 2011</td>
<td>RA</td>
<td>Yes</td>
<td>Weekly paclitaxel (80 mg/m^{2})</td>
<td>PFS 16a</td>
<td>(5)</td>
</tr>
<tr>
<td>Suderman, 2011</td>
<td>LA</td>
<td>Yes</td>
<td>Weekly docetaxel (25 mg/m^{2}) and radiotherapy</td>
<td>PFS 16, OS 22</td>
<td>(7)</td>
</tr>
<tr>
<td>Kodali, 2006</td>
<td>RA</td>
<td>Yes</td>
<td>Doxil 40-50 mg/m^{2} q/4 weeks (line 1), MAID regimenb (line 2)</td>
<td>PFS 15, OS 16</td>
<td>(8)</td>
</tr>
<tr>
<td>Hata, 2011</td>
<td>RA</td>
<td>No</td>
<td>CRT (30 fractions of 2 Gy) with weekly carboplatin (area under the curve=2) and PTX (60 mg/m^{2})</td>
<td>PFS 5a</td>
<td>(9)</td>
</tr>
<tr>
<td>Franceschini, 2013</td>
<td>RA</td>
<td>Yes</td>
<td>Epirubicin (60 mg/m^{2}), ifosfamide (3,000 mg/m^{2}) and paclitaxel 60 Gy</td>
<td>PFS 16a</td>
<td>(10)</td>
</tr>
<tr>
<td>Fehr, 2010</td>
<td>RA</td>
<td>No</td>
<td>Doxorubicin (75 mg/m^{2}) and ifosfamide (7,500 mg/m^{2}) q/3 weeks (line 1), radiotherapy (22 fractions of 2 Gy) and weekly paclitaxel (80 mg/m^{2}) (line 2)</td>
<td>PFS 8.5, OS 12</td>
<td>(11)</td>
</tr>
<tr>
<td>Castilla, 2010</td>
<td>RA</td>
<td>No</td>
<td>PaclitaxelE</td>
<td>OS 9</td>
<td>(12)</td>
</tr>
<tr>
<td>Batzios, 2006</td>
<td>RV</td>
<td>No</td>
<td>Epirubicin 75 mg/m^{2}, cisplatin 80 mg/m^{2} and ifosfamide 2 gr/m^{2}, plus uromitexan 800 mgx2</td>
<td>PFS 6, OS 7</td>
<td>(13)</td>
</tr>
<tr>
<td>Aoka, 2004</td>
<td>RA</td>
<td>Yes</td>
<td>Carbon-ion radiotherapy 64 Gy and interleukin 2</td>
<td>PFS 5, OS 18a</td>
<td>(14)</td>
</tr>
<tr>
<td>Elsayad, 2016</td>
<td>RA</td>
<td>No</td>
<td>Radiotherapy 55.8 Gy and weekly paclitaxel (50 mg/m^{2}) (line 1), doxorubicin and isosfamideE (line 2) and pazopanib (maintenance therapy)</td>
<td>PFS 3, OS 16a</td>
<td>(15,16)</td>
</tr>
</tbody>
</table>

aTime to data published. bMAID regimen: Mesna, adriamycin, ifosfamide and dacarbazine. cNo detailed content on the treatment. OS, overall survival; PFS, progression-free survival; RA, right atrium; RV, right ventricle; LA, left atrium; CRT, chemoradiotherapy; PTX, paclitaxel.
has demonstrated antitumor activity in angiosarcoma, as monotherapy or combined with gemcitabine (18,19). Bevacizumab is a recombinant humanized monoclonal IgG1 antibody that blocks the activity of vascular endothelial growth factor (VEGF)-A. A phase II trial concluded that bevacizumab is an effective and well-tolerated single-agent treatment for metastatic or locally advanced angiosarcoma (20). Several case reports demonstrated that combination therapy with bevacizumab and chemotherapy or radiotherapy may improve quality of life and survival in patients with metastatic angiosarcoma (21-25). In addition, another VEGF inhibitor, pazopanib, may prolong the PFS of metastatic non-adoipocytic soft-tissue sarcoma after previous chemotherapy (26), particularly when used as maintenance therapy for PCA (16).

In conclusion, unresectable cardiac angiosarcomas are rare but lethal. In such cases, a multimodality approach including image-guided radiotherapy and targeted therapy may be considered, as the overall prognosis of these patients is poor. Further clinical trials focusing on the treatment of unresectable PCA are warranted.

Acknowledgements

The present study was supported by the National Science Foundation of China (grant nos. 81672327, 81372645, 81502013 and 81602411) and the Program of Shanghai Academic/Technology Research Leader (grant no. 17XD1402600), the Feng Shou Fook Tong Foundation and National Key Clinical Discipline (Oncology), the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (grant no. 20161410), the Program for Outstanding Medical Academic Leader and Shanghai Municipal Commission of Health and Family Planning (grant no. 20154Y496).

References

