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Abstract. In recent years, magnetic nanoparticles (MNPs) 
have demonstrated marked progress in the field of oncology. 
General nanoparticles are widely used in tumor targeting, 
and the intrinsic magnetic property of MNPs makes them the 
most promising nanomaterial to be used as contrast agents for 
magnetic resonance imaging (MRI) and induced magnetic 
hyperthermia. The properties of MNPs are fully exploited when 
they are used as drug delivery agents, wherein drugs may be 
targeted to the desired specific location in vivo by application 
of an external magnetic field. Early diagnosis of cancer may 
be achieved by MRI, therefore, individualized treatment may 
be combined with MRI, so as to achieve the precise definition 
and appropriate treatment. In the present review, research on 
MNPs in cancer diagnosis, drug delivery and treatment has 
been summarized. Furthermore, the future perspectives and 
challenges of MNPs in the field of oncology are also discussed.
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1. Introduction

Magnetic nanoparticles (MNPs) are a kind of intelligent nano-
magnetic material, with small particle size, large specific surface 
area, magnetic response and superparamagnetism (1). MNPs 
may be assembled and positioned under a constant magnetic 
field, and the heat is absorbed by the electromagnetic wave 
in the alternating magnetic field. In biomedical applications, 

MNPs are generally in the superparamagnetic state (2,3). The 
most frequently used nanomaterial is the iron oxide nanopar-
ticle, including magnetite (Fe3O4) and maghemite (γ‑Fe2O3) (4). 
It is well known that MNPs have an important role in cancer 
diagnosis, drug delivery and treatment. For cancer diagnosis, 
tumor imaging technology opened the possibility of early detec-
tion of disease. Common imaging modalities include magnetic 
resonance imaging (MRI) (5), magneto acoustic tomography 
(MAT) (6), computed tomography (CT) (7) and near‑infrared 
(NIR) imaging (8). Among them, MRI has a strong influence in 
the early diagnosis of cancer, and superparamagnetic iron oxide 
nanoparticles (SPIONs) are the most representative as a contrast 
agent for MRI (9). Currently, certain iron oxide‑based MNPs 
have been approved for use in clinical MRI, for example feru-
moxil (GastroMARK) enhances imaging of the bowel (10). Due 
to the small size and large specific surface area of MNPs, they 
are able to easily reach the location of the lesion (11). Therefore, 
MNPs as a drug carrier for drug delivery is an application that 
cannot be ignored. This property of MNPs is fully exploited 
when they are used as drug delivery agents, wherein drugs may 
be targeted to the desired specific location in vivo by application 
of an external magnetic field (12). In general, MNPs are used as 
drug carriers by binding antibodies (13) and chemotherapeutic 
drugs (14). Commonly, chemotherapeutic drugs are loaded in 
MNPs, and they are involved in cancer treatment. MNPs in the 
field of cancer therapy are generally used in several different 
ways: Chemotherapy; magnetic hyperthermia (MHT) (15); 
photodynamic therapy (PDT) (16); and photothermal therapy 
(PTT) (17). In order to achieve an improved therapeutic effect, 
the general method used is combination therapy. The present 
review provides a framework for the application of MNPs in 
medicine, such as cancer diagnosis, drug delivery and treatment. 
Furthermore, nanotoxicity is also reviewed, as well as the poten-
tial challenges and the opportunities.

2. Cancer diagnosis

When cancer is discovered earlier, the cure rate is greatly 
improved. Therefore, early detection and timely diagnosis of 
cancer is key to reduce the mortality rate of patients (18). Tumor 
imaging technology has an important role in cancer diagnosis 
and the choice of late clinical treatment options. Furthermore, 
MNPs are the contrast agents that are most widely researched 
and used in cancer imaging. Here, the imaging methods and 
the imaging positions of MNPs are discussed.
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Imaging methods
MRI. Due to the high spatial resolution and tomographic capabili-
ties of MRI, it has been considered to be one of the most valuable 
noninvasive imaging techniques (19), and MNPs have been 
recently proposed as a contrast agent for MRI (20). In general, in 
order to overcome the colloidal instability of MNPs, it is neces-
sary to conduct surface modification of nanoparticles (NPs) by 
inducing the magnetic dipole interaction and its intrinsic surface 
energy (21). For example, water‑dispersible polyethyleneimine 
(PEI)‑coated Fe3O4 NPs were prepared, and then sequentially 
modified with PEGylated folic acid (FA) and fluorescein isothio-
cyanate (FI) via PEI mediated conjugation chemistry (21). The 
remaining PEI surface amines were subjected to acetylation to 
form the colloidally stable FA‑functionalized Fe3O4 NPs for 
MRI (21). In MRI, research has demonstrated that early lesion 
detection of a 6‑year old boy with glioblastoma multiforme may 
be achieved by sensitive imaging of superparamagnetic NPs or 
aggregates (22). Furthermore, research on Au nanorod@poly-
pyrrole@iron oxide (Au NR@PPy@FexO) nanocomposites has 
demonstrated that these systems exhibit a low r2/r1 ratio of 4.8, 
making them efficient T1 positive contrast‑enhancing agents 
for MRI (19). The study also indicated that the multifunctional 
nanocomposites exhibited the potential of the combination of 
therapeutic and diagnostic features (23).

Other imaging methods. A study by Mariappan et al (6) 
presented magneto acoustic tomography, which uses magne-
tomotive force due to a short pulsed magnetic field to induce 
ultrasound in SPION-labeled tissue and estimates an image 
of the distribution of the NPs in vivo with ultrasound imaging 
resolution. Magnetic particle imaging (MPI) allows high spatial 
resolution and sensitivity as a tomographic imaging technology. 
A study by Lindemann et al (24) suggested that University 
of Luebeck Dextran‑coated SPIONs are a promising tracer 
material for use in innovative tumor cell analysis in MPI. In 
addition, photoacoustic imaging has gained increasing attention 
as a potential imaging tool. A study by Li et al (25) developed 
a new generation of magnetomotive photoacoustic featuring 
cyclic magnetic motion and ultrasound speckle tracking, whose 
imaging capture frame rate is several hundred times faster than 
the photoacoustic speckle tracking method that has previously 
been demonstrated (26). Stone et al (8) demonstrated a magnetic 
NP system that may be used to observe the NP fate within a 
biofilm using NIR imaging. Additionally, Xi et al (27) presented 
a breast imaging technique combining high‑resolution NIR 
light induced photoacoustic tomography (PAT) with NIR 
dye‑labeled amino‑terminal fragments of urokinase plas-
minogen activator receptor‑targeted magnetic iron oxide NPs 
(NIR830‑ATF‑IONP) for breast cancer imaging using a murine 
model of orthotopic mammary cancer. Other studies have 
demonstrated that ultrashort echo time (UTE) imaging (28) and 
MPI (29) may improve the detection of MNPs in cancer.

For MNPs, in addition to MRI, other imaging methods are 
used in combination. This dual imaging method may improve 
the accuracy of diagnosis. For instance, dual imaging of 
single‑photon emission computed tomography (SPECT) and 
MRI has been utilized in pancreatic (4) and breast (30) cancer. 
A study by Jang et al (31) demonstrated the synthesis and the 
use of monodisperse iron oxide NPs coated with fluorescent 
silica nano‑shells for fluorescence and magnetic resonance dual 

imaging of tumors. Furthermore, Sun et al (32) utilized MRI 
and optical imaging (OI) for the diagnosis of breast cancer.

Imaging position
Pancreas. Pancreatic cancer is one of the most lethal cancers 
in the world due to its late presentation (33). Therefore, 
early diagnosis will increase the cure rate of patients. When 
chitosan-coated MNPs and survivin antisense oligonucleotides 
(ASON) are conjugated to give Sur‑MNPs, the MNPs function-
alized with ASON lead to targeted localization in pancreatic 
tumors (34). Survivin‑targeted NPs could be used by MRI for 
detection of pancreatic tumors (34). Taking into account the 
more sensitive diagnostic tools to allow early medical imaging, 
biodegradable NPs prepared using recombinant human serum 
albumin and incorporated iron oxide (maghemite, γ‑Fe2O3) NPs 
were developed (4). Improved targeting and imaging properties 
were demonstrated in mice using SPECT‑CT and MRI (4).

Breast. A study by Bucci et al (35) outlined some guidelines 
for the design of the imaging device for MNPs to enhance the 
microwave imaging of breast cancer. The results demonstrated 
that MNP-enhanced microwave imaging may reliably detect 
cancer lesions even using low‑complexity arrangements, when 
designed according to the devised guidelines. An investiga-
tion by Kato et al (36) concluded that liposome encapsulation 
significantly improved the delivery and retention of SPIONs in 
breast tumors, and targeted SPION liposomes have significantly 
improved accumulation in breast tumors, which could be the 
optimal option for MRI detection of breast tumors. With magnetic 
nanoclusters coated with ruthenium (II) complexes doped with 
silica (fluorescent magnetic NPs; FMNPs), Sun et al (32) demon-
strated that more peptide cyclic-arginine-glycine-aspartic acid 
(RGD)‑FMNPs accumulated around the tumors than FMNPs. 
The result indicated the potential application of RGD‑FMNPs 
as a targeting molecular probe for detection of breast cancer 
using MRI and OI (32). In order to make more accurate and 
specific diagnosis of breast cancer, Bevacqua and Scapaticci (37) 
adopted a compressive sensing approach for three‑dimensional 
breast cancer microwave imaging. In their paper, an ad hoc 
compressive sensing algorithm was developed by exploiting the 
knowledge of the maximum concentration of MNPs that may be 
targeted in human tissues (37).

Prostate. MRI provides the best soft tissue resolution and has 
an important role in the management of prostate cancer as it is 
the recommended imaging modality for patients with prostate 
cancer (38). Sentinel lymph node (SLN) evaluation in patients 
with prostate cancer is commonly performed via lymphoscin-
tigraphy following injection of radiolabeled tracers (39). For 
example, patients underwent MRI at 1.5 T before and 1 day after 
SPION injection using T1‑, T2‑ and T2*‑weighted sequences (39). 
This was the first study to use intraprostatic injection of SPIONs 
to visualize SLNs by MRI in patients with prostate cancer (39). 
A study by Winter et al (40) indicated that using a transrectal 
intraprostatic injection of SPIONs for magnetic marking in 
prostate cancer is safe, feasible and reliably identifies SLNs 
and lymph node metastases in the majority of patients. In other 
cases, diffusion‑weighted (DW)‑MRI is sensitive to water diffu-
sion throughout tissues, which correlates with the Gleason score, 
a histological measure of prostate cancer aggressiveness (40). 
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The incorporation of DW‑MRI‑based prostate cancer stratifica-
tion and monitoring could increase the accuracy of preclinical 
trials using mice with transgenic adenocarcinoma of the mouse 
prostate (41).

Lung. To improve the sensitivity of detection of metastasis of 
lung cancer, Wan et al (42) created immune SPIONs used in 
magnetic resonance immune imaging. These SPIONs were 
coated with oleic acid and carboxymethyl dextran, and then 
conjugated to mouse anti‑cluster of differentiation (CD) 44v6 
monoclonal antibody (42). The prepared SPIONs are potentially 
useful for lung tumor‑targeting diagnosis. In addition, targeted 
pulmonary inhalation aerosol‑based delivery facilitates the 
direct application of drugs to the lungs in a controlled manner, 
and has inherent advantages (43). Therefore, Nishimoto et al (29) 
investigated the feasibility of applying MPI to pulmonary 
imaging using nebulized MNPs and to quantify the mucociliary 
clearance in the lung, using small animal experiments.

Other. Common contrast agents are frequently used in the 
pancreas, breast and prostate. In other cases, the diagnosis 
and treatment are carried out in combination, with a variety of 
imaging modalities, as outlined in Table I.

3. Drug delivery

Magnetic targeted drug delivery has been used to improve the 
therapeutic performance of drugs and reduce the side effects 
associated with the conventional treatment of cancer. MNPs 
coated with a stabilizing shell have been successfully used as 
contrast agents for MRI (56). On the basis of early diagnosis, 
the treatment may be carried out at the same time, and the 
efficiency may be greatly improved. Therefore, MNPs are 
essential for drug delivery. By binding antibodies, chemother-
apeutics or other drugs, MNPs may be used as drug carriers.

Antibodies. Research has demonstrated that antibody‑conju-
gated MNPs may not only be used for detection of ovarian 
cancer biomarkers, but may also treat ovarian cancer due to 
their high-level accumulation within cancer cells (57,58). 
A study by Wang et al (13) reported, for the first time, that 
anti-α‑subunit of adenosine triphosphate synthase antibody, 
HAI‑178 monoclonal antibody (mAb)‑conjugated fluorescent 
MNPs, was successfully used for targeted imaging and simul-
taneous therapy of in vivo gastric cancer. As for human breast 
cancer, Shanehsazzadeh et al (59) demonstrated disappointing 
in vivo results that had very low accumulation of nanoprobes 
in the targeted site when conjugating ultra‑small SPIONs 
with C595 mAb. On the contrary, a study by Rasaneh and 
Dadras (60) suggested that combining MNPs and a permanent 
magnet may increase the therapeutic efficacy of herceptin for 
increased accumulation in the tumor site.

In order to improve the therapeutic efficiency, the combi-
nation of antibodies and chemotherapeutic drugs is attracting 
increasing attention. A study by Aires et al (61) presented a 
novel multi‑functionalized iron oxide MNP with anti‑CD44 
antibody and gemcitabine derivatives, and their application for 
the selective treatment of CD44‑positive cancer cells. In addi-
tion, Huang et al (62) developed an ovarian cancer dual-targeting 
therapy involving magnetic Fe3O4 NPs grafted with single‑chain 
antibody and docetaxel loaded β‑cyclodextrin. These studies 
have demonstrated the great potential of the combination of 
antibodies and chemotherapeutic drugs.

Chemotherapeutic drugs. Commonly used chemotherapy  
drugs include doxorubicin (DOX), paclitaxel, cisplatin, 
gemcitabine, methotrexate, docetaxel, sorafenib and mitomycin 
C, as outlined in Table II. DOX is the most widely applied 
chemotherapy drug in targeted delivery systems (63). MNPs 
have limits in their stability because of hydrophobic coating (64). 
To address this issue, a reducible copolymer self‑assembled 

Table I. Specific circumstances of imaging and treatment modalities.

Author, year Imaging method Treatment modality Treatment site (Refs.)

Wang et al, 2014 MRI PDT Head and neck (44)
Bhattacharya et al, 2016 MRI Targeted therapy Head and neck (45)
Pilapong et al, 2014 MRI Targeted therapy Liver (46)
Wu et al, 2015 MRI PTT Liver/cervical (47)
Azhdarzadeh et al, 2016 MRI PTT Colon (48)
Yu et al, 2015 MRI/photoacoustic tomography PTT Liver/cervical (49)
Zhou et al, 2015 MRI/photoacoustic imaging Photothermal ablation Breast (50)
Lin et al, 2015 MRI/fluorescence imaging Targeted therapy Cervical (51)
Wang et al, 2014 MRI/ fluorescent imaging Targeted therapy Stomach (13)
Li et al, 2015 MRI/infrared thermal imaging Chemotherapy/MHT Liver (52)
Kim et al, 2016 MRI/optical imaging PDT/MHT Melanoma (53)
Sun et al, 2016 MRI/computed tomography Targeted therapy Brain (54)
Zhao et al, 2014 Near‑infrared fluorescence imaging PDT Head and neck (55)

MRI, magnetic resonance imaging; PDT, photodynamic therapy; PTT, photothermal therapy; MHT, magnetic hyperthermia.
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with SPIONs was developed to deliver DOX for cancer 
therapy (14). The copolymer of reducible polyamidoamine with 
polyethylene glycol/dodecyl amine graft was synthesized by 
Michael addition (14). Additionally, research has demonstrated 
that the application of iron oxide MNPs improved DOX‑NP 
cell penetration compared to free DOX and achieved a cellular 
response to DOX‑NP conjugates similar to that of DOX 
alone (65). SPIONs have also been investigated as a carrier 
for targeted drug delivery. For example, Cicha et al (66) set up 
an in vitro system to analyze the different aspects of cellular 
responses to mitoxantrone‑carrying SPIONs and to the drug 
released from SPIONs.

Other. In addition to chemotherapy drugs, some traditional 
Chinese medicine monomers have been utilized as anti‑cancer 
drugs in targeted drug delivery. A study by Nigam and 
Bahadur (85) demonstrated the fabrication and characterization 

of dendrimerized MNPs as delivery vectors for epigallocat-
echin gallate. Recently, curcumin has been widely applied 
in the drug delivery of MNPs in breast and ovarian cancer. 
A study by Mancarella et al (86) developed a layer by layer 
functionalization of Fe3O4 NPs by coating them in Dextran 
and Poly(L‑lysine), which obtained a high upload of curcumin 
in Fe3O4 NPs for treating ovarian cancer. Furthermore, 
magnetic Fe3O4@zirconium phosphate core‑shell NPs and 
magnetic Fe3O4@hydroxyapatite‑PEI‑b‑cyclodextrin NPs 
have been demonstrated to be effective drug carriers for the 
delivery of curcumin, and these were both used to treat breast 
cancer (87,88).

In other cases, oligonucleotides are applied in drug delivery. 
A study by Pourianazar and Gunduz (89) utilized three‑layer 
MNPs composed of a Fe3O4 magnetic core, an aminosilane 
interlayer and a cationic poly(amidoamine) dendrimer, which 
enhanced the accumulation of CpG‑oligodeoxynucleotides 

Table II. Various chemotherapeutic drugs delivered through magnetic nanoparticles.

Author, year Drug Polymer modification Average size, nm Cancer cell line (Refs.)

Zohreh et al, 2016 Doxorubicin Starch‑g‑poly (methyl 93 HeLa (67)
  methacrylate-co-PEG-
  acrylamide)
Frounchi and Shamshiri, 2015  Poly (lactic acid)/PEG 22 ‑ (68)
Bhattacharya et al, 2016  Polyethyleneimine cross- ~91 HeLa (45)
  linked Pluronic F127
  copolymer
Pilapong et al, 2014  Carboxymethyl 5 K562/ADR (69)
Wu et al, 2014  APS‑PEG‑TFEE 20 MCF‑7 (70)
Chandra et al, 2015  L6‑PEG‑PAMAM and 9.6±0.13 ‑ (71)
  S6-PEG-PAMAM
Hałupka‑Bryl et al, 2015  PEG-poly 8-12 - (72)
  (4-chloromethylstyrene)
Zou et al, 2015  Chitosan ~120 MCF‑7 (73)
Tansik et al, 2014  PLGA 74 MCF‑7 (74)
Ghorbani et al, 2016  Poly 30 HeLa (75)
  (N-isopropylacrylamide-co-IA)
Mangaiyarkarasi et al, 2016 Paclitaxel Chitosan 19‑37 A549 (76)
Lin et al, 2015  Poly[(N‑isopropylacrylamide 229.0±13.2 HeLa (77)
  -r-acrylamide)-b-L-lactic acid]
Fazilati, 2014 Cisplatin Heparin 45±15 CP70 (78)
Parsian et al, 2016 Gemcitabine Chitosan 4 SKBR; MCF‑7 (79)
Roy et al, 2016 Methotrexate Poly (N‑isopropyl 10‑15 MCF‑7 (80)
  acrylamide)-co-tyrosine
Nagesh et al, 2016 Docetaxel Cyclodextrin and 139.5±2.16 C4‑2 (81)
  F127 polymer
Li et al, 2015 Sorafenib PEGylated PLGA 205±3.12 BEL7402 (82)
Türkmen et al, 2014 Mitomycin C Poly (hydroxyethyl 200 ‑ (83)
  methacrylate)
Unsoy et al, 2014 Bortezomib Chitosan 5‑7 HeLa; SiHa (84)

PEG, polyethylene glycol; APS‑PEG‑TFEE, Polyethylene glycol dicarboxylic acid; PLGA, Poly (DL‑lactic‑co‑glycolic acid).
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molecules in tumor cells as a novel targeted delivery system. 
Furthermore, 2‑amino‑2‑deoxy‑glucose was conjugated to 
‑COOH‑modified cobalt ferrite MNPs, which were designed 
to target tumor cells as a potential targetable drug/gene 
delivery agent for cancer treatment (90). In summary, MNPs 
may provide a high‑efficiency drug delivery system with the 
potential to achieve drug targeting.

4. Cancer treatment

As a drug carrier, the ultimate goal of MNPs is to treat. This 
section discusses and provides examples of the use of MNPs 
in MHT, PDT, PTT and combined treatment.

MHT. MHT has attracted a lot of interest in recent years due 
to its potential use in medicine. MNPs are able to convert 
electromagnetic energy into heat (91). Therefore, the most 
popular application for MNPs is most likely the destruction of 
tumor cells by heating them to their apoptosis threshold (92). 
Magnetic field strength and frequency, NP size, NP concentra-
tion and solution viscosity are important parameters and may 
improve the efficiency of heat generation for effective cancer 
therapy while administering a low NP treatment dose (93). 
Although MNPs represent an area of active development for 
MHT, the in vivo anti‑tumor effect under a low‑frequency 
magnetic field using MNPs has not yet been demonstrated. 
A study by Cheng et al (94) demonstrated the successful use 
of spin‑vortex, disk‑shaped permalloy magnetic particles in 
a low‑frequency, rotating magnetic field for the in vitro and 
in vivo destruction of glioma cells. In addition, the hysteresis 
loss is also important for MHT, as increasing the hysteresis 
loss is improving the heating efficiency (94). A study by 
Sasayama et al (95) examined the hysteresis loss of magneti-
cally fractionated MNPs for hyperthermia application. They 
concluded that the efficiency of hyperthermia is improved 
by magnetically separating MNPs (95). Generally, MHT 
may enhance the efficacy of chemotherapeutic drugs to some 
degree. For instance, by combining SPIONs (MF66) function-
alized with Nucant multivalent pseudopeptide (N6L), DOX 
and MHT, the therapeutic effects of MHT in breast cancer 
could be strongly enhanced (96). Furthermore, dual‑functional 
Pt‑Fe‑hydroxyapatite MNPs were developed for chemo‑hyper-
thermia treatment of lung cancer (97). In addition, research has 
indicated that MHT of MNPs enhanced radiation therapy in 
murine models of human prostate cancer (98). In other cases, 
gene delivery also has an important role in MHT (99,100).

PDT. PDT is an externally‑activated and minimally invasive 
modality for cancer treatment. The process of PDT involves 
the systemic or local application of photosensitizing drugs, 
called photosensitizers (PSs), followed by photoexcitation of 
the PSs in the tissue using light of the appropriate wavelength 
and power (16). In the presence of oxygen, the PS is excited 
from the ground state to the excited state following activation 
with light of an appropriate wavelength, and an electron is 
transferred to nearby tissue oxygen, producing oxygen free 
radicals or excited singlet oxygen (101). These substances are 
also known as reactive oxygen species (ROS) (102,103), which 
cause cell damage, and eventually lead to cancer tissue damage. 
To enhance the effect of PSs, building a targeted drug delivery 

system with MNPs has become of interest. For instance, a study 
by Park et al (104) synthesized multifunctional cobalt ferrite 
(CoFe2O4) NPs [CoFe2O4‑hematoporphyrins (HPs)‑FAs] 
functionalized by coating them with HP for introducing 
photo‑functionality and by conjugating with FA for targeting 
cancer cells. Furthermore, other research has revealed that the 
Fe3O4@HP particles demonstrated remarkable and efficient 
photodynamic anticancer activity, and exhibited strong anti-
cancer effects on human prostate cancer (PC‑3) and breast 
cancer (MDA-MB-231) cell lines (105). Pyropheophorbide‑a 
(PPA) as a novel chlorin PS was prepared for PDT. PPA‑coated 
multifunctional magneto‑fluorescent NPs, Fe3O4@SiO2@
CS@PPA (MFCSPPA) were designed (106). The experiments 
demonstrated that MFCSPPA had strong photodynamic 
therapy activity and low dark toxicity, and cell viability 
of human HeLa cervical cancer cells was reduced to 18% 
following treatment with PDT (106).

PTT. As a light absorbent of low toxicity on skin and deep tissue 
penetration, NIR may directly kill cancer cells by PTT, which 
has become a controlled treatment method (107). PTT using 
photothermal agents in combination with NIR has also gained 
increasing attention for cancer treatment (108). An example 
of this is engineering phosphopeptide‑decorated MNPs as 
efficient photothermal agents for solid tumor therapy (109). 
Notably, the photothermal effect of MNP clusters was initially 
reported for the photothermal ablation (PTA) of tumors in vitro 
and in vivo. Compared with individual magnetic Fe3O4 NPs, 
clustered Fe3O4 NPs may result in a marked increase in NIR 
absorption (17). Upon NIR irradiation at 808 nm, clustered 
Fe3O4 NPs inducing higher temperatures were more cytotoxic 
against A549 cells (17). In the majority of cases, PTT and 
MRI are carried out in combination (110,111). However, a 
study indicated that, compared with their large counterparts, 
small Fe3O4 NPs exhibited greater cellular internalization, 
thus enabling a higher PTA efficacy in vitro (112). In addition, 
120 nm may be the optimal diameter of Fe3O4 NPs for MRI 
and PAT in vitro (112). Therefore, the size of MNPs may be an 
important factor for PTT.

Combined treatment. In general, MNPs act as drug carriers 
for targeted delivery systems. The nanocomplex with PTT 
agents and PSs together may be used for combined cancer 
PTT and PDT. A study by Bhana et al (113) demonstrated 
the first application of magnetic‑optical hybrid nanosystems 
for magnetic‑field‑guided drug delivery and dual mode PTT 
and PDT. The composite NPs may generate heat and ROS 
simultaneously upon NIR laser irradiation, and may even be 
selectively delivered to the mitochondria (114). Furthermore, 
MNPs have been demonstrated to have the dual capacity to act 
as both magnetic and PTT agents for amplification of heating 
efficiency (115). In conclusion, these results demonstrated 
high accumulation of MNPs in tumors and excellent tumor 
regression.

5. Conclusions and perspectives

MNPs as contrast agents of imaging have a great potential 
in adjuvant therapy. However, due to some toxicity being 
associated with the use of MNPs, many restrictions have been 
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applied in their application. Surface coatings of MNPs are 
known to influence advantageous features of MNPs, as well 
as potential toxicity. Research has indicated that the larger 
the size of the MNPs, the greater the accumulation in vivo. 
Therefore, controlling the size and surface coatings of MNPs 
could reduce toxicity and improve magnetic behaviors.

In the present review, we focused on cancer diagnosis by 
imaging, drug delivery and treatment using MNPs. Despite 
many successful studies using MNPs as a theranostic material, 
there are still some challenges. While many MNP formulations 
have demonstrated excellent results in small animal models, 
they cannot reach the clinical requirement. By focusing on 
improving their drug loading capacity, and increasing their 
specificity and affinity to target cancer cells, MNPs may 
become suitable for clinical use with integrated imaging and 
multimodal therapy in the near future and dramatically impact 
the treatment of cancer. 
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