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Abstract. Prostatic diseases are a common health problem 
among males in Western countries, and include chronic 
prostatic diseases, which have an unclear pathogenesis and 
few treatment options. In vitro and in vivo studies describe 
oxidative stress as a major pathway involved in the occurrence 
of benign prostatic hyperplasia, prostatic cancer and chronic 
prostatitis. Thus, the oxidative stress cascade is a potential 
target for the treatment of prostatic diseases. This paper pres-
ents a systematic review of the available data concerning the 
association between oxidative stress and the most common 
chronic prostatic diseases, and describes the available treat-
ment options that act upon this pathway.
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1. Introduction

Prostatic disease is a common health problem among males in 
Western countries and has a marked impact on the quality of 
life of aging males (1). Prostate cancer (PCa) is the most preva-

lent cancer type in males >50 years of age and the second most 
common cause of cancer‑associated mortality in males (2). 
Benign prostatic hyperplasia (BPH) represents the most 
common urologic disorder among elderly men, with ~40% of 
males >60 years affected (3). Chronic prostatitis/chronic pelvic 
pain syndromes (CP/CPPS) are other challenging urology 
disorders responsible for considerable disability in affected 
patients  (4). The majority of these prostatic disorders are 
age‑associated and epidemiologically linked. The presence of 
functioning Leydig cells of the testes and good 5‑α‑reductase 
activity are essential for the development of these condi-
tions (5). Their pathogenesis is multifactorial, involving several 
factors, including genetic instability, inflammation, endocrine 
disruptors, atherosclerosis, hormones and oxidative stress (5). 
The integration of these factors in a well‑defined pathogenic 
process from the initiation, development and progression of 
the abovementioned prostatic conditions has not been attained 
to date. Oxidative stress is among the possible mechanisms 
that may account for chronic prostatic disorders. In this paper, 
a systematic review of the role of oxidative stress in chronic 
prostatic disorders was conducted and the emerging treat-
ments that target this pathogenesis are discussed.

2. Methodology and evidence acquisition

A systematic review of the literature available online was 
conducted in March 2016 using the following keywords: 
‘Oxidative stress’ and ‘prostate’. Searches for relevant original 
articles, clinical studies and research papers published since 
January 2000 were performed using the Cochrane Library 
Database, PubMed and MEDLINE. The authors manually 
reviewed the significant results and citations. The Preferred 
Reporting Items for Systematic Reviews and Meta‑Analyses 
process for reporting included and excluded studies was 
followed; the flowchart in Fig. 1 lists the numbers of papers 
identified and then included or excluded at each stage. 
Studies reported in English and presenting data regarding the 
measurement of oxidative stress in patients with BPH, PCa or 
CP/CPPS were included. Animal studies and in vitro models 
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were also included. Review articles and articles published in 
languages other than English were excluded.

3. Evidence synthesis

Oxidative stress and BPH. The etiology and pathogenesis of 
BPH, a common disease in aging males, remain to be elucidated. 
Several parameters and signaling pathways have been suggested 
to serve a role in prostatic growth, but there is no integrative 
theory to explain the interaction among all these mediators. 
Recently, it has been revealed that CP may directly induce 
prostatic proliferation of stromal and glandular cells via the 
production of reactive oxygen species (ROS), leading to pros-
tatic tissue damage and vascular injury (6,7). Oxidative stress 
damage to the prostatic tissue is not only limited to the structure 
and function of the proteins, but also to alterations in the DNA 
repair machinery and post‑translational modifications (8).

Direct toxicity of oxidative stress in BPH. Oxidative DNA 
damage results in point mutations, deletions or rearrange-
ments and contributes to a change in the normal regulation 
of programmed cell death, thereby leading to hyperplastic 
or precancerous transformation (9). The rapid prostatic cell 
turnover in human prostate tissue and the paucity of DNA 
repair enzymes contribute to the particular vulnerability 
of the prostatic gland to oxidative stress  (9). However, the 
molecular mechanisms leading to chronic inflammation, BPH 
and malignant transformation are not well understood. NF‑κB, 
a transcriptional factor that regulates inflammation, immune 
response, cell proliferation, cell migration and apoptosis, has 
been recently studied (10). ROS have been revealed to stimu-
late NF‑κB by activating the NF‑κB‑inducing kinase (NIK) 
and TNF‑α/AP‑1 transduction pathways, thus leading to the 
occurrence of CP. NF‑κB can also induce loss of imprinting 
of insulin‑like growth factor 2 in both cancerous and noncan-
cerous human prostate cells. Consequently, it was proposed 
that NF‑κB modulation may prevent oxidative stress‑induced 
alterations in the epigenome.

Apart from the direct effect of oxidative stress on DNA, 
ROS can also be indirectly genotoxic (11). ROS can initiate 
autocatalytic lipid peroxidation that generates several 
genotoxic breakdown products, including peroxyl radicals, 
alkoxyl radicals and aldehydes, such as malondialdehyde (11). 
In contrast to free radicals, these aldehydes can diffuse out 
of the cell and reach distant targets. The measurement of 
circulating malondialdehyde levels in plasma or serum 
provides a non‑invasive method of estimating the oxidative 
stress level and can be used as a biomarker to examine lipid 
peroxidation‑mediated disorders. Plasma peroxide levels and 
lipid peroxidation were significantly increased in patients 
with BPH compared with controls (12‑14). However, studies 
of circulating malondialdehyde levels in associated with BPH 
have produced contradictory results (12,15).

In BPH, 8‑OH deoxyguanosine (dG) is a marker of 
oxidative DNA damage. Quantitative analysis of this marker 
revealed increased levels in the epithelial cells of BPH, as 
compared with in the normal transition zone (15). NADPH 
oxidase 4 (NOX4) has also been studied as a member of a 
family of proteins that generate ROS in mice; the NOX4 trans-
genic mice exhibited increased levels of 8‑OH dG (15). During 

the course of the study, increased prostate weight was noted 
through epithelial proliferation and stromal alterations, such 
as fibrosis (16).

Modulation of oxidative stress in BPH. Oxidative stress in 
BPH is primarily modulated by angiotensin II (Ang II) and 
myeloperoxidase (MPO). Ang II is the main effector peptide 
of the renin angiotensin system (RAS) and exerts a variety of 
biological actions, including NOX activation, stimulation of 
cell growth and migration, and the inflammation of smooth 
muscle cells and fibroblasts (17,18). Increased Ang II specific 
activity has been reported in patients suffering from BPH (19).

MPO is a member of the peroxidase superfamily that is 
stored within the azurophilic granules of neutrophils and 
monocytes (20). MPO is responsible for the formation of hypo-
chlorous acid, a strong oxidant agent that generates modified 
oxidized lipoproteins (Mox‑LDL) (20). MPO is released in the 
extracellular medium in response to high levels of cytokines, 
promotes oxidative damage to the host tissue and activates 
procarcinogens (21). MPO is present in prostatic epithelial 
cells; however, its role in the various chronic prostatic disor-
ders has not yet been elucidated (22). MPO and Ang II interact 
in the bloodstream to produce Mox‑LDLs, which then promote 
the release of IL‑8 and TNF‑α by endothelial cells and mono-
cytes, respectively (23).

Oxidative stress and PCa
Direct toxicity of oxidative stress in PCa. Oxidative stress 
contributes to epigenetic alterations that may ultimately lead to 
the development of cancer. Oxidative stress has been demon-
strated to increase during carcinogenesis, and the activity 
of certain genes that serve an antioxidant role also increases. 
NAD(P)H:quinoneoxidoreductase 1 (NQO1) is a cytoprotective 
enzyme that acts as a genome protector of DNA alterations 
secondary to oxidative stress (24). NQO1 knockdown increases 
IL‑8, which in turn decreases p53 and activates NF‑κB to mediate 
cell survival  (25). NF‑κB promotes cancer progression in 
castration‑resistant PCa (CRPC) through spermidine/spermine 
N‑acetyltransferase (SSAT) via the effect of androgens (26). 
NF‑κB also alters the regulation of IGF2 imprinting by down-
regulating CCCTC‑binding factor (CTCF) (27).

Modulation of oxidative stress in PCa. Tumorigenesis may also 
result from the deregulation of oxidative stress responses (28). 
Oxidative stress may contribute to an increase in cell viability 
and resistance to stress by upregulating ERp57 (29). Oxidative 
stress increases the transcription factors for certain cancer 
survival proteins, including Hsp27 and PRDX6, thus protecting 
PCa cells from necrosis induced by oxidative stress (29). ROS 
induce carcinogenesis by increasing STAMP2 expression via 
the ATF4 gene. STAMP2 subsequently increases ROS through 
its iron reductase activity (30).

Oxidative stress‑induced DNA mutations with secondary 
genomic instability causing carcinogenesis have been 
attributed in part to the epigenetic silencing of glutathione 
S‑transferase π (GSTP1) and catalase deficiency (31,32). Other 
mutations have also been associated with cancer progres-
sion. Testicular nuclear receptor 4 (TR4) serves protective 
roles against oxidative stress and DNA damage; however, 
the association between TR4 and tumor progression remains 
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unclear. TR4 is associated with the Gleason score of PCa via 
the promotion of CCL2/CCR2 signaling, thus promoting the 
deregulation of oxidative scavengers under chronic inflamma-
tion (33,34). In human PCa, post‑translational modifications 
are induced by redox imbalances, including the oxidation of 
thioredoxin 1, sulfinylation of peroxiredoxins, and the nitra-
tion and methylation of manganese superoxide dismutase (35).

Several studies have suggested the role of oxidative 
stress in causing mitochondrial DNA mutations, which may 
lead to genetic and epigenetic alterations in the nucleus and 
are thus involved in carcinogenesis (36,37). The glutathione 
S‑transferase (GST) gene superfamily (A, M, T and P gene 
classes) encodes a group of enzymes that protect the DNA 
from oxidative damage. Polymorphisms in these genes have 
been thoroughly studied, and the current evidence does not 
suggest any effect on the risk for PCa (38). This finding may be 
explained by the fact that carcinogens whose effect is modifi-
able by GST minimally contribute to carcinogenesis (38).

GPx4 has been suggested to be one of the selenoproteins 
that serve a role against ROS‑induced lipid peroxidation. 
Knock‑out mice for the gene producing GPx4 express high 
levels of the proliferation indicator Ki‑67 and specific 
markers of pro‑oncogenic pathway activation, such as pS6 
and pMAPK (39). Jones et al (40) investigated the role of the 
chemokine receptor Cysteine‑X‑C Receptor 4 (CXCR4) and 
NOX during oxidative stress in PCa cells. The interaction 
between CXCR4 and its ligand, stromal cell‑derived factor‑1 
α (SDF‑1α), was revealed to regulate the activity of NOX2, 
which leads to ROS production through the PI3K/AKT 
pathway. This interaction was also determined to be involved 
in PCa progression as it promotes cell migration that is associ-
ated with metastasis (40).

Oxidative stress acts on the tumor microenvironment and 
ROS have an important role in this pathway via the mTORC1/
c‑Myc cascade, which is mainly controlled by p62. In the 
context of p62 deficiency, the stroma of the tumor is metaboli-
cally reprogrammed into a pro‑tumorigenic milieu (41).

The role of oxidative stress has also been studied in 
CRPC, and an in vitro comparison was made between the 
LNCaP (hormone‑sensitive) and DU145 (hormone‑insensi-
tive) cells treated with hydroxynonenal (4‑HNE); 4‑HNE, 
which is induced by oxidative stress, induces apoptosis in 
hormone‑sensitive cells by activating p53. However, this effect 
was not observed in hormone‑insensitive cells due to the acti-
vation of the JNK signaling pathway (42).

Oxidative stress and CP/CPPS 
Direct toxicity of oxidative stress in CP/CPPS. Chronic prosta-
titis is a frequently diagnosed disease with a poorly established 
pathophysiology (5). The generic name encompasses various 
clinical entities, but the most frequent and most challenging 
is chronic prostatitis class NIH III, which is also known as 
chronic pelvic pain syndrome (5). This condition is character-
ized by the absence of infective etiology (43). Inflammation 
serves a principal role in this disease, and multiple agents of 
the inflammatory pathway have been studied and targeted (44). 
To date, oxidative stress is considered to be a significant factor 
in the inflammatory cascade of chronic prostatitis (4,45). Only 
a few in vivo studies on the subject have been performed due to 
the highly variable patient population. The majority of studies 
have been conducted in vitro, with no considerable impact on 
clinical decision making (46‑48). The available data indicate 
that the concentration of 8‑isoprostanes, lipid‑derived media-
tors of oxidative stress, in prostatic secretions and urine is 
increased among males with CP (4). Future studies exploring 
oxidative stress in CP are awaited; however, the clinical 
heterogeneity of these disorders renders trial design notably 
complicated.

Treatment of oxidative stress. As growing evidence supports 
the role of oxidative stress in chronic prostate diseases, inves-
tigators are struggling to explore possible therapeutic agents 
that can target oxidative stress (49). One must not forget that 
many of the foods normally consumed in the diet contain 
natural antioxidants. For example, blackberries, walnuts, 
strawberries, artichokes, cranberries, brewed coffee, raspber-
ries, pecans, and grape juice all contain high concentrations 
of antioxidants per quantity served (50). Various substances 
have been tested for reducing the formation of ROS or 
increasing ROS levels enough to induce cellular apoptosis 
in prostatic cancerous cells (51‑57). Further discussed here 
are the phenolic molecules and the other synthetic or natural 
non‑phenolic options.

Phenolic molecules may act on the various processes of 
carcinogenesis by inducing cell apoptosis via the formation of 
ROS (58). Phellinus linteus is a mushroom that reduces cancer 
growth by increasing the toxicity of oxidative stress  (53). 
Silibinin, a natural derivate of flavanone, reduced cell motility 
and invasiveness in Du145 PCa cells  (54). Other phenolic 
molecules act by reducing the formation of ROS. Apigenin, a 
dietary plant flavone, is taken up by healthy prostatic cells and 
quickly intercalated into the DNA, thus providing protective 
mechanisms by reducing the formation of ROS (57). Similarly, 
pomegranate juice reduced PCa tumor proliferation in animal 
models (59). Numerous other drugs and phenolic compounds 
have been tested, including N‑acetylalaninate prodrugs, quer-
cetin, Crataeva nurvala bark and seaweeds. These compounds 

Figure 1. Flow chart illustrating the article selection process for the present 
review.
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were all observed to produce significant cancer cell death in 
in vitro and/or in vivo experiments (60‑63).

Non‑phenolic molecules include natural and synthetic 
options. Regucalcin is an intracellular calcium sensor that coun-
teracts the aging of cells and increases the activity of apoptosis 
regulators in the prostate in animal models (51). Melatonin is 
another natural protein that increases the activity of two major 
intracellular enzymes, prostatic glutathione‑S‑transferase and 
glutathione peroxidase, which are characterized by their anti-
oxidant properties (55). Omega‑3 and omega‑6 fatty acids act 
synergistically on tumor cell survival, proliferation and angio-
genesis by increasing lipid peroxidation (63). However, these 
biological actions may not translate into clinical significance, 
and require confirmation in interventional trials or observa-
tional studies with a long follow‑up duration (64).

Selenium and vitamin E are the most studied antioxidants 
for reducing the risk of PCa by modifying the intracellular 
redox state, as previously described in LNCaP cell lines 
treated with selenium  (65). The Selenium and Vitamin 
E Cancer Prevention Trial is one of the largest and most 
important studies in the chemoprevention of PCa to date. 
Male patients were enrolled and randomized into groups set 
to receive selenium, vitamin E, a combination of the two or 
a placebo. Patients were followed for a median of 5.5 years, 
and the risk of developing PCa was evaluated. The investiga-
tors observed no significant difference in PCa risk across 
the four risk groups, with 4.43% of patients developing PCa 
in the placebo group, 4.56% in the selenium, 4.9% in the 
vitamin E and 4.56% in the combination arm (66). After 
18  months of follow‑up, the vitamin E arm exhibited a 
significantly increased risk of PCa by 17% (67). Researchers 
have suggested that selenium‑enriched yeast, but not seleno-
methionine, may be effective in reducing oxidative stress. 
Richie et al (68) assessed the differences between the two 
molecules in 69 healthy males. After 9 months, levels of 
the oxidative stress biomarkers 8‑isoprostaglandin F2α 
and 8OH‑deoxyguanosine were reduced by 66 and 72%, 
respectively, in patients receiving selenium‑enriched yeast 
but not in those receiving selenomethionine. Furthermore, 
a key point in using selenium as a chemopreventive agent is 
the variability in individual responses to selenium on oxida-
tive stress and DNA damage  (69). Investigators followed 
95 adults treated with selenium and noted inconsistent 
changes in the oxidative stress response. In addition, DNA 
damage was not significantly influenced by selenium treat-
ment (69). APC‑100 is the antioxidant moiety of vitamin E 
(α‑tocopherol). APC‑100 exhibits anti‑androgenic proper-
ties, and preclinical studies have observed potent androgen 
receptor (AR) signaling modulation and anti‑cancer activity 
against PCa cell lines (70). Recently, Kyriakopoulos et al (71) 
tested APC‑100 in 20 patients with CRPC and determined 
that the drug was safe. PSA stabilization in these patients 
was a sign of drug activity despite suboptimal (71).

Other nutrients with antioxidative activity include carot-
enoids, ginger and curcumin compounds, and zinc  (58). 
Lycopene is a highly unsaturated acyclic isomer of β‑carotene 
present in red vegetables and fruits. Lycopene's effect on 
preventing PCa is debatable, with conflicting evidence (72‑74). 
A notable prior study reported that vitamin A from animal 
sources increases the risk of PCa, whereas that from plant 

sources decreases the risk (75). Ginger compounds suppress 
growth and induce apoptosis in LNCaP cells by inhibiting 
cyclooxygenase activity the androgen receptor; pStat3 and 
pPKC (α/β) pathways and the activation of the p21 pathway (76).

Recent studies in lipidomics and metabolomics have 
demonstrated that omega‑3 poly‑unsaturated fatty acids 
inhibit tumor growth directly and by modulating the immune 
system. These compounds mainly act by regulating multiple 
complex metabolic processes of oxidative stress pathways, 
including β‑oxidation, lipid release, cellular signaling, eico-
sanoid synthesis, direction activation of nuclear receptors 
and gene transcription  (77). Effectively, arachidonic acid 
may potentiate the risk of metastatic migration. In addition, 
secondary implantation may be potentiated by arachidonic 
acid but may also be reduced by omega‑3 poly‑unsaturated 
fatty acids (78).

The synthetic non‑phenolic molecules that were tested for 
antioxidative effect in prostate diseases are rare. The ability 
of allopurinol to reduce oxidative stress has been assessed 
in humans; in a randomized, double‑blinded study, 50 males 
affected with metabolic syndrome received allopurinol or 
placebo. A significant reduction of malondialdehyde and MPO 
was reported in the treatment arm (56).

4. Conclusion

Oxidative stress is a physiological phenomenon, but it is not 
yet clear which trigger mechanisms make it pathological. 
Evidence suggests that ROS from chronic inflammation serve 
a role in the pathogenesis of prostatic diseases. Due to the large 
number of patients who have inflammatory processes in the 
prostate regardless of whether the condition is symptomatic, 
this link is intriguing, and well‑designed long‑duration studies 
examining the effects of supplemental or dietary intake, as 
aforementioned, on prostate pathology, incidence, treatment 
and progression are required.
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