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Abstract. Improved insight into the molecular characteristics 
of hepatocellular carcinoma (HCC) is required to predict 
prognosis and to develop a new rationale for targeted thera-
peutic strategy. Bioinformatics methods, including functional 
enrichment and network analysis combined with survival 
analysis, are required to process a large volume of data to 
obtain further information on differentially expressed genes 
(DEGs). The RNA sequencing data related to HCC in The 
Cancer Genome Atlas (TCGA) database were analyzed to 
screen DEGs, which were separately submitted to perform 
gene enrichment analysis to identify gene sets and signaling 
pathways, and to construct a protein-protein interaction (PPI) 
network. Subsequently, hub genes were selected by the core 
level in the network, and the top hub genes were focused 
on gene expression analysis and survival analysis. A total 
of 610 DEGs were identified, including 444 upregulated 
and 166 downregulated genes. The upregulated DEGs were 
significantly enriched in the Gene Ontology analysis (GO): 
Cell division and in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway: Cell cycle, whereas the down-
regulated DEGs were enriched in GO: Negative regulation of 
growth and in the KEGG pathway: Retinol metabolism, with 
significant differences. Cyclin-dependent kinase (CDK)1 
was selected as the top hub gene by the PPI network, which 

exhibited a similar expression trend with the data from 
the Gene Expression Omnibus (GEO) database. Survival 
analysis revealed a significantly negative correlation between 
CDK1 expression level and overall survival in the TCGA 
group (P<0.01) and the GEO group (P<0.01). Therefore, 
high-throughput TCGA data analysis appears to be an effec-
tive method for screening tumor molecular markers, and high 
expression of CDK1 is a prognostic factor for HCC.

Introduction 

Hepatocellular carcinoma (HCC) is one of the most 
common types of cancer (1,2), with >780,000 new cases and 
~745,000 deaths annually worldwide (3). Unfortunately, there 
are only a few treatment options, with unsatisfactory efficacy. 
Tumor stage is a decisive factor in the selection of treatment 
strategy. Liver transplantation and hepatectomy are the best 
potentially curative treatment regimens for patients with HCC. 
However, a number of patients with advanced-stage HCC are 
not eligible for these treatments. The 5-year survival rate for 
advanced HCC currently remains poor. Despite a number of 
studies attempting to elucidate the mechanism underlying 
tumorigenesis, no method has been found to be suitable for 
the entire patient population due to the lack of specificity and 
sensitivity. Therefore, it is urgent to identify sensitive and 
specific biomarkers for HCC progression and to elucidate 
the molecular mechanisms involved in HCC progression to 
predict prognosis and to develop a novel targeted therapeutic 
strategy.

Genome‑wide expression profiles have recently been used 
to identify differentially expressed genes (DEGs) during 
disease progression (4,5), which enables the identification of 
candidate biomarkers for the diagnosis, therapy and prognosis 
of tumors. The high-throughput platforms of gene expres-
sion are the base of genome-wide regulatory and interaction 
networks (5,6). Recently, next-generation sequencing accom-
panied by higher throughput developed rapidly, allowing 
more accurate and comprehensive examination of global 
gene expression profiles (7). However, to date, there have only 
been a few studies with a small sample size that used RNA 
sequencing data in the transcriptomic landscape of HCC (8,9), 
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and it is imperative to further elucidate the prominent role of 
whole-transcriptome sequencing in HCC.

The Cancer Genome Atlas (TCGA) is a project that was 
initiated in 2005 by the National Cancer Institute to iden-
tify genetic mutations implicated in cancer using genome 
sequencing and bioinformatics. A large number of tissue 
samples are stored in the TCGA database and examined from 
multiple aspects, including genomic expression. In addition, 
the data are freely available to all researchers for their indi-
vidual studies (7). Therefore, the large TCGA RNA sequencing 
(RNAseq) dataset was used in the present study.

All RNAseq data and clinical data were extracted from 
the TCGA database of HCC. Global gene expression changes 
were compared between tumor tissues (T) and adjacent 
non‑tumor tissues (NT) and numerous DEGs were identified. 
Then, DEGs were subjected to a gene enrichment analysis 
with an online functional annotation tool to identify gene 
sets and signaling pathways that were significantly enriched 
with DEGs, and to construct a protein-protein interaction 
(PPI) network and obtain hub genes for survival analysis. 
Then, the top hub gene, cyclin-dependent kinase (CDK)1, 
which is crucial for the mitotic process, was further analyzed 
and validated with Gene Expression Omnibus (GEO) data to 
conduct a survival analysis, in order to determine whether 
CDK1 expression is directly associated with survival time 
and prognosis in HCC.

Materials and methods 

TCGA data of HCC. All available TCGA data on HCC 
were obtained from the TCGA data portal (TCGA group). 
In September 2016, there were RNAseq data on 424 HCC 
samples, including 324 single tumor samples, 50 pairs of HCC 
and adjacent non‑tumor liver tissues, and clinical data including 
survival time and survival status records of 370 patients 
(excluding 1 case without survival time and 3 cases of recur-
rence). The data, which had been generated using the Illumina 
HiSeq 2000 platform, were annotated to a reference transcript 
set of Human GRCh38/hg38 gene standard track.

GEO data of HCC. We extracted a microarray expression 
profile (GEO group) from the GEO database. All 247 patients 
with HCC included in the GSE14520 profile were identified; 
26 patients were excluded from this study, including 22 patients 
on GPL571 and 5 without outcome data (1 case was on GPL571 
and had no outcome data). Finally, 221 patients carried out 
on GPL3921 were included in the present analysis. All liver 
tissues were obtained from patients who underwent radical 
resection between 2002 and 2003 at the Liver Cancer Institute 
and Zhongshan Hospital Affiliated to Fudan University. Tumor 
sample processing and microarray analysis were performed as 
reported by Roessler et al (10,11).

Global gene expression analysis. Differential gene expres-
sion analysis with RNAseq data was performed using R 
package edgeR (7,12). As suggested by edgeR, genes of 
low read counts are usually not of interest in DGE analysis. 
Therefore, an average raw read count for each gene >1 was 
applied to determine candidate genes that were reasonably 
expressed. The T/NT expression fold change (FC) denotes 

upregulation or downregulation according to the FC value. 
Subsequently, logFC, logCPM, P-value and the corresponding 
false discovery rate (FDR) were all reported by the R package. 
FDR <0.05, logCPM >1 and |logFC| >2 were set as inclusion 
criteria for DEG selection. The gene expression level based on 
microarray data was calculated using R package limma with 
RMA correction.

Gene ontology (GO) and pathway enrichment analysis. GO 
analysis is a useful method for annotating genes and gene sets 
with biological characteristics for high-throughput genome or 
transcriptome data (13). The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway is a knowledge base for systematic 
analysis of gene functions (14). The Database for Annotation, 
Visualization and Integrated Discovery (DAVID) provides a 
comprehensive set of efficient and concise annotation tools 
for researchers to understand the biological meaning behind 
numerous genes (15). GO and KEGG pathway enrichment 
analysis were used for DEGs using the DAVID database. 
FDR<0.05 was set as the cut-off criterion for the two analyses.

PPI network. PPI networks can provide information on 
the molecular mechanism underlying cellular activity. In 
the present study, a PPI network of DEGs was constructed 
using an online database, the Search Tool for the Retrieval 
of Interacting Genes (STRING), which is designed for 
evaluating PPI information. STRING (version 9.0) covers 
1,133 organisms, including 5,214,234 proteins (16). We 
mapped DEGs to STRING to identify the interactive rela-
tionships among DEGs. A confidence score of 0.4 was set as 
the cut-off criterion, and the top 10 DEGs of node degrees 
were selected as hub genes.

Statistical analysis. All data analyses were performed 
in the R programming environment (version 3.2.5) and 

Figure 1. Volcano plot of the differentially expressed genes (DEGs) with low 
expression genes (logCPM ≤1) excluded between T and NT. Y‑axis: logFC 
(fold change); X-axis: -log10 (FDR) for each gene; the color of the data points 
denotes the status of DEGs (red points: FC >2 with FDR <0.05; green points: 
FC <2 with FDR <0.05). CPM, counts per million; FDR, false discovery rate; 
T, tumor tissues; NT, non-tumor tissues.
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Bioconductor (17). Statistical analyses were carried out with 
GraphPad Prism 5.0 software (GraphPad Software, Inc., 
La Jolla, CA, USA). Single comparisons between two groups 
were performed with the Student's t-test. Survival analysis 
was performed according to the Kaplan-Meier analysis and 
log‑rank test. Overall survival (OS) was defined as the time 
between the date of surgery and date of death or the date of 
the last follow-up. P-values <0.05 were considered to indicate 
statistically significant differences.

Results

Identification of DEGs. In the present study, gene expression 
profiles from TCGA were utilized to compare gene expression 

between T and NT. By comparing the RNAseq read counts 
of the various genes and subsequently applying the cut-off 
criteria, 610 genes were identified as DEGs, including 444 
upregulated and 166 downregulated genes. High expression 
genes (logCPM>1) were included in the volcano plot, with low 
expression genes excluded (Fig. 1). Subsequently, a heatmap of 
DEGs was created; the mRNA expression profiles of T and NT 
resulted in obviously separate clusters (Fig. 2).

Gene set enrichment analysis. To gain further insight into the 
function of identified DEGs for HCC, gene enrichment analysis 
was performed using DAVID, including GO and KEGG pathway 
enrichment analyses. Enrichment analyses of the upregulated and 
downregulated genes were performed separately, as previously 

Figure 2. Heatmap of differentially expressed genes (444 upregulated and 166 downregulated genes). Red, upregulation; green, downregulation. FDR<0.05, 
logCPM >1 and |logFC| >2 were set as the cut-off criterion. FC, fold change; CPM, counts per million; FDR, false discovery rate; T, tumor tissues; NT, 
non-tumor tissues.
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recommended (18). By subjecting the upregulated genes to 
enrichment analysis, we observed numerous enriched gene sets. 
For GO biological process, the genes were mainly enriched in 
cell division. For GO cellular component, the gene enrichment 
mainly involved condensed chromosome and spindle. For GO 
molecular function, microtubule binding and protein kinase 

were implicated (Fig. 3). A number of downregulated genes 
were significantly enriched in various GO domains (Fig. 4). The 
biological process was associated with negative regulation of 
growth and mineral ion response, cellular component involved 
extracellular region and organelle membrane, and molecular 
function was related to heme binding and enzyme activity.

Figure 3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of upregulated differentially expressed 
genes. Count: Number of genes related to the enriched GO or KEGG pathway. The color of the bar denotes -log10 (P-value).
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We further investigated the functional implications of these 
DEGs in the development of HCC by KEGG pathway analysis. 
A number of DEGs were enriched in four KEGG pathways, 
including Cell cycle in upregulated DEGs and Retinol metabo-
lism, Mineral absorption and Chemical carcinogenesis in 
downregulated genes (Figs. 3 and 4).

PPI network. The PPI network of DEGs was constructed, 
which consisted of 568 nodes and 1,952 edges, with a mean 
node degree of 6.87. The top 10 genes were selected as hub 
genes by degree, such as CDK1, TOP2A, CCNB1, CDC20, 
PLK1, BIRC5, CCNB2, FOS, AURKA and AURKB (Fig. 5). 
Subsequently, the hub genes were again submitted to STRING 

Figure 4. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of downregulated differentially expressed 
genes. Count: Number of genes related to the enriched GO or KEGG pathway. The color of the bar denotes -log10 (P-value).
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to verify the interaction among them. The PPI network 
consisted of 10 nodes and 40 edges, with a mean node degree 
of 8, and showed a closer protein interaction among the hub 
genes (Fig. 6). Then, the top hub gene, CDK1, was selected as 
a candidate gene for further analysis.

CDK1 overexpression and correlation with hub genes. Next, 
to validate dysregulated expression of CDK1, we analyzed 
its expression data separately with 50 pairs of T and NT, and 
all samples in the TCGA group. These data confirmed that 
CDK1 was significantly overexpressed in HCC compared with 
adjacent NT tissues (Fig. 7A and B), with >2-fold increase in 
CDK1 expression in 98% (49/50) of the tumors (Fig. 8). A 
similar result was found in the GEO group (Fig. 7C). To further 
investigate the link between CDK1 and the other hub genes, 
Pearson's correlation was used and revealed a statistically 
significant correlation between CDK1 and TOP2A (R=0.96, 

P<0.01), CCNB1 (R=0.91, P<0.01), CDC20 (R=0.90, P<0.01), 
PLK1 (R=0.91, P<0.01), BIRC5 (R=0.93, P<0.01), CCNB2 
(R=0.94, P<0.01), FOS (R=‑0.63, P<0.01), AURKA (R=0.81, 
P<0.01) and AURKB (R=0.90, P<0.01) (Fig. 9).

Survival analysis. In the TCGA group, a total of 370 cases of 
HCC patients were enrolled in the study. The patients were 
divided into two groups according to gene expression, and 
expression levels higher than the median were classified into 
the high expression group; otherwise, they were classified into 
the low expression group. OS was calculated based on gene 
expression. Subsequently, survival analysis was performed to 
determine the association between the gene expression level 
and patient OS. We found that the expression level of the hub 
genes, except FOS, was negatively correlated with OS, with 
a statistically significant difference (P<0.01; Fig. 10A). We 
further analyzed the data to validate our findings in the GEO 
group. Similarly, Kaplan-Meier and log-rank test analysis 
revealed that the gene expression level was negatively corre-
lated with OS (Fig. 10B). To summarize, high expression of 
CDK1 was shown to predict a worse prognosis in patients with 
HCC.

Discussion

Despite the surgical and medical advances in the treatment of 
HCC patients, the overall mortality has remained unchanged 
over the past decades (2) and the molecular mechanism 
underlying the development of this cancer has not been fully 
elucidated. HCC remains one of the most common causes of 
cancer‑related morbidity and mortality. HCC is very difficult 
to detect at an early stage, and there are currently no effec-
tive treatments for patients with advanced-stage disease. 
Therefore, it is crucial to improve survival rate and prognosis 
through understanding the etiological factors and molecular 
mechanisms involved in HCC. Recently, microarray tech-
nology has rapidly developed and has been widely applied 
to identify general genetic alterations in malignant diseases, 
such as HCC (19,20). With the recent technological advances, 
next-generation sequencing enables a more comprehensive 
and accurate examination of global gene expression profiles. 
High-throughput analyses are used to identify gene expression 
signatures to improve the accuracy of prognosis (21).

In order to identify potential biomarkers for HCC prog-
nosis and therapy, we used data from TCGA to access valuable 
information on liver cancer. A total of 610 DEGs were iden-
tified, including 444 upregulated and 166 downregulated 
genes. To further elucidate the underlying function of DEGs, 
functional enrichment analysis based on GO and pathway 
enrichment analysis based on KEGG were performed using 
DAVID. These upregulated genes were mainly enriched in 
the GO and pathways related to proliferation, such as cell 
division and cell cycle, while the downregulated genes 
were mainly enriched in negative regulation of growth, 
immune response, redox reactions and signal transmission. 
Numerous abnormally modified GO and KEGG pathways 
were closely associated with cancer. Redox reactions and 
biological metabolism are important for maintaining normal 
life activities. Recent studies have demonstrated that normal 
immune function is crucial for the prevention and treatment 

Figure 5. The hub genes selected by degrees from the protein-protein interac-
tion network of differentially expressed genes. Degree stands for the core 
level of genes.

Figure 6. Protein-protein interaction network of the hub genes. The lines 
represent interaction associations between nodes and line thickness indicates 
the strength of data support.
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of tumors (22,23). Reprogramming energy metabolism and 
evading immune destruction are considered to be two newly 
emerging hallmarks, which are as important as uncontrolled 
proliferation and evasion of apoptosis in tumorigenesis and 
tumor progression (24,25). Our results demonstrated a liver 
cancer cell state of enhanced proliferation and division, 
reduced negative growth regulation, redox electron transport 
and immune function.

Among these DEGs, a closely interacting PPI network was 
found, including 10 genes, namely CDK1, TOP2A, CCNB1, 
CDC20, PLK1, BIRC5, CCNB2, FOS, AURKA and AURKB, 
which were again analyzed by DAVID and were found to be 
associated with cell division and proliferation. CDK1 had a 
highest degree in the PPI network and was considered as the 
top hub gene. Pearson's correlation analysis revealed that the 
expression of other hub genes exhibited a significantly positive 

correlation with CDK1, except FOS, the expression of which 
had a significantly negative correlation with tumors.

The cell cycle is the series of events that occur during 
cell division and DNA duplication, and it is an evolutionarily 
conserved process necessary for mammalian cell growth and 
development. For cells to accurately duplicate their contents 
and divide, they must proceed through the steps of the cell 
cycle in a specific order. Loss of normal cell cycle control is 
a hallmark of human cancer (26). Tumor cells accumulate 
genetic alterations that lead to unscheduled cell proliferation 
and genomic instability. Chromosomal instability is corre-
lated with poor prognosis in multiple solid tumors, indicating 
that increasing genetic diversity contributes to altered tumor 
cell survival and chemoresistance (27). At present, several 
cell cycle-related genes have been reported to be involved 
in HCC initiation and progression (28,29). Our results 

Figure 7. CDK1 significantly overexpressed in tumor tissue (T) compared with adjacent non‑tumor liver tissues (NT) in the (A) TCGA paired set (50 pairs of 
samples from TCGA); (B) TCGA set (all samples from TCGA); and (C) GEO set (samples from GEO). ***P<0.01. CDK, cyclin-dependent kinase; TCGA, The 
Cancer Genome Atlas; GEO, Gene Expression Omnibus; T, tumor tissues; NT, non-tumor tissues.

Figure 8. Waterfall plot demonstrating the distribution of CDK1 expression in TCGA data. These data confirmed that CDK1 was significantly overexpressed 
in HCC when compared with surrounding normal tissues, with a >2-fold increase in CDK1 expression in 98% (49/50) of the tumors. CDK, cyclin-dependent 
kinase; TCGA, The Cancer Genome Atlas; HCC, hepatocellular carcinoma T, tumor tissues; NT, non-tumor tissues.
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Figure 9. Pearson's correlation analysis confirmed that there was a statistically significant correlation between CDK1 and the other hub genes: TOP2A (R=0.96, 
P<0.01), CCNB1 (R=0.91, P<0.01), CDC20 (R=0.90, P<0.01), PLK1 (R=0.91, P<0.01), BIRC5 (R=0.93, P<0.01), CCNB2 (R=0.94, P<0.01), FOS (R=‑0.63, 
P<0.01), AURKA (R=0.81, P<0.01) and AURKB (R=0.90, P<0.01). CDK, cyclin‑dependent kinase.

Figure 10. The expression level of CDK1 was negatively associated with overall survival with a significant difference in TCGA (left panel, P<0.01) and GEO 
(right panel, P<0.01). CDK, cyclin-dependent kinase; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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demonstrated that a large number of DEGs were significantly 
enriched in the molecular process related to cell cycle, cell 
division and growth regulation, demonstrating that cell cycle 
and cell regulation disorders are crucial for tumorigenesis in 
HCC.

CDKs are master regulatory kinases and coordinate all 
cell cycle events. During the entire cell cycle, cyclins, which 
are expressed periodically, and CDKs, which are relatively 
stable, combine to form a complex, which activates the kinase 
activity of CDKs and can precisely regulate the cell cycle at 
different phases through inducing or inhibiting the expression 
of several genes necessary for cells to enter mitosis. CDK1 is 
a catalytic subunit of M phase-promoting factor, which acts 
mainly towards the end of the G2 phase and can direct cells 
into the mitotic M phase. Cyclin B synthesis begins in the late 
G1 phase, increases in the S phase, peaks in the late G2 and M 
phase, then enters the nucleus and binds to CDK1. When the 
cells exit the M phase, cyclin B is degraded, the kinase activity 
of CDK1 is inactivated, and the cells are guided into the next 
cell cycle (30). CCNB1 overexpression promotes cell prolifera-
tion and tumor growth in human colorectal cancer (31), and is 
a poor prognostic factor for breast cancer (32).

PLK1 plays an extremely important role in the replication 
of hepatitis B virus, tumor metastasis and autophagy (33-35).

TOP2A, as a common predictor of chemotherapy efficacy, 
exhibits a significant correlation between its amplification or 
deletion and the reactivity to anthracyclines (36). Patients with 
high expression of TOP2A were found to be more sensitive 
to anthracyclines, while patients with low expression were 
resistant to these agents (37).

FOS, an AP-1 transcription factor subunit, is involved 
in mediating a number of biological processes, such as cell 
proliferation, differentiation and death (38).

The aurora kinases (AURK) are an evolutionarily conserved 
family of serine/threonine kinases related to mitosis and 
meiosis, and most mitotic cells express two AURK isoforms 
(AURKA and AURKB). These kinases, as molecular switches, 
regulate multiple processes in cell division, including spindle 
organization, chromosome alignment, the spindle assembly 
checkpoint and cytokinesis, among others (39).

CDC20 is an important cofactor of the anaphase-promoting 
complex or cyclosome (APC/C) E3 ubiquitin ligase by regu-
lating APC/C ubiquitin activity on specific substrates for 
their subsequent degradation by the proteasome. It plays an 
important role in chromosome segregation and mitotic exit as 
a target of the spindle assembly checkpoint (40).

BIRC5, a member of the inhibitor of apoptosis protein 
(IAP) family, plays an important role in apoptosis, prolifera-
tion and angiogenesis, and is an important prognostic marker 
and survival factor (41,42).

In the present study, the expression of the hub genes, 
except FOS, was found to be significantly increased in HCC, 
and the expression level was negatively correlated with OS, 
with a statistically significant difference. These results were 
similar to the expression in other solid tumors (4,43-45), 
showing the characteristics of the hub genes as oncogenes 
and the key role of the PPI network in tumorigenesis and 
tumor progression.

Taken together, the results of the present study demon-
strated that several pathways are altered and numerous hub 

genes, including CDK1, are overexpressed in HCC, with the 
expression level being significantly associated with survival 
time; they may be indicative of poor prognosis and may be 
valuable as prognostic markers for HCC patients. It may be 
preferable to study these genes as a whole in the context of a 
PPI network for further analysis, as this will hopefully provide 
new insights into the molecular mechanisms, prevention and 
treatment of HCC.

There were certain limitations to the present study, as the 
results from the RNASeq and bioinformatics lack corresponding 
experiments in vitro and in vivo. Functional research is neces-
sary to uncover the molecular mechanisms interlinking DEGs 
in HCC and their role in prognosis and therapy.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

Not applicable.

Funding

This study was supported in part by the Wenzhou Science 
and Technology Project (grant no. Y20170096), the Zhejiang 
Provincial Natural Science Foundation of China (grant 
no. LY18H160056) and the Science Technology Department of 
Zhejiang Province Project (grant no. 2016C37127). Fund body 
only provided a part of the financial support for our study, but 
did not participate in or interfere with our research design, 
data collection, data interpretation, or manuscript writing.

Authors' contributions

QiaZ wrote the manuscript and interpreted the data. HQ 
designed the study as director. YS performed data mining. 
QinZ helped correct the manuscript. QH performed data 
analysis and statistical analysis. All the authors have read and 
approved the final version of this manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Availability of data and materials

The datasets generated and analysed in the present study are 
available from the corresponding author on reasonable request.

References

 1. El-Serag HB: Hepatocellular carcinoma. N Engl J Med 365: 
1118-1127, 2011. 

 2. Villanueva A and Llovet JM: Liver cancer in 2013: Mutational 
landscape of HCC-the end of the beginning. Nat Rev Clin 
Oncol 11: 73-74, 2014. 



ZHU et al:  IDENTIFICATION OF KEY GENES AND PATHWAYS BY BIOINFORMATICS ANALYSIS606

 3. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, 
Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence 
and mortality worldwide: Sources, methods and major patterns 
in GLOBOCAN. Int J Cancer 136: E359-E386, 2015.

 4. Shi YX, Zhu T, Zou T, Zhuo W, Chen YX, Huang MS, Zheng W, 
Wang CJ, Li  X, Mao XY, et al: Prognostic and predictive values 
of CDK1 and MAD2L1 in lung adenocarcinoma. Oncotarget 7: 
85235-85243, 2016. 

 5. Liang B, Li C and Zhao J: Identification of key pathways and 
genes in colorectal cancer using bioinformatics analysis. Med 
Oncol 33: 111, 2016. 

 6. Lee JS and Thorgeirsson SS: Comparative and integrative func-
tional genomics of HCC. Oncogene 25: 3801-3809, 2006. 

 7. Ho DW, Kai AK and Ng IO: TCGA whole‑transcriptome 
sequencing data reveals significantly dysregulated genes and 
signaling pathways in hepatocellular carcinoma. Front Med 9: 
322-330, 2015. 

 8. Huang Q, Lin B, Liu H, Ma X, Mo F, Yu W, Li L, Li H, Tian T, 
Wu D, et al: RNA-Seq analyses generate comprehensive tran-
scriptomic landscape and reveal complex transcript patterns in 
hepatocellular carcinoma. PLoS One 6: e26168, 2011. 

 9. Lin KT, Shann YJ, Chau GY, Hsu CN and Huang CY: 
Identification of latent biomarkers in hepatocellular carcinoma 
by ultra-deep whole-transcriptome sequencing. Oncogene 33: 
4786-4794, 2014. 

10. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, 
Thorgeirsson SS, Sun Z, Tang ZY, Qin LX and Wang XW: A 
unique metastasis gene signature enables prediction of tumor 
relapse in early-stage hepatocellular carcinoma patients. Cancer 
Res 70: 10202-10212, 2010. 

11. Roessler S, Long EL, Budhu A, Chen Y, Zhao X, Ji J, Walker R, 
Jia HL, Ye QH, Qin LX, et al: Integrative genomic identifi-
cation of genes on 8p associated with hepatocellular carcinoma 
progression and patient survival. Gastroenterology 142: 957-966 
e12, 2012.

12. Robinson MD, McCarthy DJ and Smyth GK: edgeR: A 
Bioconductor package for differential expression analysis of 
digital gene expression data. Bioinformatics 26: 139-140, 2010. 

13. Gene Ontology Consortium: The Gene Ontology (GO) project in 
2006. Nucleic Acids Res 34 (Database Issue): D322-D326, 2006.

14. Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes 
and genomes. Nucleic Acids Res 28: 27-30, 2000. 

15. Huang da W, Sherman BT and Lempicki RA: Systematic and 
integrative analysis of large gene lists using DAVID bioinfor-
matics resources. Nat Protoc 4: 44-57, 2009. 

16. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, 
Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al: 
STRING v10: Protein-protein interaction networks, integrated 
over the tree of life. Nucleic Acids Res 43 (Database Issue): 
D447-D452, 2015. 

17. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, 
Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al: Bioconductor: 
Open software development for computational biology and 
bioinformatics. Genome Biol 5: R80, 2004. 

18. Hong G, Zhang W, Li H, Shen X and Guo Z: Separate enrichment 
analysis of pathways for up- and downregulated genes. J R Soc 
Interface 11: 20130950, 2013. 

19. Chen P, Zheng X, Zhou Y, Xu Y, Zhu L and Qian Y: Talin-1 inter-
action network promotes hepatocellular carcinoma progression. 
Oncotarget 8: 13003-13014, 2017.

20. Sun H, Peng Z, Tang H, Xie D, Jia Z, Zhong L, Zhao S, Ma Z, 
Gao Y, Zeng L, et al: Loss of KLF4 and consequential downreg-
ulation of Smad7 exacerbate oncogenic TGF-β signaling in and 
promote progression of hepatocellular carcinoma. Oncogene 36: 
2957-2968, 2017.

21. Ko JH, Ko EA, Gu W, Lim I, Bang H and Zhou T: Expression 
profiling of ion channel genes predicts clinical outcome in breast 
cancer. Mol Cancer 12: 106, 2013. 

22. Kulkarni A, Natarajan SK, Chandrasekar V, Pandey PR and 
Sengupta S: Combining immune checkpoint inhibitors and 
kinase-inhibiting supramolecular therapeutics for enhanced 
anticancer efficacy. Acs Nano, 2016.

23. Hughes PE, Caenepeel S and Wu LC: Targeted therapy and 
checkpoint immunotherapy combinations for the treatment of 
cancer. Trends Immunol 37: 462-476, 2016. 

24. Hanahan D and Weinberg RA: The hallmarks of cancer. Cell 100: 
57-70, 2000. 

25. Hanahan D and Weinberg RA: Hallmarks of cancer: The next 
generation. Cell 144: 646-674, 2011. 

26. Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR 
and Mak TW: Targeting mitosis in cancer: Emerging strategies. 
Mol Cell 60: 524-536, 2015. 

27. Visconti R, Della Monica R and Grieco D: Cell cycle checkpoint 
in cancer: A therapeutically targetable double-edged sword. 
J Exp Clin Cancer Res 35: 153, 2016. 

28. Cai H, Li H, Li J, Li X, Li Y, Shi Y and Wang D: Sonic hedgehog 
signaling pathway mediates development of hepatocellular 
carcinoma. Tumour Biol, 2016.

29. Jin B, Wang W, Du G, Huang GZ, Han LT, Tang ZY, Fan DG, Li J 
and Zhang SZ: Identifying hub genes and dysregulated pathways 
in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 19: 
592-601, 2015. 

30. Bertoli C, Skotheim JM and de Bruin RA: Control of cell cycle 
transcription during G1 and S phases. Nat Rev Mol Cell Biol 14: 
518-528, 2013. 

31. Fang Y, Yu H, Liang X, Xu J and Cai X: Chk1-induced CCNB1 
overexpression promotes cell proliferation and tumor growth in 
human colorectal cancer. Cancer Biol Ther 15: 1268-1279, 2014. 

32. Ding K, Li W, Zou Z, Zou X and Wang C: CCNB1 is a prognostic 
biomarker for ER+ breast cancer. Med Hypotheses 83: 359-364, 
2014. 

33. Diab A, Foca A, Fusil F, Lahlali T, Jalaguier P, Amirache F, 
N'Guyen L, Isorce N, Cosset FL, Zoulim F, et al: Polo-like-kinase 
1 is a proviral host factor for hepatitis B virus replication. 
Hepatology 66: 1750-1765, 2017. 

34. Li J, Wang R, Gannon OJ, Rezey AC, Jiang S, Gerlach BD, 
Liao G and Tang DD: Polo-like Kinase 1 regulates vimentin 
phosphorylation at ser-56 and contraction in smooth muscle. 
J Biol Chem 291: 23693-23703, 2016. 

35. Ruf S, Heberle AM, Langelaar‑Makkinje M, Gelino S, 
Wilkinson D, Gerbeth C, Schwarz JJ, Holzwarth B, Warscheid B, 
Meisinger C, et al: PLK1 (polo like kinase 1) inhibits MTOR 
complex 1 and promotes autophagy. Autophagy 13: 486-505, 2017. 

36. Slamon DJ and Press MF: Alterations in the TOP2A and HER2 
genes: Association with adjuvant anthracycline sensitivity in 
human breast cancers. J Natl Cancer Inst 101: 615-618, 2009. 

37. Brase JC, Schmidt M, Fischbach T, Sültmann H, Bojar H, 
Koelbl H, Hellwig B, Rahnenführer J, Hengstler JG and 
Gehrmann MC: ERBB2 and TOP2A in breast cancer: A compre-
hensive analysis of gene amplification, RNA levels, and protein 
expression and their influence on prognosis and prediction. Clin 
Cancer Res 16: 2391-2401, 2010. 

38. Garces de Los Fayos Alonso I, Liang HC, Turner SD, Lagger S, 
Merkel O and Kenner L: The role of activator protein-1 
(AP-1) family members in cd30-positive lymphomas. Cancers 
(Basel) 10: pii: E93, 2018.

39. Carmena M and Earnshaw WC: The cellular geography of aurora 
kinases. Nat Rev Mol Cell Biol 4: 842-854, 2003. 

40. Kapanidou M, Curtis NL and Bolanos-Garcia VM: Cdc20: At 
the crossroads between chromosome segregation and mitotic 
exit. Trends Biochem Sci 42: 193-205, 2017. 

41. Hingorani P, Dickman P, Garcia‑Filion P, White‑Collins A, 
Kolb EA and Azorsa DO: BIRC5 expression is a poor prog-
nostic marker in Ewing sarcoma. Pediatr Blood Cancer 60: 
35-40, 2013. 

42. Wang Q, Shu R, He H, Wang L, Ma Y, Zhu H, Wang Z, Wang S, 
Shen G and Lei P: Co-silencing of Birc5 (survivin) and Hspa5 
(Grp78) induces apoptosis in hepatoma cells more efficiently 
than single gene interference. Int J Oncol 41: 652-660, 2012. 

43. Yang W, Cho H, Shin HY, Chung JY, Kang ES, Lee EJ and 
Kim JH: Accumulation of cytoplasmic Cdk1 is associated with 
cancer growth and survival rate in epithelial ovarian cancer. 
Oncotarget 7: 49481-49497, 2016. 

44. Willder JM, Heng SJ, McCall P, Adams CE, Tannahill C, 
Fyffe G, Seywright M, Horgan PG, Leung HY, Underwood MA 
and Edwards J: Androgen receptor phosphorylation at serine 515 
by Cdk1 predicts biochemical relapse in prostate cancer patients. 
Br J Cancer 108: 139-148, 2013. 

45. Sung WW, Lin YM, Wu PR, Yen HH, Lai HW, Su TC, Huang RH, 
Wen CK, Chen CY, Chen CJ and Yeh KT: High nuclear/cyto-
plasmic ratio of Cdk1 expression predicts poor prognosis in 
colorectal cancer patients. BMC Cancer 14: 951, 2014. 

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International (CC BY-NC-ND 4.0) License.


