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Abstract. Acute myeloid leukemia (AML) is a hematological 
malignancy with a poorly understood pathogenesis, especially 
among patients with no known cytogenetic abnormalities. 
Furthermore, there is a lack of therapeutic gene targets and 
diagnostic biomarkers for the effective treatment of AML. 
The present study aimed to identify candidate biomarkers 
correlated with the clinical prognosis of patients with AML. 
Leukemic cells from 5 patients with AML exhibiting a normal 
karyotype, and hematopoietic cells from 5 healthy donors 
were processed for RNA sequencing (RNA‑seq), and the 
obtained RNA expression profiles were subjected to weighted 
gene correlation network analysis. A novel group of genes 
(the red module) were identified to be significantly associated 
with AML, and this module contained a closely connected 
network with 147 nodes, which corresponded to 114 mRNAs. 
Analysis of the correlation between these mRNAs and blast 
cell percentage, overall survival (OS) and disease‑free survival 
(DFS) using cases from The Cancer Genome Atlas (TCGA) 
database revealed that CSF3R, ALPL and LMTK2 were nega-
tively associated with the percentage of blast cells, while high 
expression of these genes was associated with longer OS and 
DFS in patients with AML. The differential expression of these 

three genes between patients with AML and healthy control 
subjects was supported using the Genotype‑Tissue Expression 
and TCGA databases and was further confirmed using reverse 
transcription‑quantitative (RT‑qPCR). These genes exhibited 
significantly lower expression in patients with AML compared 
with control subjects. The results indicated that CSF3R, ALPL 
and LMTK2 exhibit the potential to be prognostic biomarkers. 
However, the biological functions of these three candidate 
genes need to be assessed in further studies.

Introduction

Acute myeloid leukemia (AML) is a hematologic 
malignancy characterized by aberrant clonal amplification of 
undifferentiated myeloid progenitors in bone marrow (BM) 
and results in dysregulated hematopoiesis (1). In the USA, 
the morbidity and mortality of AML are 13 and 7.1 per one 
hundred thousand persons, respectively (2), and these values 
in China are increasing (3). AML outcomes are classified as 
favorable, intermediate and adverse. Young patients with AML 
in the favorable and adverse groups had three‑year overall 
survival (OS) rates of 66 and 12% and three‑year disease‑free 
survival (DFS) rates of only 55 and 10%, respectively (4,5). 
Prognosis is related not only to age, sex, karyotype, white 
blood cell (WBCs) count and blast cell count but also to the 
expression and mutation of some critical genes (6). Several 
biomarkers have been proven to be useful in the diagnosis and 
prognosis of AML according to recent studies (7,8) and some 
reports have shown that the expression levels of some genes, 
such as SETBP1, VEGFC and EVI1, are associated with the 
risk level and the survival of patients (9‑11). However, OS and 
DFS of patients with AML remain poor (12,13). Therefore, 
identifying additional AML‑related genes is urgently needed.

A typical feature of cancer is altered transcriptional 
networks originating from genetic aberrances, which drive 
disease occurrence and development (14,15). These genetic 
abnormalities can act in conjunction with suitable upstream 
and downstream molecules to exert procarcinogenic activities. 
Therefore, the identification of novel transcriptional networks 
and key nodes should help combat abnormal transcription. 
Weighted gene correlation network analysis (WGCNA) is 
a statistical technique based on functions in the R software 
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package and is used to identify groups of genes among 
microarray or transcriptome sequencing data that are highly 
correlated with each other and with biological traits  (16). 
This biological analysis method has been used in pancreas, 
colon and bladder studies to identify important prognostic and 
therapeutic targets in data from the Gene Expression Omnibus 
(GEO) and The Cancer Genome Atlas (TCGA) (17‑19). In this 
study, we used WGCNA to identify genes in the coexpressed 
network associated with AML.

Materials and methods

Clinical specimens. The clinical specimens used for RNA‑seq 
were BM cells from five patients with de novo AML (three 
females and two males) with normal karyotypes. The five 
AML patients were adults aged 17, 24, 26, 31 and 44 years. 
The French‑American and British (FAB) types were M1 (2), 
M4 (2) and M5 (1). The WBC count per liter of blood ranged 
from 106x109 to 642x109. Hematopoietic stem cells from mobi-
lized peripheral blood (PB) of five healthy male donors with 
a mean age of 33.8 years were used as controls. The clinical 
specimens used to verify the differences in gene expression 
included samples from patients with AML (30) and healthy 
individuals (43). The thirty AML patients included 17 males 
and 13 females, and the average age was 41.1 years, ranging 
from 24 to 64 years old. Conventional cytogenetic analysis 
showed that 15 AML patients had a normal karyotype, while 
the karyotype of the other patients showed abnormalities. The 
FAB classification of the patients was stratified as follows: 
1 M0, 4 M1s, 7 M2s, 7 M4s and 11 M5s. The healthy donors 
included 32 males and 11 females, and they ranged in age 
from 11 to 58 years, with a mean age of 33.6. The collection 
products from BM and PB were processes with red blood cell 
lysis buffer (Beijing Solarbio Science & Technology Co., Ltd.) 
and the leukocytes remaining after centrifugation were used in 
subsequent RNA_seq or RT‑qPCR. 

This study protocol was approved by the institutional 
medical Ethics Committee of Shenzhen Second People's 
Hospital (Shenzhen, China). All patients and donors provided 
informed consent for the molecular analysis of their samples. 

Online data resources. Clinicopathological data, including 
blast cells, OS, DFS and cytogenetic karyotype, of 200 AML 
specimens and the corresponding mRNA expression data 
were downloaded from the TCGA (https://gdc‑portal.nci.nih.
gov/). Because some data were invalid, the clinical data of 
170 PB blast cells, 173 BM blast cells, 160 OS, 171 DFS and 
156 karyotype samples were finally included to investigate the 
prognostic potential of candidate genes for AML. The mRNA 
expression data of whole blood from 337 healthy donors were 
downloaded from the Genotype‑Tissue Expression (GTEx) 
database (https://gtexportal.org/home/index.html).

RNA sequencing. mRNA and lncRNA were isolated by 
removing the ribosomal RNA from total RNA. Then, the 
remaining RNA was fragmented (200‑500 bp) and reverse tran-
scribed into cDNA using random primers. A cDNA template 
with an adapter was used for fragment amplification and library 
construction. The libraries were sequenced using an Illumina 
HiSeq 2000 system (Total Genomics Solution Pte. Ltd.). 

Clean reads were retrieved after filtering out sequences with 
poor quality and adaptor sequences from the raw reads and 
were aligned with the reference genome (UCSC hg 19) by 
HISAT (20).

Analysis of mRNA and lncRNA expression. The transcripts 
of the samples were reconstructed by StringTie  (21), and 
redundant transcripts were eliminated using Cuffcompare 
software  (22). The lncRNAs were collected through four 
filtering steps as follows: The short transcripts (<200 bp) were 
removed, the background transcripts were removed, the known 
transcripts and pre‑mRNAs were removed, and the transcripts 
with protein‑coding potential were removed. The number of 
reads mapped to the exon regions was calculated using HTseq 
software, and the expression levels of lncRNAs and mRNAs 
were calculated as the RPKM. CircRNA was selected as the 
intersection of the results, which were predicted by find_circ 
and CIRI software. The expression levels of the circRNAs 
were calculated with the pseudo RPKM method.

Weighted correlation network analysis. The mRNAs, 
lncRNAs and circRNAs were screened from the tran-
scriptome profiles according to the following criteria: The 
expression levels of mRNAs and lncRNAs must be ≥ one in 
all specimens; the coefficient of variation must be 
at least 0.5; and circRNA must be expressed in 80% 
of the specimens. The resulting RNAs were used to 
construct the weighted gene coexpression network by 
WGCNA (https://labs.genetics.ucla.edu/horvath/htdocs/ 
CoexpressionNetwork/Rpackages/WGCNA/). First, Pearson's 
method was used to calculate the pairwise correlation 
coefficients of the genes and to construct the gene expres-
sive correlation matrix. Next, the appropriate value of the 
soft‑thresholding power (β) was selected to build a weighted 
adjacency matrix, which was further transformed into a 
topological overlap matrix (TOM) and dissimilarity matrix. 
The latter was used for hierarchical clustering and dynamic 
cutting. The main modules were identified after an appropriate 
cutHeight point for cutting the tree was chosen and modules 
with similar eigengenes were merged.

Identifying the module associated with AML and functional 
enrichment analysis. The module eigengene (ME) represents 
a distinctive gene expression pattern of a module in a sample. 
The module‑trait relationships were calculated using the corre-
lation between modules' MEs and traits of AML. The gene 
significance (GS) was used to combine the clinical traits with 
the coexpression network. The higher the absolute value of 
GS, the more biologically meaningful the gene in a module is. 
Module significance (MS) is defined as the average absolute 
GS measured for all genes in a given module. The genes in 
the module of interest were subjected to Gene Ontology (GO) 
analyses. A P‑value <0.05 was considered to be the cut-off 
criterion for significance.

Candidate prognostic target selection. The nodes (genes) in 
an undirected, weighted gene network corresponded to gene 
expression profiles. The edges between genes were determined 
by pairwise correlations between the expression levels of the 
genes. The genes in the module that were highly associated 
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with AML were selected as candidate genes with the crite-
rion of a weighted value (edge width) that was not smaller 
than 0.4 between any two genes in the module. The weighted 
value between the genes was derived from the TOM matrix. 
We graphed the candidate gene coexpression network using 
Cytoscape software.

RNA extraction and RT‑qPCR. Clinical specimens were 
washed with RBC lysis buffer (Beijing Solarbio Science & 
Technology Co., Ltd.) to remove the red blood cells (RBCs) 
and washed at least once with PBS buffer. Then, for the extrac-
tion of total RNA, the remaining white cells were suspended in 
RNAiso Plus reagent (Takara Bio, Inc.) and placed in a ‑80˚C 
refrigerator according to the manufacturer's instructions. A 
Prime Script II cDNA synthesis kit (Takara Bio, Inc.) was used 
to perform reverse transcription. In total, 2 µg of RNA was 
converted into cDNA with random primers. The RT‑qPCR 
system was prepared with TB Green Premix Ex Taq II (Takara 
Bio, Inc.) and the reaction was performed on a QuantStudio 
DX (Applied Biosystems; Thermo Fisher Scientific, Inc.). The 
primers for the candidate and reference genes are listed in 
Table SI.

Statistical analysis. The relationships between the percentage 
of blast cells in the BM or PB of AML patients and the 
expression levels of genes were statistically analyzed by 

Pearson's correlation, and a two‑tailed P<0.05 was considered 
significant followed by Bonferroni multiple testing correc-
tion. The gene expression level was a continuous variable that 
was discretized for OS and DFS analyses. We determined 
the optimal cut-off point using the maximally selected rank 
statistics generated by R Version 3.5.0 (https://cran.r‑project.
org/web/packages/maxstat/index.html) (Table  Ι). We 
compared the difference in survival between patients with 
high gene expression levels and patients with low gene expres-
sion levels by the log‑rank test, and P<0.05 indicated that the 
survival curves were significantly different.

Results

Construction of the modules by WGCNA among transcrip‑
tomes. The cDNA libraries of ten samples comprising leukemic 
cells from 5 AML patients with a normal karyotype and 
hematopoietic cells from 5 healthy donors were constructed 
for Illumina sequencing. A total of 1,022,008,940 clean reads 
with 153.3 Gb clean bases were obtained. The average Q20 
and Q30 of the samples were 97.03% and 92.95, respectively 
(Table  SII) and the top 20 differentially expressed genes 
(DEGs) are listed in Table SIII.

A total of 12,894 genes identified from RNA_seq were 
used to construct the gene coexpression network by WGCNA. 
The correlation coefficient matrix was calculated by Pearson's 
correlations among the 12,894 genes. Then, the adjacency 
matrix was constructed through index transformation, and 
the soft‑thresholding power (β) value was 10 according to the 
approximate scale‑free topology criterion (Fig. 1A and B). A 
module is a group of genes with highly interconnected traits, 
as revealed by the topological overlap, and the modules were 
identified using hierarchical clustering dendrograms. Eighteen 
modules were obtained through the dynamic branch cutting 
method (cutHeight=0.18; Fig. 1C).

The red module was closely related to AML. Although six 
modules have significantly positive relationships with clinical 
traits and four modules have remarkably negative associations 
with the AML according to their correlation coefficients and 
P‑values (Fig. 2A), we found that, among the eighteen modules, 
the red module had the greatest MS value (slightly higher than 
the firebrick4 module, Fig. 2B). This finding suggested that 
the red module may be the most biologically meaningful in 
AML. Furthermore, the protein‑coding genes presented in 
each module were subjected to GO functional enrichment 
analysis. Assessment of the biological processes showed that 
the genes within the red module were enriched in processes 
associated with the biological characteristics of hematopoietic 
cells such as neutrophil activation (P‑value=2.38x10‑45), 
neutrophil degranulation (P‑value=7.47x10‑43) and leukocyte 
migration (P‑value=2.09x10‑18; Fig. 3A), while the genes in 
firebrick4 module were enriched in genes related to ribosome 
biogenesis (P‑value=2.51x10‑12) and ncRNA metabolic process 
(P‑value=3.14x10‑11; Fig. 3B); genes in mediumpurple3 were 
mainly enriched in T cell activation (P‑value=5.31x10‑27; 
Fig.  3C); and genes in the darkseagreen4 were enriched 
in the regulation of the smoothened signaling pathway 
(P‑value=1.71x10‑5; Fig.  3D). The functional annotation 
of the genes in the red module revealed that they are 

Table Ι. The optimal cut-off points of the candidate genes for 
OS and DFS.

	 OS	 DFS
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
	 Cut‑off		  Cut‑off
Genes	 point	 Statistic	 point	 Statistic

PTPRJ	 10.41 	 1.33 	 10.05 	 1.49 
WLS	 3.92 	 1.21 	 1.51 	 2.50 
EXT1	 4.20 	 3.04 	 7.00 	 1.85 
KREMEN1	 5.52 	 1.90 	 5.52 	 2.15 
ALPL	 0.94 	 1.89 	 3.30 	 3.57 
QPCT	 2.22 	 2.46 	 6.31 	 1.17 
CR1	 7.99 	 1.51 	 11.60 	 2.34 
RASSF5	 11.31 	 2.70 	 10.98 	 2.22 
RAB43	 7.44 	 1.94 	 5.25 	 2.23 
SEMA4B	 8.68 	 1.99 	 8.14 	 2.06 
GLT1D1	 8.34 	 1.36 	 8.34 	 1.07 
SLC25A37	 10.94 	 1.71 	 11.99 	 1.83 
PIK3CD	 12.46 	 1.73 	 12.46 	 1.99 
LMTK2	 9.34 	 3.29 	 9.34 	 2.99 
IGSF6	 5.69 	 1.80 	 5.69 	 1.52 
ECE1	 9.52 	 4.78 	 9.22 	 3.65 
STEAP4	 5.81 	 1.58 	 3.09 	 1.91 
SLC44A2	 11.09 	 3.12 	 10.95 	 2.49 
CSF3R	 14.50 	 4.14 	 13.43 	 4.31 
DOK3	 11.80 	 1.24 	 10.52 	 2.51

OS, overall survival; DFS, disease free survival.
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Figure 2. The genes in the red module were revealed to be negatively correlated with AML. (A) The heatmap displays the relationship between the ME of 
the modules and the traits; the values without parentheses are the correlation coefficients; red corresponds to a high correlation while blue indicates a low 
correlation; the values in parentheses are the P‑values; P<0.05 indicated a statistically significant difference. (B) The mean absolute value of GS (MS) of the 
eighteen modules; larger MS values correspond to the stronger relationships between the module and AML. AML, Acute myeloid leukemia; ME, module 
eigengene; GS, gene significance.

Figure 1. Modules were identified from the gene coexpression network using WGCNA. (A) The scale‑free fitted curve shows the value of the degree of fitting 
according to R2 based on the various soft threshold powers (β). (B) The mean connectivity curve assisted in determining the value of β. (C) The modules were 
identified from the cluster dendrogram after dynamic branch cutting of the clustering tree to formed the original modules (cut Height=0.18) and merging of 
some modules based on the eigengene similarity of the original modules. WGCNA, Weighted gene correlation network analysis.
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Figure 3. The genes from the red module were enriched in biological processes associated with the properties of hematopoietic cells. The biological processes 
for genes in the (A) red module, (B) firebrick4 module, (C) mediumpurple3 module and (D) darkseagreen4, (top 8). P<0.05 indicated a statistically significant 
difference.

Figure 4. The gene coexpression network of the red module (edge ≥0.4). Yellow dots indicate circRNAs, pink triangles indicate lncRNAs and green squares 
indicate mRNAs. The lines denote a coexpression relationship between the two points. The size of the point denotes the total connectivity value.
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intimately associated with the physiological development of 
hematopoietic cells and significantly correlated with AML. 
Based on the high pairwise‑weighted values of genes in the 
red module, we drew the central nodes and their pattern of 
connectivity (Fig. 4). The network was composed of 147 nodes 
and 482 edges, corresponding to 123 mRNAs, 20 lncRNAs 
and 4 circRNAs (Table SIV).

Genes associated with the blast cells of AML patients. The 
circRNAs  (4), lncRNAs  (20), and some mRNAs  (9) were 
removed from the 147 nodes in the network because of the 
lack of expression data on these RNAs in the TCGA data-
base. The correlation between the expression levels of the 
remaining 114 genes and the blast cell percentage in BM (173) 

and PB (170) of patients diagnosed with AML were investi-
gated. The results demonstrated that 23 genes had negative 
correlations with the percentage of blast cells in BM, although 
the relationships were weak (Pearson's r value ranged from 
‑0.33 to ‑0.15; Fig. S1). In addition, 20 of the 23 genes had a 
significant negative relationship with the percentage of blast 
cells in PB (Pearson's value is from ‑0.22 to ‑0.54; Fig. 5). 
These 20 genes were correlated with blast cells in both BM 
and PB and may play important roles in regulating the growth 
of leukemic cells.

Genes associated with OS and DFS of AML patients. Next, 
we used the endpoints of OS and DFS to analyze the associa-
tion of the 20 genes with the survival of AML patients. The 

Figure 5. A total of 20 genes were indicated to be negatively correlated with the percentage of blast cells in PB, n=170. The correlations were calculated by 
Pearson's coefficient, and a two‑tailed value of P<0.05 indicated a statistically significant difference with Bonferroni's correction. PB, peripheral blood.
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AML patients were categorized into low (≤ cut-off point) and 
high (> cut-off point) groups based on the expression levels of 
the 20 genes. Log‑rank analysis showed that the OS of AML 
patients between the two groups was significantly different 
when the patients were stratified by the expression levels of the 
EXT1, SLC44A2, ALPL, CSF3R, ECE1, LMTK2, QPCT and 
RASSF5 genes. Patients with low expression levels of EXT1, 
SLC44A2, ECE1 and RASSF5 exhibited higher survival rates 
than those with high expression levels of these genes, while 
patients with high expression levels of ALPL, CSF3R, LMTK2 
and QPCT had better survival rates than those with low 
expression levels of these genes (Fig. 6A). In addition, all these 
genes (with the exception of QPCT) were correlated with DFS 
(Fig. 6B).

Validation of the differences in expression levels of candidate 
genes between the AML and healthy groups. Our RNA‑seq 
data showed that the expression levels of EXT1, SLC44A2, 
ALPL, CSF3R, ECE1, LMTK2, QPCT, and RASSF5 were 

significantly lower in AML patients than in healthy controls 
(Fig. S2). More gene expression data of normal donors (337) 
and AML patients (156) were downloaded from the GTEx and 
TCGA databases to verify the differences in the expression 
levels of the genes of interest initially observed between the 
healthy and AML groups. This larger dataset also showed that 
the expression levels of these eight genes were significantly 
decreased in AML patients. In addition, CSF3R and SLC44A2 
had remarkably reduced expression in the normal karyotypic 
group compared with the abnormal karyotypic group, while 
RASSF5 tended to have lower expression in AML patients 
with an abnormal karyotype (Fig. 7).

Further confirmation that the expression levels of CSF3R, 
LMTK2 and ALPL were downregulated in AML patients 
compared with healthy controls was established using clinical 
samples (Fig. 8A‑C). This result is logically consistent with 
the positive correlation of the three genes with OS and DFS in 
AML patients. Therefore, CSF3R, LMTK2 and ALPL show 
great potential as new prognostic markers of AML. 

Figure 6. A total of eight genes were related to survival in patients with AML. (A) The genes associated with OS in patients with AML, n=160. (B) The genes 
related to DFS in patients with AML, n=171. The cut-off point was determined in R with the tidyverse and survminer packages. The log‑rank test was used to 
analyze the survival difference between the two groups and to determine the P‑value (<0.05 as significant) and the hazard ratio. AML, Acute myeloid leukemia; 
OS, overall survival; DFS, disease‑free survival.
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Discussion

WGCNA is an efficient bioinformatics method used to reduce 
complicated transcriptomes into several gene modules with 
high interconnectivity and to determine the associations of 
these modules with clinical traits (16). In this way, we identified 
that the constructed red module was strongly negatively 
associated with AML, and the functional annotations revealed 
that the genes in the red modules are enriched in processes 
relating to neutrophils activation, neutrophil degranulation and 

leukocyte migration. Through a series of correlation analyses, 
we found that three genes with anomalous low expression levels 
were significantly inversely correlated with the percentage of 
blast cells but positively correlated with the survival of AML 
patients.

The three genes CSF3R, ALPL, and LMTK2 had extremely 
downregulated expression levels in AML patients compared 
with healthy controls, and the downregulation of these genes 
was associated with worse OS and DFS in AML patients. 
Receptor for colony stimulating factor 3 (CSF3R) is well 

Figure 8. The relative expression levels of the three candidate genes in samples from the patients with AML and healthy donors were tested using reverse 
transcription‑quantitative PCR. (A) CSF3R. (B) LMTK2. (C) ALPL. The GAPDH gene was used as a control for normalization of expression. The Tukey's test 
and one‑way ANOVA were used to define the P‑value. P<0.05 indicated a statistically significant difference.

Figure 7. Differences in the expression levels of the candidate genes between the AML and healthy groups. The differentially expressed genes were verified 
using the GTEx (337) and TCGA (156) datasets. The AML group included 88 normal and 68 abnormal karyotypic samples. The expression levels of the genes 
were calculated by log2 (norm_count +1). Differences were tested for significance according to unpaired t tests and one‑way ANOVA in GraphPad Prism 5 software, 
and P<0.05 indicated a statistically significant difference. GTEx, Genotype‑Tissue Expression; TCGA, The Cancer Genome Atlas; AML, Acute myeloid 
leukemia.
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known to regulate the production, differentiation, and function 
of granulocytes (23). Mutations in this gene are frequently 
present in patients with chronic neutrophilic leukemia (CNL) 
and can be used as accurate diagnostic markers for CNL (24). 
Mutations in CSF3R are rare in AML and have been reported to 
highly overlap with CEBPα mutations in AML patients, which 
predicts a poor outcome (25,26). Our data show that CSF3R 
is tended to underexpressed in AML patients with a normal 
karyotype and may serve as a special genetic biomarker for 
the prognosis and treatment of AML patients with a normal 
karyotype. Tissue‑nonspecific alkaline phosphatase (ALPL) 
plays a role in bone biomineralization, and mutations in this 
gene are used to diagnose hypophosphatasia  (27). Further 
studies are needed to reveal the functions of ALPL in AML. 
Lemur tyrosine kinase 2 (LMTK2) is a tumor suppressor that 
is downregulated in some neurodegenerative diseases (28) 
and can inhibit the activity of PP1C by controlling GSK3β 
phosphorylation (29). The effect of LMTK2 on the pathoge- 
nesis of AML has not been studied, but LMTK2 is predicted 
to enhance the cytotoxic activity of natural killer cells to kill 
leukemic blast cells via inhibition of GSK3β (30).

In the present study, we using RNA_seq combined with 
WGCNA statistical method finding CSF3R, ALPL and 
LMTK2 are potential prognostic markers for AML but need 
to be studied more thoroughly to confirm their biological func-
tions in this disease. However, the limitation of RNA_seq is the 
result simply represents the mean expression of genes in white 
blood cells which contain diverse cell populations (31). The 
newly developed single‑cell RNA sequencing can compensate 
for the defect and provide more huge and accurate data. The 
latest method would help in finding exceptional subpopulations 
and genes of interest in the future.
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