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Abstract. The primary aim of the present study is to provide a 
complex molecular profile of tumors using liquid biopsy and to 
monitor profile changes over time in association with surgery 
and administered adjuvant therapy. Our secondary aim was to 
compare the liquid biopsy profile with the tissue biopsy and 
assess concordance. A total of 27 samples of circulating tumor 
DNA (ctDNA) collected from 9 breast cancer patients at three 
different time points and their matched formalin‑fixed and 
paraffin‑embedded (FFPE) samples of primary tumor were 
analyzed with targeted next‑generation sequencing. Somatic 
pathogenic variants were detected before surgery in samples 
from 5 patients (55.6%). The most frequently mutated genes 
were phosphatase and tensin homolog (4/9, 44.4%) and tumor 
protein 53 (4/9, 44.4%). Serial sampling of ctDNA enabled the 
detection of more variants compared with single‑time tissue 
primary tumor biopsy. There were 17 ctDNA variants across 
all samples, but only 6 FFPE variants across all patients. In 
addition, the concordance between ctDNA and FFPE DNA 
was determined in only 1 patient, and this was connected with 
higher variant allele frequency. The findings of the present 
study suggest that liquid biopsy and tissue biopsy may be used 
as complementary analyses to adequately capture all tumor 
variants.

Introduction

Breast cancer (BC) is the most commonly diagnosed carci‑
noma in women, accounting for almost 1 in 4 female cancers, 
and it is the leading cause of cancer‑related mortality in women 
globally (1). BC is a complex heterogenous disease defined by 
its diverse aggressive behavior, potential to metastasize and 
therapeutic gene targets. The primary tumor generally contains 
combined diverse clonal populations of cells; therefore, inva‑
sive biopsy of the solid tumor may be biased and provide only 
an incomplete molecular profile of the analyzed tumor (2). 

Circulating tumor DNA (ctDNA) has the potential to 
capture complete information on genetic alterations, including 
the somatic single‑nucleotide variations present in the tumor 
and its metastases, and also to longitudinally monitor these 
mutations throughout the course of patient treatment (3,4). 
In addition, ctDNA is considered to be released from 
apoptotic and necrotic tumor cells, and its blood circula‑
tion half‑life ranges from minutes to several hours, which 
makes it a dynamic, almost real‑time, biomarker for cancer 
monitoring (5,6). The detection of ctDNA, however, presents 
a serious challenge, as ctDNA is highly fragmented to on 
average 170 bp in length (7,8). ctDNA may occasionally be 
present only as a minimal fraction in the circulation compared 
with the wild‑type cell‑free DNA (cfDNA) released from 
normal cells (4). In healthy individuals, cfDNA originates 
from hematopoietic cells (9,10). However, ctDNA of cancer 
patients is tissue‑specific, as the majority of their ctDNA 
comes from the tumor tissue of origin (9‑11). The ratio of 
ctDNA to cfDNA depends on tumor and immunological 
factors, tumor burden and progression, and blood clearance 
mechanisms (12,13). 

Targeted next‑generation sequencing (NGS), which 
generates sufficiently high coverage over a certain region, 
is therefore required, and ctDNA molecular analysis and 
identification of these low‑frequency variants is important for 
detection of cancer in its early stages and appropriate diag‑
nosis. Moreover, ctDNA analysis in the clinical setting may 
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guide decision‑making and potentially facilitate personalized 
cancer care (8,14,15).

In BC, recent studies have indicated the versatile role 
of ctDNA analysis in determining the genomic profile 
of tumors  (16‑19), to sensitively and specifically identify 
preclinical metastases and predict a relapse ahead of its diag‑
nosis (20‑22), and to asses resistance to targeted therapy or to 
uncover tumor heterogeneity (23). 

The primary aim of the present study was to provide a 
complex tumor molecular profile with liquid biopsy and to 
monitor its changes over time in association with surgery 
and adjuvant therapy. The secondary aim was to compare 
this liquid biopsy profile with the tissue biopsy and to assess 
concordance. 

Materials and methods

Patients. Patients with invasive BC were treated at the Clinic 
of Gynecology and Obstetrics at the Jessenius Faculty of 
Medicine in Martin, Comenius University in Bratislava (JFM 
CU) and University Hospital in Martin (UHM). All subjects 
provided their written informed consent and the study was 
conducted in accordance with the Declaration of Helsinki and 
following the protocol approved by the Ethics Committee of 
JFM CU (IORG0004721) under project identification code 
EC 1525/2014. The patient data were collected retrospectively 
from medical records.

Blood sample processing. Serial peripheral whole‑blood 
samples were drawn from 9  patients at three different 
timepoints: Before surgery, ~2 days after surgery and again 
7 months following adjuvant chemotherapy. Briefly, 10 ml 
blood samples (n=27) were collected in K3 EDTA tubes 
(Sarstedt AG & Co.) and processed within 2 h. Plasma samples 
were separated by two‑step centrifugation at 2,200 x g for 
8 min at 4˚C and 20,000 x g for 8 min at 4˚C. The plasma 
samples were then stored at ‑80˚C until DNA extraction.

DNA extraction and quantification. ctDNA was isolated from 
3 ml plasma by the commercially available QIAamp DSP Virus 
kit (Qiagen GmbH), according to the manufacturer's instruc‑
tions, and with the QIAvac 24 Plus vacuum manifold (Qiagen 
GmbH). The plasma samples were lysed, ctDNA was bound 
to a silica‑based membrane, washed with ethanol‑containing 
buffers, and waste was drained by vacuum pressure. The 
ctDNA was eluted in 30 µl sterile distilled water and ctDNA 
concentration was quantified with the Qubit dsDNA HS Assay 
kit (Invitrogen; Thermo Fisher Scientific, Inc.) on the Qubit 2.0 
Fluorometer (Invitrogen; Thermo Fisher Scientific, Inc.). The 
extracted ctDNA was then concentrated using the CentriVap 
Centrifugal concentrator 78100 (Labconco) at 37˚C for 90 min 
and ctDNA was re‑suspended in 30 µl sterile distilled water. 
Finally, the resultant ctDNA samples were stored at ‑20˚C until 
analysis.

DNA was also isolated from 9 formalin‑fixed and 
paraffin‑embedded (FFPE) tissue samples obtained from the 
Department of Pathological Anatomy of JFM CU and UHM. 
The commercially available BlackPREP FFPE DNA kit 
(Analytic Jena AG) was used according to the manufacturer's 
instructions. In brief, FFPE slides were lysed and shaken 

at 65˚C for 1 h, followed by 1 h at 90˚C. DNA was bound to a 
spin filter membrane and washed with ethanol‑based buffers 
and then eluted in 50 µl elution buffer. The DNA concen‑
tration was quantified with the Qubit dsDNA BR Assay kit 
(Invitrogen; Thermo Fisher Scientific, Inc.) on the Qubit 2.0 
Fluorometer (Invitrogen; Thermo Fisher Scientific, Inc.SA) 
and DNA samples were stored at ‑20˚C until analysis.

DNA library preparation. DNA libraries (n=35) for NGS 
were prepared using the TruSight Tumor 26 kit (Illumina, 
Inc.) according to the manufacturer's instructions. Briefly, 
the quality and the amplification potential of DNA extracted 
from FFPE samples were determined by quantitative (q)PCR 
analysis using the KAPA SYBR FAST qPCR Universal Master 
Mix kit (Kapa Biosystems; Roche Diagnostics). A ΔCq value 
was calculated for each sample by comparing the amplifica‑
tion potential of FFPE DNA with the amplification potential 
of reference QCT DNA provided in the kit. DNA libraries 
(n=8) were prepared with either 20 µl of neat FFPE DNA or 
20 µl diluted FFPE DNA depending on the ΔCq value of the 
corresponding sample (Table I). Although sample 7.2 had low 
concentration, the DNA library could be prepared; however, 
sample 9.2 had almost no DNA detected on Qubit assay and 
was therefore excluded from further analysis. The ctDNA 
sample quality was not investigated, and the DNA libraries 
(n=27) were prepared with 20 µl neat ctDNA. 

FPA and FPB, two separate complementary oligonucle‑
otide pools, were hybridized to DNA samples overnight. This 
process resulted in generation of A and B complementary 
DNA libraries for every DNA sample by targeting the posi‑
tive and the negative DNA strands of the same region. The 
oligonucleotide pools are specific to the targeted regions of 
interest in 174 amplicons of 26 genes (Table  II). Unbound 
oligonucleotides were removed, and bound oligonucleotides 
were extended and ligated. PCR amplification with indices 
and adapters added to extension‑ligation products was then 
performed, and the libraries were purified using AMPure 
XP magnetic beads (Beckman Coulter, Inc.). The libraries 
were quantified using Agilent High Sensitivity DNA Kit 
(Agilent Technologies, Inc.) on the 2100 Bioanalyzer (Agilent 
Technologies, Inc.) according to the manufacturer's instruc‑
tions, and DNA library concentrations were then quantified by 
the Qubit dsDNA HS Assay kit (Invitrogen; Thermo Fisher 
Scientific, Inc.) on the Qubit 2.0 Fluorometer (Invitrogen; 
Thermo Fisher Scientific, Inc.). 

DNA sequencing and data analysis. Targeted amplicon 
sequencing was performed on MiSeq (Illumina, Inc.), with 
MiSeq Control Software version 2.6.2, according to the manu‑
facturer's instructions. Only four library A and four library 
B samples could be sequenced per run. In brief, the libraries 
were normalized to 4 nM and pooled into a single tube. Then, 
600 µl of pooled libraries were loaded into a MiSeq reagent 
cartridge v2 (300 cycles) and sequenced on flow cell using 
150 bp paired‑end sequencing protocol. The raw sequence 
data were de‑multiplexed and converted into FASTQ files 
using MiSeq Reporter version 2.6. The sequencing reads were 
aligned to the Genome Reference Consortium Human Build 37 
(GRCh37)/Human Genome version 19 (hg19). Variants were 
called by Somatic Variant Caller Version 3.2.1 and written 
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into VCF files. Variants with variant allele frequency (VAF) 
<3.0%, quality score <30, low depth of coverage or significant 
strand bias were filtered out, and strand bias filler removed 
sequencing artifacts that were asymmetrically represented 
only in one strand. The resulting variants were annotated using 
the open source Variant Effect Predictor version 93 bioinfor‑
matics software tool (24). The classification of variants was 
based on VarSome v6.7, which uses the American College 
of Medical Genetics and Genomics guidelines (25,26). The 
yielded pathogenic variants were subsequently checked against 
the Catalogue of Somatic Mutations in Cancer (COSMIC) 
database version 88 for somatic categorization (27). Finally, 
variants of unknown significance or germline and benign 
variants were filtered out. 

Results

Patient characteristics. A total of 9 female patients with histo‑
pathologically confirmed BC were analyzed. The mean age 
was 56.22±9.62 years and the histopathological characteristics 
of the patients are summarized in Table III. A complete list 
of the patients' characteristics is provided in Table SI. Most 
patients (55.6%) had invasive ductal carcinoma (IDC) and all 
tested samples were estrogen receptor (ER)‑positive. Only 
2 samples were human epidermal growth factor receptor 
2 (HER‑2)‑positive and the HER‑2 status of 2 patients was 
unavailable. The molecular subtypes were luminal A (44.4%) 
or luminal B (44.4%), and the molecular subtype of 1 patient 
was unknown due to missing data.

Molecular analysis of ctDNA and FFPE DNA. We monitored 
somatic variants with pathogenic effect in ctDNA from three 
different time points and FFPE samples in 9 patients with 
BC across 26 genes (Table  IV). Each patient had at least 
one somatic pathogenic variant. The majority of somatic 
pathogenic variants were found in samples prior to surgery 
in 5 patients (55.6%). No somatic pathogenic variants were 
detected in the patients' follow‑up samples, postoperatively or 
after adjuvant therapy. The patients had low‑grade (G1 or G2) 
BC, and 4 had luminal A subtype. 

By contrast, somatic pathogenic variants were detected 
only in postoperative samples in patients 4 and 5 (22.2%). The 
patients had higher‑grade (G2 or G3) cancer, unknown HER‑2 
status and luminal B or unknown luminal type. Patients 2 and 6 
had somatic pathogenic variants only in samples after chemo‑
therapy (22.2%). These patients had luminal B, HER‑2+ and 
grade 3 BC. 

No somatic pathogenic variants were detected in FFPE 
DNA samples of patients 3 and 6. Complete accord between 
ctDNA and FFPE DNA was observed only in patient  4 
(11.1%). 

Table I. ΔCq values of formalin‑fixed and paraffin‑embedded 
DNA samples with the corresponding dilution.

Sample	 ΔCq	 Dilution

1.2	 0.98	 2x
2.2	 3.63	 No dilution
3.2	 3.42	 No dilution
4.2	 ‑0.16	 4x
5.2	 2.17	 No dilution
6.2	 2.45	 No dilution
7.2	 Low DNA concentration	 No dilution
8.2	 0.17	 4x
9.2	 No DNA	

Table II. Genes included in TruSight Tumor 26 kit (Illumina, 
Inc.).

AKT1	 ERBB2	 KRAS	 PTEN
ALK	 FBXW7	 MAP2K1	 SMAD4
APC	 FGFR2	 MET	 SRC
BRAF	 FOXL2	 MSH6	 STK11
CDH1	 GNAQ	 NRAS	 TP53
CTNNB1	 GNAS	 PDGFRA	
EGFR	 KIT	 PIK3CA	

Table III. Histopathological characteristics of patients with 
BC.

Characteristics	 N (%)

Histological type
  IDC	 5 (55.6)
  ILC	 4 (44.4)
Histological grade
  G1	 2 (22.2)
  G2	 4 (44.4)
  G3	 3 (33.3)
ER status	
  Positive	 9 (100.0)
  Negative	 0 (0.0)
PR status	
  Positive	 8 (88.9)
  Negative	 1 (11.1)
HER‑2 status	
  Positive	 2 (22.2)
  Negative	 5 (55.6)
  Unknown	 2 (22.2)
Ki‑67 status	
  Low	 5 (55.6)
  High	 4 (44.4)
Molecular subtype	
  Luminal A	 4 (44.4)
  Luminal B	 4 (44.4)
  Unknown	 1 (11.1)

BC, breast cancer; IDC, invasive ductal carcinoma; ILC, invasive 
lobular carcinoma; ER, estrogen receptor; PR, progesterone receptor; 
HER‑2, human epidermal growth factor receptor 2; Ki‑67 prolifera‑
tion index.
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Although phosphatidylinositol‑4,5‑bisphosphate 3‑kinase 
catalytic subunit alpha (PIK3CA) mutations in codon 1,047 
were found in patient 1 and 7 ctDNA and FFPE DNA, the 
protein variants were different: p.His1047Leu in the ctDNA 
and p.His1047Arg in FFPE in patient 1, and p.His1047Tyr in 
the ctDNA and p.His1047Leu in FFPE in patient 7. In addi‑
tion, while patient 6 displayed negative concordance with no 
somatic pathogenic variants detected in the ctDNA sample 
before surgery or the FFPE sample, two somatic pathogenic 
alterations were detected in the ctDNA sample after chemo‑
therapy. Patient  9 FFPE sample was excluded from DNA 
library preparation due to insufficient DNA concentration. 
Two ctDNA libraries, post‑chemotherapy ctDNA samples of 
patient 1 and 5, were not sequenced because of technical diffi‑
culties. Finally, the postoperative ctDNA sample of patient 1 
generated only low‑quality calls, which were filtered out. 

Overall, 23 variants in 8 different genes were detected in 
the present study, and these were mostly missense mutations 
(15/23, 65.22%). The most common mutation type was single 
nucleotide substitution (21/23, 91.3%), and the most frequently 
mutated genes were phosphatase and tensin homolog (PTEN; 
4/9, 44.4%), tumor protein 35 (TP53; 4/9, 44.4%) and PIK3CA 
(3/9, 33.3%; Table SII). 

The mean depth of coverage per targeted region in the 
ctDNA samples was 12,926±8,120 (range, 2,261‑29,762). The 
mean variant allele frequency (VAF) in ctDNA samples was 
4.74±1.95% (range, 3.04‑10.43%) (Table SIII). The mean depth 
of coverage per targeted region in FFPE DNA samples was 
25,169±9,533 (range, 12,881‑40,713). Finally, the mean VAF in 
FFPE DNA samples was 25.91±15.15% (range, 8.04‑50.53%; 
Table SIV).

Discussion

In the present study, the molecular profile in serial ctDNA 
samples from BC patients was monitored and it was demon‑
strated that ctDNA sequencing provides dynamic information 
on somatic variants with pathogenic effects in tumors. The 
molecular analysis revealed that patients with lower‑grade and 
luminal A BC subtype and 1 patient with low‑grade luminal B 
subtype had somatic pathogenic variants detected only in their 
ctDNA prior to surgery. This correlates with a generally better 
prognosis of the luminal A subtype compared with other BC 
subtypes (28‑30). Detection of somatic pathogenic variants 
in ctDNA only after surgery was associated with patients of 
unknown HER‑2 status and luminal B, and unknown luminal 
type; but these patients had higher‑grade (G2 or G3) cancer. 
While patients with luminal B, HER‑2+ and grade  3 had 
somatic pathogenic variants detected in ctDNA only after 
chemotherapy, restricted patient numbers, lack of characteriza‑
tion and impossibility of analyzing certain samples prevented 
significant conclusions from these results. 

The number of our patients was restricted as only a limited 
number of BC patients admitted to the hospital was able to 
comply with the demanding serial sampling.

Another limitation of the present study was the exclusion 
of important BC genes, such as BRCA1, BRCA2 and ESR1. We 
selected TruSight Tumor 26 kit with the panel of 26 oncogenes 
and tumor suppressor genes, which are the most frequently 
altered in solid cancers. This kit was designed to detect somatic 

variants in highly degraded and fragmented samples, such as 
FFPE slides, and it was inferred that it would also be suitable 
for fragmented ctDNA samples. 

Although detecting somatic variants without matched 
normal tissue sample is possible, albeit difficult, VAF denoting 
the number of reads that support the mutated allele at a given 
locus can help distinguish somatic from germline variants in 
both tumor samples and ctDNA. In theory, the somatic vari‑
ants should only be present in the tumor cells and, thus, give a 
low VAF in ctDNA, whereas the germline variants would be 
present in both the sample tumor and normal cells, resulting 
in a VAF of ~50% for heterozygous variants and ~100% for 
homozygous (31). In addition, the VAF of somatic variants in 
analyzed tissues depends on the numbers of tumor and normal 
cells, and this enables their possible detection at any level (32).

The variants herein were considered somatic if they were 
included in version 88 of the COSMIC database (27). While we 
were able to detect variants with low VAF in the ctDNA and 
FFPE samples, concordance between ctDNA and FFPE DNA 
was only determined in 1 patient. This patient had a higher 
VAF compared with other patients' detected variants, and the 
variant detected in the CDH1 gene had both the highest VAF 
in ctDNA (10.43%) and FFPE DNA (50.53%). Consistently 
with these findings, Chae et al also recorded this connection 
between higher VAF and concordant mutations in ctDNA and 
tissue biopsy from a patient with BC (17).

Somatic PTEN mutations in BC are rare, with a reported 
frequency of 5‑10% (33‑35). The frequency of PTEN alterations 
in our patients was 44.4%. It is hypothesized that the difference 
may be caused by restricted number of our patients. There was 
no association between PTEN alterations and distinctive clini‑
copathological characteristics in our patients. However, there is 
no consistent evidence to prove the real prognostic role of PTEN 
mutations in BC due to the lack of reproducibility in studies (35). 
The frequency of TP53 mutations in BC is ~40%  (33,36). 
TP53 mutations were detected in 44.4% of our patients. There 
was no association between TP53 mutations and distinctive 
clinicopathological characteristics in our patients. However, 
several studies demonstrated that TP53 mutations occur more 
frequently in HER‑2‑enriched tumors compared with luminal 
A or luminal B tumors (37,38). By contrast, high frequency 
of PIK3CA mutations (33.3%) in our patients was correlated 
with 30‑40% prevalence of PIK3CA mutations in patients with 
BC (33,39). Our patients with PIK3CA had lower‑grade tumors. 
The association of PIK3CA mutations and lower‑grade ER+ BC 
was shown in the analysis of pooled data by Zardavas et al (40). 

Alborelli et  al  (41), analyzed cfDNA of 114 clinically 
healthy individuals for genetic alterations with a limit of 
detection as low as 0.08% of VAF. The majority of the subjects 
(84%) had no genetic alterations in cfDNA. However, the 
authors identified pathogenic cancer alterations in 4 healthy 
individuals. The alterations were detected in cancer hotspot 
variants, including PIK3CA p.His1047Arg. These individuals 
developed a benign neoplasm or invasive breast in the 10 years 
following blood collection. Therefore, the analysis of cfDNA 
in healthy subjects may be relevant to the early detection of 
cancer.

Serial sampling of ctDNA enabled detection of more 
variants than in one‑time primary tumor tissue biopsy. The 
results determined 17 ctDNA variants in all samples, but 
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only 6 FFPE variants in all patients. The different number of 
detected variants and their diversity may be attributed to intra‑
tumor heterogeneity, where ctDNA may be released into the 
bloodstream from a completely unique cell subpopulation with 
mutations different to those present in the primary tumor (2). 
Moreover, alterations identified only in ctDNA may be missed 
by single‑site tissue biopsy due to sampling different tumor 
areas and incomplete genetic profiling (42). Mutations with 
lower VAF identified only in FFPE samples may be unac‑
counted for in ctDNA analysis due to their under‑representation 
in the circulation. Therefore, we suggest that liquid biopsy and 
tissue biopsy should be complementary analyses with combined 
capability of capturing all tumor variants. 

The advantages of ctDNA analysis and the liquid biopsy 
were also demonstrated by Finzel et al (43), who studied data 
of 351 patients with stage  IV solid tumors, including BC, 
focusing on the discordant gene mutations identified between 
FFPE blocks and ctDNA from blood samples. The authors 
detected different molecular alterations between tissue and 
liquid biopsies in 86% of patients. However, 42% of the muta‑
tions detected only in the liquid biopsy had clinical relevance in 
prediction of sensitivity or resistance to administered targeted 
therapies. The combined assessment of liquid and solid biop‑
sies enables better characterization of tumor heterogeneity and 
important information for patient therapy (43).

Rodriguez et al analyzed PIK3CA and TP53 mutations 
in matched ctDNA samples before biopsy and tumor biopsy 
samples in patients with early BC. Concordance between 
ctDNA mutations and biopsy mutations was observed in only 
8/29 (27.6%) patients. All patients with concordant mutations 
had higher‑grade disease. Somatic PIK3CA mutations were 
identified in 19/29 (65.5%) patients. TP53 mutations were 
identified in 6/29 (20.7%), and 4  patients (13.8) had both 
PIK3CA and TP53 mutations. Moreover, the authors identified 
4 additional mutations in ctDNA, which were not detected in 
tissue biopsy. They proposed that ctDNA analysis could iden‑
tify tumor heterogeneity, improve the diagnosis of early BC 
patients, and provide significant information (44). 

Similar studies have been performed in ER+ and triple‑nega‑
tive BC, but these studies used different methods, or mainly 
focused on comparing tissue biopsy results with the ctDNA 
detected in metastatic disease (16,45,46). In a prospective study, 
Beaver et al (16) analyzed 30 primary breast tumor samples for 
frequently occurring PIK3CA mutations. Therein, they used 
Sanger sequencing and matched pre‑ and postoperative plasma 
tumor DNA (ptDNA) from 29 patients with early‑stage BC by 
droplet digital PCR (ddPCR) analysis. This ddPCR analysis 
verified all the mutations detected in the tumor by Sanger 
sequencing and identified five new mutations, with concordance 
between tumor and preoperative ptDNA observed in 14/15 
PIK3CA mutations. A total of 10 patients were mutation‑positive 
in preoperative ptDNA samples, and 5 of them were also muta‑
tion‑positive in postoperative ptDNA. This study demonstrated 
precise mutation detection in tumor thorough ddPCR, and also 
that ptDNA can be identified in pre‑ and postoperative blood 
samples of patients with early‑stage BC.

Furthermore, Chung  et  al  (45) determined ctDNA 
genomic changes in patients with ER+ metastatic BC (mBC) 
by hybrid capture‑based genomic profiling. They analyzed 
time‑matched ctDNA and tissue samples from 14 patients and 

89% of mutations in tissues were also present in the in ctDNA, 
but mutations in ESR1, TP53 and PIK3CA were detected only 
the in ctDNA samples. The authors therefore considered that 
this detection of extra mutations in ctDNA could support 
liquid biopsy use in detecting heterogenous metastatic sites in 
ER+ mBC. Stover et al (46), conducted a retrospective study 
using cfDNA to determine somatic copy‑number variations in 
primary and metastatic tumors and cfDNA tumor fractions in 
patients with triple‑negative BC. Their work highlighted that 
cfDNA tumor fractions ≥10% were significantly associated 
with worse survival.

In conclusion, the results of the present study add to the 
mounting evidence supporting the utility of ctDNA as comple‑
mentary analysis to tissue biopsy for thorough molecular 
profiling of tumor variants. Finally, it was demonstrated that 
next‑generation ctDNA sequencing is useful for monitoring 
the changes in somatic variants with pathogenic effects in 
patients with BC, and this analysis can supplement the results 
of tumor tissue biopsy. 
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