
MOLECULAR AND CLINICAL ONCOLOGY  14:  106,  2021

Abstract. Malignant ascites (MA) and malignant pleural effu‑
sion (MPE) are frequently developed in patients with metastatic 
cancer; however, the biological properties of these fluids have 
not been clarified. The present study explored the biological 
role of a low molecular fraction derived from malignant effu‑
sions on the activation of peripheral blood mononuclear cells 
and on the proliferation of breast cancer cells and fibroblast 
55x cells. A <10‑kDa fraction from effusions of 41 oncological 
patients and 34 individuals without cancer was purified, and 
its potential role in inhibiting nitric oxide (NO) production 
on lipopolysaccharide (LPS)‑stimulated peripheral blood 
mononuclear cells was explored, as well as its cytotoxicity 
on MCF‑7 breast cancer cells and fibroblast 55x cells. A 
significant decrease in NO production was observed in the 
<10‑kDa fraction from malignant effusions. In addition, the 
acellular fraction from MA decreased the viability of breast 
cancer cells without affecting human fibroblasts. These data 
support the presence of low molecular weight molecules 
in malignant samples with a specific role in inhibiting the 

defense mechanisms of peripheral blood mononuclear cells 
and decreasing the viability of breast cancer cells in vitro.

Introduction

Malignant ascites (MA) or malignant pleural effusions (MPE) 
are a common clinical manifestation in patients with 
advanced neoplasia and confer a poor prognosis (1,2). It is 
known that MA and MPE stimulate an aggressive cellular 
phenotype and generate a pro‑inflammatory environment 
that promotes immunosuppression and allows the prolifera‑
tion and dissemination of cancer cells (3‑5). Growth factors, 
cytokines, and glycoproteins have been found to have higher 
concentrations in MA and MPE than in plasma (6‑9). Such 
biomolecules include vascular endothelial growth factor, 
angiogenin, epidermal growth factor, interleukin‑6, monocyte 
chemoattractant protein‑1, transforming growth factor beta‑1, 
and secreted phosphoprotein‑1 (10‑12). All of these molecules 
play an important role in tumor growth, angiogenesis, and 
metastasis, which shorten the survival of patients with cancer. 
Other studies have found elevated levels of several proteases 
in malignant effusions (13,14). Our group previously reported 
a macrophage‑activation inhibitory factor (MAIF), which was 
purified from mouse ascites by L5178Y murine lymphoma cells 
and inhibited lipopolysaccharide (LPS)‑induced macrophage 
activation (15). MAIF also allowed the development of hepatic 
abscesses in vivo when BALB/c mice were inoculated with 
Entamoeba histolytica or Listeria monocytogenes (16,17).

Nevertheless, some reports have demonstrated the 
anti‑tumor role of MA and MPE. Cohen et al described 
the pro‑apoptotic effect of cell‑free ascites by activation of 
the JNK pathway and induction of BRCA1, Fas, and FasL 
expression in SKOV3 cells (18). Other studies have shown the 
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existence of angiogenesis and migration inhibitors in ascites 
and pleural effusion from patients with breast cancer, ovarian 
carcinoma, lung carcinoma, and mesothelioma (19‑22). These 
findings indicate that the biochemical compositions of MA 
and MPE are widely diverse and that these effusions can play 
dual roles in tumor progression.

Macrophage activation by LPS polarizes them to the M1 
phenotype and can produce nitrogen‑based radicals by stimu‑
lating inducible nitric oxide synthase (iNOS) (23‑25). Thus, 
increased nitric oxide (NO) production can reflect polarization 
to a proinflammatory phenotype.

The present study sought to explore whether the 
MA‑MPE‑derived acellular fraction could modulate the 
production of NO by peripheral blood mononuclear cells 
(PBMCs) and whether NO influences the viability of healthy 
and cancerous cells.

Materials and methods

Clinical specimens. Forty‑one malignant effusion samples 
were collected from patients diagnosed with primary neoplasia 
and 34 samples were derived from patients with non‑cancer 
diagnoses. All samples were obtained at Instituto Mexicano 
del Seguro Social, in Monterrey, Mexico. The study was 
approved by the Institutional Ethics Board with the registra‑
tion number R‑2008‑1908‑2, and written informed consent 
was obtained from each patient before participation. Patients 
with thrombocytopenia, abnormal clotting time, HIV/AIDS, 
or primary immunodeficiency diseases were excluded.

Collection of biological samples. The pleural effusion and 
ascitic fluids used in this study were collected by thoracentesis 
or paracentesis, respectively, at the time of the therapeutic 
protocol. Approximately 20 ml was taken for each specimen 
under aseptic conditions. All samples were stored at ‑20˚C 
until analysis.

Purification of the <10 kDa fraction. To guarantee the 
exclusive presence of low‑molecular‑weight biomolecules, all 
samples were depleted of cells by centrifugation at 30,000 g 
for 20 min, and each cell‑free supernatant was purified using 
centrifugal filter units with membranes having a nominal 
molecular weight cutoff of 10 kDa (Merck Millipore). The 
<10 kDa fraction was aliquoted into 1 ml vials, and protein 
concentration was determined using the Lowry test. The 
samples were stored at ‑20˚C until analysis.

Stimulation of peripheral whole blood. To analyze the produc‑
tion of NO by PBMCs, the whole blood of a healthy volunteer 
was recollected into plastic blood collection tubes with sodium 
citrate (Becton, Dickinson and Company). Aliquots (3 ml) were 
made within the first 60 min of blood collection and were then 
stimulated with 30 µg/ml of the <10 kDa fraction at 37˚C with 
5% CO2 for 2 h, with constant agitation. Subsequently, without 
removing the <10 kDa fraction, each sample was treated with 
50 ng/ml E. coli serotype O12B:B12 LPS (Sigma‑Aldrich; 
Merck KGaA) and incubated for 5 h under the conditions 
previously described. After that, we obtained the plasma by 
centrifugation at 2,000 g for 10 min and stored the samples 
at ‑80˚C until analysis. In addition, the three control groups 

were shaped: a) a group with LPS‑unstimulated blood, b) an 
LPS‑treated group as positive control, and c) an LPS‑treated 
group treated with 100 ng/ml of NG‑monomethyl‑L‑arginine 
acetate (Sigma‑Aldrich; Merck KGaA) as NO inhibitor.

Nitric oxide assay. NO concentration was measured using 
the total nitric oxide assay kit (Thermo Fisher Scientific, Inc.) 
according to the manufacturer's instructions. Briefly, to 
convert nitrate to nitrite, 50 µl of plasma was plated in 96‑well 
plates with the nitrate reductase enzyme for 30 min at 37˚C. 
Nitrite was detected as a colored azo dye product at 540 nm in 
a microplate reader (BioTek Instruments, Inc.), and the results 
were expressed in micrometers.

Cell lines and cell culture. Human lung fibroblast 55x 
and MCF‑7 breast cancer cells were obtained from the 
American Type Culture Collection (ATCC). They were 
cultured at 37˚C with 5% CO2 in DMEM supplemented 
with 10% heat‑inactivated fetal bovine serum Gibco™ 
(Thermo Fisher Scientific, Inc.), 100 U/ml penicillin, and 
100 µg/ml streptomycin (Sigma‑Aldrich; Merck KGaA). The 
medium was changed every three days, and the cells were 
passaged twice weekly.

Cytotoxicity assay. Cell growth inhibition was measured 
using the MTT assay (Abcam) at 24 h post exposure. Briefly, 
1x104 cells were seeded into 96‑well culture plates and cultured 
for 24 h. After exposure to each sample at 2% v/v, cells were 
washed twice with phosphate‑buffered saline (Gibco™; 
Thermo Fisher Scientific, Inc.) twice, and 100 µl of MTT solu‑
tion (5 mg/ml in medium) was added to each well. Then, the 
formazan in viable cells was dissolved in acidified isopropanol 
solution and measured at 570 nm using a microplate reader 
Elx 800 (BioTek Instruments, Inc.). The absorbance value of 
cells incubated with culture medium (untreated group) was set 
to 100% cell viability and compared with treated cells. We 
used 1% Triton X‑100™ (Sigma‑Aldrich; Merck KGaA) and 
vincristine (500 µg/ml) as the cytotoxic control.

Statistical analysis. Each experimental protocol was tested in 
triplicate and repeated three times in independent experiments, 
and the average was used for the analysis. Data are expressed 
as mean and standard deviation. Student's t‑test or Fischer's 
exact test were used to compare the characteristics of patients 
with MA and malignant pleural effusion. One‑way ANOVA 
with Tukey's post hoc test was used for comparisons among 
multiple groups. A P‑value <0.05 was considered to indicate a 
statistically significant difference.

Results

Subjects. The clinical characteristics of the patients with cancer 
are shown in Table I. Twenty‑one ascite samples from patients 
with primary tumor diagnoses and 20 samples of malignant 
pleural effusion were examined. The majority of patients 
were categorized as stage IV at the time of sample collec‑
tion. In patients with MA, the more frequent metastatic sites 
were the peritoneum (13/21) and liver (5/21), followed by the 
lungs (2/21) and spleen (1/21), while all MPEs were obtained 
from patients with thoracic metastases. Benign ascites (BA) 



MOLECULAR AND CLINICAL ONCOLOGY  14:  106,  2021 3

samples were collected from 18 cirrhotic patients, of which 
16 patients were male. We obtained benign pleural effu‑
sion (BPE) from patients with congestive heart failure (n=6), 
chronic kidney disease (n=4), pneumothorax (n=1), pancre‑
atitis (n=2), panlobular emphysema (n=1), rib fracture (n=1), 
and penetrating abdominal trauma (n=1).

Patients with MA were younger than patients with 
malignant pleural effusions (51.33±12.09 vs. 67.45±14.86; 
P<0.01). There were no differences between the proportion of 
male/female samples or clinical stage among patients with MA 
and malignant pleural effusions. However, MA samples were 
more frequent from patients with a history of chemotherapy or 
with a ECOG grade 3 (Eastern Cooperative Oncology Group 
scale) (Table I).

NO production. In the LPS‑stimulated group, NO produc‑
tion was twice as high as in the inhibitor group (102.2±15.50 
vs. 58.6±10.41 µM; P<0.001). Similarly, the amounts of NO 
differed between benign (91.87±10.97 µM; P<0.001) and 
malignant (62.06±15.63 µM) ascites samples, and also BPE 
and MPE samples differed (Fig. 1).

MA and MPE modulated cytotoxicity in breast cancer cells. 
A cell viability assessment was performed on some samples 

from MA (n=12), BA (n=10), MPE (n=8), and BPE (n=8). MA 
samples induced reduction of MCF‑7 cell viability in compar‑
ison with BA (55.82±16.11 vs. 78.47±21.52; P<0.01); also, the 

Table I. Clinical characteristics of oncological patients.

Characteristic Malignant ascites Malignant pleural effusion P‑value

Age, years   
  Mean ± SD 51.33±12.09 67.45±14.86 0.004a

  Range 35‑75 21‑87 
Sex, n (%)   
  Male   7 (33.3) 10 (50.0) 0.279b

  Female 14 (66.6)  10 (50.0)
Diagnosis (n) Ovarian cancer (6), lung cancer (1),  Ovarian cancer (1), lung cancer (10), 
 hepatocellular carcinoma (3),  bone and soft tissue tumors (3), 
 lymphoma (2), breast cancer (1),  lymphoma (1), breast cancer (3), 
 mesothelioma (2), melanoma (1),  mesothelioma (1), renal cell carcinoma (1)
 gastric cancer (1), cancer of unknown 
 primary (3), pancreatic cancer (1)
Clinical stage, n (%)  
  III   3 (14.2)   1   (5.0) 0.317b

  IV 18 (85.7)  19 (95.0)
ECOG score, n (%)  
  2  0   (0.0)  12 (60.0) 
  3 15 (71.4)   5 (25.0) 0.003b

  4   6 (28.5)   2 (10.0) 0.134b

  5  0   (0.0)   1   (5.0) 
Treatment, n (%)   
  Chemotherapy 13 (61.9)   4 (20.0) 0.006b

  Radiotherapy    0   (0.0) 4 (20.0)
  Both    1   (4.7) 0 (0.0)
  None   7 (33.3) 12 (60.0) 0.087b

aStudent's t‑test; bFischer's test. ECOG, Eastern Cooperative Oncology Group.

Figure 1. Nitric oxide production by peripheral blood mononuclear cells 
incubated with the <10‑kDa fraction of ascitic or pleural effusions and 
stimulated with Escherichia coli LPS. Data were analyzed with ANOVA 
followed by Tukey's post hoc test. **P<0.01. LPS, lipopolysaccharide; BA, 
benign ascites; MA, malignant ascites; BPE, benign pleural effusion; MPE, 
malignant pleural effusion; L‑NMMA, NG‑Monomethyl‑L‑arginine acetate. 
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cytotoxic effect of MA was higher than that of vincristine 
(71.20±13.67; P<0.05), and there was no difference with MPE 
or BPE (88.36±11.05 and 95.15±14.31) (Fig. 2A). None of the 
samples, either malignant or benign, affected the viability of 
Fibroblast 55x cells (Fig. 2B).

Discussion

In this study, we evaluated the NO production by PBMCs 
exposed to an acellular fraction derived from MA/MPE. Our 
results demonstrated that the acellular fraction of MA/MPE can 
reduce NO production in PBMCs stimulated with LPS. We also 
determined that the addition of MA/MPE decreased cancer cell 
viability in vitro, but did not affect healthy fibroblasts.

MA effusions are created by the tumor and act as a unique 
environment that is dominated by tumor‑induced interac‑
tions. They provide a framework that orchestrates cellular 
and molecular changes that contribute to aggressiveness 
and disease progression (26,27). These effusions are rich in 
cytokines, chemokines, growth factors, and immune effector 
cells (25‑27); however, their antitumor functions have been 
reported to be negatively regulated (27). Our results are 
in accordance with this finding, and the NO production in 
LPS‑stimulated macrophages decreased when they were 
incubated with the <10 kDa fraction. This macrophage 

activation failure contributes to the survival of tumor cells 
despite the proinflammatory environment. This is supported 
by our previous observations that MA derived from L5178Y 
murine lymphoma fails to activate macrophages when the 
cells are pre‑treated with cell‑free MA before stimulation 
with LPS (14). However, there is evidence that macrophages 
exposed to different environments can change their polariza‑
tion, and perhaps the phenotypic change from M1 to M2 could 
explain the lower production of NO when the PBMCs were 
pre‑incubated with malignant effusion extracts (23‑25).

There is evidence that NO has a dual role, where a low NO 
concentration inhibits proliferation in some tissues while in 
others it inhibits apoptosis, and its effects are dose‑, cell‑, and 
even cancer stage‑dependent (28‑31), we observed a decrease in 
the viability of tumor cells that could be related to the decrease 
in NO.

Unlike MA, in patients with cancer, pleural effusions can 
develop as a result of the interference with the integrity of 
the lymphatic system, direct tumor involvement of the pleura, 
and local inflammatory changes in response to tumor inva‑
sion (32). Furthermore, like MA, the presence of cancer cells in 
pleural effusion defines MPE. Soini et al (33) reported higher 
NO production by iNOS in MPEs than in benign ones. Our 
MPE samples inhibited macrophage NO release in a similar way 
as MA samples, but its effect on cancer cell survival was less 
evident.

Although some studies have shown the heterogeneity of 
the soluble components in the malignant fluid (34‑36) and 
heterogeneity in the type of cancer that produced our samples, 
the decrease in cancer cell viability upon incubation with the 
<10 kDa fraction and its innocuity in healthy cells, reveals 
the presence of a common anti‑tumorigenic molecule in all 
malignant effusions. According to our data, we can speculate 
that the <10 kDa fractions derived from MA and MPE contain 
biological molecules that modulate the activation of PBMCs 
and regulate breast cancer proliferation. The next step is to 
profile the biochemical composition of the <10 kDa fractions 
derived from malignant fluids.

Limitations. All blood samples came from the same subject; 
however, we recognize that plasma protein concentration 
before or after stimulation was not considered and could affect 
the cytotoxicity assay. It is also worth considering that we 
did not perform a cytotoxicity assay on PBMC, nor did we 
evaluate the cytotoxicity of the PBMC‑stimulated extract. We 
only performed a cytotoxicity assay using the <10 kDa frac‑
tion.

In conclusion, independent of cellular origin, low molecular 
weight fractions derived from MA and MPE had molecules 
that inhibited PBMC defense mechanisms and decreased the 
viability of breast cancer cells in vitro.
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