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Abstract. Characterization of parotid tumors is important 
for treatment planning and prognosis, and parotid tumor 
discrimination has recently been developed at the molecular 
level. The aim of the present study was to establish a machine 
learning (ML) predictive model based on multiparametric 
traditional multislice CT (MSCT) radiomic and clinical 
data analysis to improve the accuracy of differentiation 
among pleomorphic adenoma (PA), Warthin tumor (WT) 
and parotid carcinoma (PCa). A total of 345 patients (200 
with WT, 91 with PA and 54 with PCa) with pathologically 
confirmed parotid tumors were retrospectively enrolled from 
five independent institutions between January 2010 and 
May 2019. A total of 273 patients recruited from institutions 
1, 2 and 3 were randomly assigned to the training model; the 
independent validation set consisted of 72 patients treated at 
institutions 1, 4 and 5. Data were investigated using a linear 
discriminant analysis‑based ML classifier. Feature selection 
and dimension reduction were conducted using reproduc‑
ibility testing and a wrapper method. The diagnostic accuracy 
of the predictive model was compared with histopathological 
findings as reference results. This classifier achieved a satis‑
factory performance for the discrimination of PA, WT and 
PCa, with a total accuracy of 82.1% in the training cohort 
and 80.5% in the validation cohort. In conclusion, ML‑based 

multiparametric traditional MSCT radiomics can improve 
the accuracy of differentiation among PA, WT and PCa. 
The findings of the present study should be validated by 
multicenter prospective studies using completely independent 
external data.

Introduction

Characterization of parotid tumors (PTs) is important for 
treatment planning and prognosis, and PT discrimination 
has recently been developed at the molecular level. 
Diffusion‑weighted imaging (DWI)‑ and dynamic 
contrast‑enhanced (DCE)‑MRI are the most important 
methods described to date, with a single or multiple 
technology/parameter combination (1‑3), largely expanding 
predictive power. Additionally, molecular imaging, such 
as diffusion tensor imaging, has been used to differentiate 
malignant from benign tumors, as well as Warthin tumors 
(WTs) from pleomorphic adenomas (PAs), both with an accu‑
racy of 86% (4). Unfortunately, such measurements based on 
molecular biomarkers are expensive, time‑consuming, involve 
complicated analyses and are available at few facilities. 
Therefore, it is of paramount importance to explore simple and 
cost‑effective approaches to improve the accuracy of differen‑
tiation among different PTs. Compared with MRI, multislice 
computed tomography (MSCT) has the characteristics of 
wide application and simple generalization of the results (5). 
The effectiveness of machine learning (ML) methods for 
high‑throughput extraction of quantitative features from 
clinical images has recently been demonstrated in multiple 
disciplinary fields, including tumor identification (6) and clin‑
ical outcome prediction (7). However, there are few published 
reports using ML‑based multiparametric CT radiomics to 
study PTs, which represents a knowledge gap. The aim of 
the present study was to establish a model through analysis 
of clinical data and dual contrast‑enhanced CT coupled with 
ML‑based algorithms to improve the accuracy of PT differen‑
tial diagnosis and to test its efficacy upon biopsy completion to 
enable timely decisions for treatment.
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Materials and methods

Patients. A total of 1,100 patients (427 women and 683 men; 
mean age, 54.5 years; age range, 19‑78 years) with pathologi‑
cally confirmed PTs who were treated by curative resection 
between January 2010 and May 2019 at five independent 
institutions [i) The First People's Hospital of Foshan; ii) The 
Sanshui People's Hospital; iii) The Foshan Chancheng 
District Central Hospital; iv) The Foshan Medicine Hospital; 
and v) The Second People's Hospital of Nanhai District; all 
in Foshan, China] were reviewed. Of the subjects reviewed, 
345 were included in the final analysis according to the study 
criteria shown in Fig. 1. A total of 273 patients recruited from 
institutions 1, 2 and 3 were randomly assigned to the training 
model. The independent validation set consisted of 72 patients 
treated at institutions 1, 4 and 5.

Imaging feature extraction. This retrospective study 
was approved by the Institutional Review Board (Ethics 
Committee of The First People's Hospital of Foshan; approval 
no. FSYYY‑EC‑SOP‑008‑02.0‑A09). Informed consent was 
obtained from all participants included in the study. Two CT 
radiologists with 10 years (reader 1) and 15 years (reader 2) of 
experience in PT imaging who were blinded to all clinical data 
independently reviewed baseline CT images to evaluate the 
following characteristics: Location, number, boundary, calcifica‑
tion, morphology, vascular marginalization (VM; small, newly 
formed blood vessels around tumors), enlarged lymph nodes 
(ELN) around tumors (diameter ≥5 mm), density (Hounsfield 
Units; HU) in plain phase (PP), arterial phase (AP) and venous 
phase (VP), perfusion rate (PR) in AP [PR=(HUAP‑HUPP)/HUpp] 
and clearance [(HUVP‑HUAP)/HUAp)] (Figs. S1‑S2). The tumor 
was deemed to have a clear boundary if it was well‑demarcated 
along its entire circumference and to have an unclear boundary 
otherwise. When the assessment was inconsistent, consensus 
was reached through discussion. To assess tumor attenuation, 
a circular region of interest (ROI) that excluded obvious cystic 
and necrotic areas was identified, and the two averages of the 
ROI were taken as the final value. Moreover, patient age and 
sex were considered. A total of 16 indicators were examined in 
the statistical analysis.

ML models and statistical analysis. The Kruskal‑Wallis H 
test and χ2 test were used to compare parameters among WT, 
PA and parotid carcinoma (PCa). Parameters with significant 
differences among the three groups were used to construct a 
classifier model, and the other parameters were filtered. The R 
package MASS (https://CRAN.R‑project.org/package=MASS) 
was utilized to construct a classifier model by linear discrimi‑
nant analysis (LDA) using the training data. The model was 
analyzed as a classifier for the three tumors in the training 
cohort (institutions 1, 2 and 3) and validated in a combination 
cohort from three hospitals (institutions 1, 4 and 5). The effect 
of the classifier model was based on accuracy. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Characteristics of different PTs. Compared with patients 
with PA and PCa, the majority of patients with WT had 

multiple lesions in the bilateral parotid glands, and the 
difference was statistically significant (P<0.01). A total 
of 79.5 and 74.4% of lesions in PCa patients displayed 
an unclear boundary and morphological irregularity, 
respectively, which was higher compared with the respec‑
tive percentages in patients with WT and PA (P<0.01). 
Additionally, ELN signs were observed around the lesions 
in ~64.7% of WT and in 64.1% of PCa cases, which 
was significantly higher compared with the percentage 
for PA (30.8%; P<0.01). The majority of WTs (~66.7%) 
displayed VM signs (P<0.01). Regarding quantitative CT 
characteristics, the Hu and arterial perfusion rate of WTs 
were both significantly higher compared with those of other 
tumors in plain and dual‑enhanced scans (P<0.01), and the 
majority of patients with WT exhibited characteristics of 
fast forward and fast retreat, with a high clearance rate 
(Figs. S1‑S2). These features were selected for predictive 
ML model establishment.

Construction of the ML classifier model. An ML classifier 
model was successfully constructed based on the selected 
clinical and CT characteristics. These characteristics differed 
significantly among WT, PA and PCa. The results regarding 
the ability of ML‑based CT characteristic and clinical data 
analysis to discriminate the three subtypes of PTs in the 
training and validation cohorts are summarized in Table I 
and Fig. 2. In general, this classifier achieved satisfactory 
performance, with a total accuracy of 82.1% in the training 
cohort and 80.5% in the validation cohort. The cases of 
3 representative patients with WT, PA and PCa for whom 
the proposed ML model correctly predicted pathology are 
presented in Fig. 3.

Table I. Diagnostic performance of machine learning‑based 
CT features and clinical data classifiers for discriminating WT, 
PA and PCa in the training and validation cohorts.

Training group Pathological diagnosis

Predictive PCa PA WT

PCa 27 12 4
PA  6 42 5
WTs 6 14 147
Accuracy 82.1%  

Validation group   

Predictive PCa PA WT

PCa 12 1 1
PA 1 13 2
WTs 2 9 41
Accuracy 80.5%  

PA, pleomorphic adenomas; WT, Warthin tumor; PCa, parotid carci‑
noma.
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Discussion

The characterization of PTs is important for preoperative 
treatment planning, as well as assessment of therapeutic 
responsiveness and prognosis (1). In the present study, 
LDA‑based ML with selected clinical data and CT radiomics 
were applied to discriminate between benign (PA and WT) 
and malignant (PCa) PTs preoperatively, with satisfactory 

results. The results demonstrated that the ML approach is a 
promising non‑invasive method that is feasible and reliable for 
the evaluation of PTs.

In general, the clinical symptoms of PTs are non‑specific, 
and preoperative imaging is crucial for diagnosis. CT and MRI 
are promising examination techniques for PTs based on the 
analysis of various morphological parameters and molecular 
imaging. Over the last 5 years, CT multiphase enhancement (8), 

Figure 1. Flowchart of the study design. ML, machine learning.

Figure 2. Results of machine learning‑based CT feature and clinical data analysis for parotid tumor discrimination. The scatter plot shows that the model 
was able to distinguish the three types of tumors in the (A) training and (B) validation cohort by linear discriminant analysis. PA, pleomorphic adenoma; 
WT, Warthin tumor; PCa, parotid carcinoma; LD, linear discriminant.
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CT perfusion (9), DCE‑MRI (1,3,10) and apparent diffusion 
coefficients derived from DWI (1‑3,10) have been applied 
to improve the diagnostic efficiency of PTs, with diagnostic 
accuracies ranging from 70 to 97% (3,8‑12). However, the 
large influence of subjective factors, the small case sample size 
and a single evaluation index are the main limitations of these 
studies, and results among studies have not been replicated. 
In ML, the predominant task is predictive modeling, namely, 
the creation of models to characterize new examples. In terms 
of the clinical demand discussed above, the histopathology 
of PT must be predicted accurately and preoperatively, for 
which there is an opportunity to apply ML technology. As 
our sample number was lower compared with that in common 
industrial cases, 2 clinical indices and 14 CT features were 
selected; 16 indicators were included in the statistical analysis 
according to prior clinical knowledge for prediction. ML has 
been shown to have a great advantage in tumor diagnosis as 
well as prognosis and recurrence prediction, with an increasing 
number of reports involving hepatic carcinoma (13), thyroid 
nodules (14), renal tumors (15) and colon cancer (16), among 
others. Previous studies have demonstrated that ML‑based 
texture analysis has diagnostic accuracy ranging from 98.3 to 
100% for neoplastic lesions of the abdomen. To the best of our 
knowledge, this is the first ML study for PT discrimination, 
revealing powerful diagnostic performance.

The key to building a powerful predictive model is to select 
efficient indicators and appropriate modeling methods. In the 
present study, radiomic features were extracted from plain scans 
and dual‑phase enhancement of CT examinations. The analysis 

mainly included the location, number, boundary, morphology, 
VM, ELN, density and enhancement pattern, among others, 
which should represent the underlying tumor biology. Previous 
studies have reported that feature optimization can enhance 
the predictive value of radiomic features (6,7,17). Therefore, 
statistical analysis was first used to eliminate indicators without 
significant differences, and among the tumor categories, no 
significant differences were observed regarding characteristics 
such as tumor location or nodule‑in‑nodule sign. Finally, 14 CT 
characteristics that were valuable in the differential diagnosis 
of PA, WT and PCa were selected, which was consistent with 
the results of our previous studies (3,5,9). In addition, given the 
importance of sex and age in the identification of PTs found 
in previous studies, these characteristics were included as 
modeling indicators to improve the success of the model. It was 
previously demonstrated that LDA‑based models had slightly 
better diagnostic performance compared with support vector 
machine‑based models (6,18). LDA is a representative linear 
classifier that uses a straight line (a vector) to separate three 
classes (19), namely PA, WT and PCa in the present study. In 
general, this classifier achieved satisfactory performance, with 
a total accuracy of 82.1% in the training cohort and 80.5% 
in the validation cohort. Our previous study (3) established a 
simple model for PT discrimination based on multiparametric 
analysis derived from DCE‑MR and DWI, and LDA analysis 
was used. Our results revealed the biomarker that appeared to 
be the best indicator (extracellular extravascular space volume 
fraction + time‑intensity curve), with a prediction accuracy of 
75%, while the predictive model in the present study exhibited 

Figure 3. Three representative cases showing the clinical translation of the CT feature‑derived model. Patient 1: A 58‑year‑old male with multiple tumors in the 
right parotid gland had a high predicted probability of Warthin tumor, and this result was consistent with the pathology. Patient 2: A 32‑year‑old female with one 
tumor in the left parotid gland had a high predicted probability of pleomorphic adenoma, and this result was consistent with the pathology. Patient 3: An 82‑year‑old 
female with one tumor in the right parotid gland had a high predicted probability of parotid carcinoma, and this result was consistent with the pathology.
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a higher accuracy at 80.5%. Therefore, we believe that the 
model established in the present study is more valuable. First, 
dual‑phase enhanced CT scanning has a wide range of applica‑
tions and is relatively simple and practical. Although CT involves 
exposure to radiation, the progress of low‑dose scanning and 
image reconstruction algorithms has greatly reduced the 
radiation dose (20). Second, the modeling indicators combined 
with clinical and CT characteristics in the present study were 
efficient and simple. Additionally, the number of cases in this 
study was large (345 cases) and, as the data from the training 
and prediction models were both derived from multiple centers, 
the model is considered as reliable and accurate.

There were three primary limitations to the present study. 
First, as this was a retrospective study, selection bias could 
not be fully avoided, and the number of patients with each 
subtype of PT was not balanced in the validation set, which 
may have influenced the performance metrics to a certain 
extent. However, it is not clear whether this had a significant 
impact on the modeling. Second, a manual ROI method was 
used for the determination of tumor enhancement indicators. 
Although multiple point and multiple site measurements were 
adopted to reduce errors, the enhancement characteristics of 
the tumors could not be fully and accurately reflected. We 
are confident that, in the future, semiautomated software 
will be able to recognize PTs with CT images. Finally, only 
three types of tumors (WTs, PA and PCa) were analyzed in 
the present study. Other types of tumors, such as basal cell 
adenoma, eosinophiloma and oncocytic adenoma, are rare 
tumors with a small number of cases. Therefore, these patho‑
logical types of PTs were not included in the diagnostic scope 
in this study. The current diagnostic model still needs to be 
further improved.

In summary, we herein established an ML classifier based 
on LDA analysis with selected CT characteristics derived 
from dual‑enhanced parotid CT examination and clinical 
characteristics (sex and age) that achieved 80.5% diagnostic 
accuracy for differentiating among PA, WT and PCa. To the 
best of our knowledge, this is the first successful ML classifier 
established for PT discrimination. This predictive model has 
high diagnostic accuracy and can be quickly translated into 
clinical applications and popularized in primary hospitals. 
Therefore, this classifier will benefit patients with PTs and help 
in providing appropriate treatment.
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