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Abstract. The present study aimed to explore the epithe‑
lial‑to‑mesenchymal transition of circulating tumor cells 
(CTCs) and CD133 expression in determining the prognosis 
of patients with thyroid cancer. It enumerated different CTC 
subtypes and analyzed CD133 gene expression in patients 
with thyroid cancer to evaluate the relationship between CTC 
number and thyroid cancer prognosis. In total 394 patients 
with thyroid cancer were enrolled. Among these, 270 cases 
had papillary thyroid cancer (PTC), 60 had follicular thyroid 
cancer (FTC), 30 had medullary thyroid cancer (MTC), 
15 had poorly differentiated thyroid cancer, 19 had anaplastic 
thyroid cancer and 10 had non‑malignant thyroid nodules 
based on their histopathological characteristics. CTC cell 
counts were determined by CanPatrol CTC capture technique 
before treatment. The present study also performed reverse 
transcription‑quantitative PCR for CD133 gene expression and 
evaluated the relationship between CD133 expression and clin‑
ical pathology. A total of 330 cases of enrolled patients were 
classified as differentiated thyroid cancer, which included PTC 
and FTC. Their prognosis was excellent. The positivity rate of 
CTCs at diagnosis was 95.5%. The data of the present study 
showed that early recurrence and metastasis rates in PTC 
and FTC patients with >6 CTCs and positive mesenchymal 

circulating tumor cells (MCTCs) were significantly higher 
than those in patients with <6 CTCs and MCTCs. It was also 
found that those patients with >6 CTCs and MCTCs had 
shorter overall survival. In addition, CD133 levels in patients 
with thyroid cancer were strongly associated with the differ‑
entiation grades of thyroid cancers. The detection of >6 CTCs 
and positive MCTCs in patients with differentiated thyroid 
cancer was an excellent biomarker for predicting the prognosis 
of patients. CD133 expression was also identified as a good 
biomarker for thyroid cancer differentiation.

Introduction

World wide, thyroid cancer is found in ~5% of women and 
1% of men (1). Thyroid cancer is frequently identified during 
routine physical examinations using ultrasound imaging or 
fine needle aspiration biopsy (FNAB) (2). The final diagnosis 
of malignant thyroid nodules requires confirmation using histo‑
logical examination of the excised thyroid tumor via surgery or 
FNAB (3). Therefore, a few methods, including specific gene 
detection using PCR, have been developed to preoperatively 
differentiate benign thyroid nodules (4). Thyroid cancers are 
divided into papillary thyroid cancer (PTC), follicular thyroid 
cancer (FTC), medullary thyroid cancer (MTC), poorly differ‑
entiated thyroid cancer (PDTC) and anaplastic thyroid cancer 
based on their histopathological characteristics and original 
tissue resources (5). Normally, PTC and FTC together can 
be classified as differentiated thyroid cancer (DTC), which 
arises from follicular cells of the thyroid gland and has a more 
favorable prognosis than other type of thyroid cancer (6,7). 
By contrast, MTC, PDTC, and anaplastic thyroid cancers (8) 
arise from parafollicular cells and have a neuroendocrine 
origin. Treatments for patients with thyroid cancer include 
surgery, radioactive iodine‑131 therapy, chemotherapy, 
hormone therapy and targeted therapy (9). Surgical resection 
and radioactive iodine‑131 are no doubt effective therapies 
for non‑metastatic thyroid cancers. However, radioactive 
iodine‑131 therapy has little benefit in the treatments of MTC, 
PDTC and anaplastic thyroid cancers. Patients with unresect‑
able nodules can be treated with external irradiation, which 
relieves pain in patients with bone metastases. The prognosis 
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of thyroid cancer is associated with its histopathological type 
and tumor‑node‑metastasis (TNM) staging. Normally, the 
overall prognoses of PTC and FTC are excellent. The overall 
5‑year survival rate is 85% for women and 74% for men at 
stages I‑III, respectively (10,11). By contrast, patients with 
stage IV thyroid cancer and anaplastic thyroid cancer have a 
poor prognoses (11,12) because these patients with advanced 
thyroid cancer or low differentiated thyroid cancer do not 
respond to surgery or insensitive to radioactive iodine‑131 
treatment (13). Therefore, there is an urgent need to identify 
more sensitive and accurate biomarkers at an early stage for 
determining prognosis in patients with thyroid cancer.

Clinically, thyroglobulin can be used as a sensitive 
biomarker for monitoring DTC and most PDTC development. 
If a patient's thyroglobulin level is >0.3 ng/ml in serum after 
thyroidectomy, the change of relapse ismarkedly higher (14), 
but serial measurement in a shorttime limits its extensive 
application andanaplastic thyroid cancer, metastatic DTC and 
metastatic MTC may not produce thyroglobulin because of 
their poorly differentiated status. Recent studiesshowed that 
circulating tumor cells (CTCs) originate from the primary 
tumor and are released into the bloodstream, giving rise to 
tumor metastasis (15,16). Studies have demonstrated that CTC 
counts are a sensitive biomarker to predict tumor progres‑
sion andhelp make treatment decisions (17‑19). For example, 
Wang et al (20) show that higher CTC levels in patients with 
liver cancer are strongly correlated with early relapse. A 
review by Micalizzi et al (21) reported that epithelial cells 
from primary tumors can enter adjacent tissues via epithe‑
lial‑mesenchymal transition (EMT) mechanism. CTCs are 
classified into epithelial, MCTC, and mixed types according 
to their surface markers (22). So far, CTC evaluation for 
thyroid cancer has little data to support its use, but available 
data revealed a slight correlation with CTC number (4,22,23). 
Therefore, new biomarkers need to be validated. Studies 
revealed that CD133, a glycoprotein encoded by the PROM1 
gene (24), is the most common marker of cancer stem cells 
(CSCs) from different carcinomas (25) and may be a good 
biomarker for predicting the prognosis of young patients with 
thyroid cancer (26). However, the detailed mechanisms remain 
to be elucidated.

The present study detected CD133 gene expression and 
CTC levels in blood samples from patients with thyroid cancer 
and aimed to investigate the prognostic value of CTCs and 
CD133 expression inthyroid cancer.

Materials and methods

Patient samples. A total of 394 patients, including 270 cases 
papillary thyroid cancer (PTC), 60 follicular thyroid cancer 
(FTC), 30 of medullary thyroid cancer (MTC), 15 of poorly 
differentiated thyroid cancer (PDTC) and 19 of anaplastic 
thyroid cancer (8) as classified based on their histopathological 
characteristics, were involved in the present study between 
January 2018 and September 2020. Another 10 patients without 
thyroid tumors were used as the negative controls. Their age 
ranged between 9‑82 years. Males made up 149 of the cases 
and females 245 cases. All samples were collected from 
patients' peripheral blood at diagnosis and before treatment. 
All patients were followed up at every five months. Patients 

with possible recurrence were followed up every two months. 
Overall survival (OS) was calculated as the time from initial 
diagnosis to patient mortality. The study protocol was approved 
by the ethics committee of the Affiliated Cancer Hospital of 
Zhengzhou University (approval no. 2022‑KY‑0009‑001). 
Written informed consent was obtained from all the 
participating patients prior to sample collection.

Characterization of CTCs using CanPatrol and tricolor 
RNA‑ISH methods. Characterization strategies using CTC 
in patients with thyroid cancer were followed as described 
in the literature (27). A total of 5 ml of peripheral blood 
was collected from the patients at diagnosis and the control 
participants. Each sample was then spun for 5 min at 300 x g 
at room temperature (RT) for 4 h after collection. The upper 
plasma phase was discarded and CTCs were isolated using 
CanPatrol CTC enrichment technique (SurExam Bio‑Tech 
Co., Ltd.). For CanPatrol CTC enrichment procedure, the 
above cells were mixed with 15 ml erythrocyte lysis buffer 
(cat. no. 00‑4333‑57; Thermo Fisher Scientific, Inc.) and 
incubated for 30 min at RT. Then, it was centrifuged for 
5 min at 350 x g at RT and the supernatants discarded. Cells 
were fixed for 15 min with cytofix/cytoperm fix solution 
(cat. no. 554722, BD Biosciences) at 4˚C and were transferred 
to a filter tube with an 8 µm pore size filter membrane for 
filtering with a vacuum pump. Cells were further fixed at RT 
for 1 h by 4% paraformaldehyde (PFA).

Following CTC enrichment, Alexa Fluor 594 labeled 
epithelial makers (EpCAM, CK8/18/19), Alexa Fluor 488 
conjugated mesenchymal markers (vimentin and twist) and 
nuclear makers (4',6‑diamidino‑2‑phenylindole, DAPI) were 
used to identify CTCs along with a tri‑color RNA in situ 
hybridization technique (28). Briefly, the enriched CTCs 
were treated with 0.1% mg/ml proteinase K to increase cell 
membrane permeability. Then, capture probes were mixed 
for hybridization at 40˚C for 2 h and unbound probes were 
washed with 0.1X SSC solution. To amplify the probe signal, 
the pre‑amplification and the amplification solution were 
added to the hybridization solution. CTCs were classified 
into epithelial, mesenchymal and mixed types according 
to the combination of their surface markers with DAPI 
(Fig. 1). Following capture probes hybridization and signal 
amplification, cells were stained with DAPI and counted 
under a fluorescence microscope (Olympus BX53; Olympus 
Corporation). Epithelial CTCs were identified with Alexa 
Fluor 594 labeled epithelial makers (EpCAM/CK8/18/19) and 
showed red color dots under the microscope (Fig. 1A). MCTCs 
were counted with Alexa Fluor 488 conjugated mesenchymal 
markers (vimentin and twist) probes and revealed green color 
dots under the microscope (Fig. 1B). If there were red and 
green mixed dots in cells, these cells were counted as mixed 
CTCs (Fig. 1D). Cell nuclear images were marked with DAPI 
staining (Fig. 1C).

CTCs counting criteria. Following the above CTCs markers, 
different CTC subset criteria were set up. The red dots, green 
dots and mixed dots were counted at x100 magnification using 
different wavelengths with an automated imaging fluorescent 
microscope (Carl Zeiss AG). Positive and negative cells 
were counted for the three types of CTCs in seven fields of 
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view (DAPI positive cells) manually under the fluorescent 
microscope.

CD133 expression by reverse transcription‑quantitative 
(RT‑q) PCR. Whole peripheral blood (5 ml) was obtained 
from the patients with thyroid cancer and negative control. 
Mononuclear cells (MNC) were isolated via lymphocyte Ficoll 
separation solution at 300 x g for 90 min at RT and cell density 
adjusted to 1x106/ml for total 2 ml. Next, 1 ml TRIzol (Thermo 
Fisher Scientific, Inc.) was added. Total RNA was extracted 
using RNeasy kit (cat. no. 74004; QiagenGmbH) and cDNA 
synthesis performed using commercial reagents (cat. no. 
K1621; Thermo Fisher Scientific, Inc.) following manufacture's 
protocol. The CD133 gene PCR reagents were purchased from 
Thermo Fisher Scientific and were performed quantitative PCR 
using SYBR Green Master Mix (Thermo Fisher Scientific, 
Inc.). For human CD 133 and GAPDH primer sequences 
were following: CD133 forward primer, 5'‑AGT CGG AAA 
CTG GCA GAT AGC‑3'; reverse primer: 5'‑GGT AGT GTT 
GTA CTG GGC CAA T‑3'; GAPDH forward primer, 5'‑GGA 
GCG AGA TCC CTC CAA AAT‑3'; GAPDH reverse primer: 
5'‑GGC TGT TGT CAT ACT TCT CAT GG‑3'. Human CD133 
and GAPDH gene ID #:NM_001145847 and NM_001256799 
were entered into pga.mgh.harvard.edu/cgi‑bin/primerbank. 

Thermocycling conditions were: Denaturing 95˚C for 5 min; 
95˚C for 30 sec, 56˚C for 30 sec, 72˚C for 1.5 min, 35 cycles; 
72˚C for 5 min; 4˚C for 1 h. CD133 expression was calculated 
by the 2‑ΔΔCq method and normalized to GAPDH (29). The 
results were from three independent experiments.

Statistical analysis. The association between CTC levels and 
clinicopathological profiles were evaluated by the χ2 test. CTCs 
levels were compared by Dunn's test following Kruskal‑Wallis 
test. OS was calculated as the time from initial diagnosis to 
death at cut‑off time using the Kaplan‑Meier method and 
log‑rank test. CD133 expression in different thyroid cancer 
subsets was performed using χ2 test. All results were analyzed 
using GraphPad Prism 8 software (GraphPad Software, Inc.). 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Clinical characteristics. The present study enrolled 
394 thyroid cancer patients with T1‑4TNM stages and 
10 negative controls. Clinicopathological features of the 
patients are presented in Table I. The clinical parameters 
included age, sex, histology, differentiation grade and TNM 

Figure 1. Images of CTCs. (A) epithelial CTC image, (B) mesenchymal CTC image, (C) cellular nucleus with DAPI staining and (D) merged image. 
Epithelial CTCs were stained with only Alexa Fluor 594 labeled epithelial markers EpCAM and CK8/18/19. Mesenchymal CTCs were stained with Alexa 
Fluor 488‑labeled vimentin and twist. Images were capturedat 100x magnification with a fluorescence microscope. CTCs, circulating tumor cells; DAPI,4', 
6‑diamidino‑2‑phenylindole.

Table I. Basic demographic and clinicopathological characteristics.

Clinicopathological characteristic No of patients Age Sex, female (%) Tumor size range (cm)

Control 10 43.8 (19‑75) 67 2.0 (0.2‑1.0)
MAL 394 44.6 (9‑82) 66.5 2.0 (1.2‑2.8)
MAL‑papillary 270 48.6 (9‑75) 74 2.3 (1.0‑4.8)
MAL‑follicular 60 46.5 (15‑81) 68 2.3 (1.1‑5.5)
MAL‑medually 30 44.5 (13‑75) 75 2.1 (1.0‑3.0)
MAL‑poorly differentiated 15 40.7 (15‑68) 60.3 2.0 (1.3‑2.8)
MAL‑anaplastic 19 41.5 (15‑65) 67 2.5 (1.8‑3.5)
I 154 42.7 (9‑82) 64.6 
II 50 46.7 (13‑75) 68 
III 54 47.1 (15‑76) 63.7 
IV 136 44.9 (15‑81) 65.7 

MAL, malignant; I, II, III and IV, tumor‑node‑metastasis stages.
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stages. Among the patients, most patients were diagnosed with 
papillary thyroid cancer (PTC; 69.8%) and follicular thyroid 
cancer (FTC; 14.2%). In addition, patients with medullary 
thyroid cancer (MTC; 7.6%), poorly differentiated thyroid 
cancer (PDTC; 3.7%) and anaplastic thyroid cancer (4.7%) were 
also included the present study. Among the different subtypes, 
the number of female patients (265; 67.3%) was almost double 
than that of the male patients (129; 32.7%). There were no 
significant differences in patient age. Tumor sizes ranged from 
0.123‑33.2 cm3.

Identification of CTC subtypes in patients with thyroid cancer. 
Peripheral blood (5 ml) from 394 patients with thyroid cancer 
and 10 healthy controls were used to identify CTC subtypes 
using CanPatrol and tricolor RNA‑ISH method. This method 
has some advantages over the other techniques for CTC 
detection: i) It can measure the frequency of relatively fewer 
cells; ii) it allows for detection of multiple genes in a single 
CTC; and iii) it can assess the EMT of CTCs and predict the 
prognosis of cancer (30). CTCs were classified into epithelial, 
mesenchymal and mixed subtypes based on their surface 

Figure 2. Comparison of CTCs and subtypes CTC in PTC, FTC and control patients. (A) total CTC count comparison, (B) Epithelial CTC count comparison, 
(C) MCTC count comparison and (D) mixed CTC count comparison. **P<0.01; ***P<0.001; *P<0.05. CTCs, circulating tumor cells; PTC, papillary thyroid 
cancer; FTC, follicular thyroid cancer; CTCs, circulating tumor cells; MCTC, mesenchymal circulating tumor cell; NS, no significant difference.

Figure 3. OS of patients with CTCs and MCTCs by Kaplan‑Meier curves at diagnosis. (A) OS in >6 CTCs vs. ≤6 CTCs in MTC patients. (B) OS in >6 CTCs 
vs. ≤6 CTCs in PDTC patients. (C) OS comparison in >6 CTCs vs. ≤6 CTCs in ATC patients. OS, overall survival; CTCs, circulating tumor cells; MCTC, 
mesenchymal circulating tumor cells; MTC, medullary thyroid cancer; PDTC, poorly differentiated thyroid cancer; ATC, anaplastic thyroid cancer.
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markers with different immunofluorescent dye staining 
(Fig. 1). The data revealed that most patients had only one 
type of CTC. Few epithelial CTCs were detected in the benign 
control group. CTCs were found 376 out of 394 thyroid cancer 
patients (95.4%). All patients with MTC, PDTC and ATC had 
detectable levels of CTCs.

Characteristics of CTCs in patients with thyroid cancer. To 
assess the clinical significance of CTC number in patients 
with different types of thyroid cancer, the total CTCs and 
CTC subtypes of major differentiated thyroid cancers PTC 
and FTC were compared because MTC, PDTC and ATC 
are undifferentiated thyroid cancer and have a short OS. The 
results are shown in Fig. 2. Total CTCs and mixed CTCs 
in either PTC or FTC are dramatically higher than those in 
control (Fig. 2A, P<0.01). However, there were no significant 
differences between the PTC and FTC groups (Fig. 2A). In 
epithelial CTCs (Fig. 2B), dramatically higher than the control 
(P<0.01) and FTC also was markedly more than the control 
(P<0.05). By contrast, MCTC (Fig. 2C), MCTC count in PTC 
patients were significantly higher than those in the controls, 
but there was no obvious difference between FTC patients 
and controls. Similar to total CTCs, mixed CTCs (Fig. 2D) in 
either the PTC or FTC group were significantly higher than 
those in the control group.

Prognostic significance of CTC counts and subtypes. The 
prognosis of patients with DTC is generally excellent. 
Therefore, the clinical significance of CTC subtypes in 
poorly differentiated thyroid cancers, such as MTC, PATC 
and ATC was further investigated and followed up to 
60 months for patient prognosis. The results are presented 
in Fig. 3 and Table II. The OS in the patients with MTC 
(Fig. 3A); PDTC (Fig. 3B) and ATC (Fig. 3C) was investi‑
gated. In MTC patients, OS when CTCs >6 was significantly 
shorter (P<0.01) compared with patients with CTCs ≤6 
according to the Kaplan‑Meier's survival curve analysis. 
The hazard ratio (HR) (31) and 95% confidence interval 
(CI) were 3.762 and 1.299 to 10.89, respectively. In the 
patients with PDTC, the HRs and 95% CIs were 4.219 and 
1.034 to 17.2 (P<0.05). By contrast, HR and 95% CI were 
3.278 and 1.077 to 9.8 (P<0.01) in ATC patients (Table II). 
These results indicated that high CTC numbers in patients 
with PDTC were a powerful biomarker for predicting the 
prognosis of thyroid cancer.

CD133 expression is significant relevant to thyroid cancer 
differentiation. To evaluate the relationship between CD133 
expression and thyroid cancer differentiation, CD133 gene 
expression was measured using qPCR in the thyroid cancer 
subtype. The results are shown in Fig. 4. CD133 expression 
was higher in poorly differentiated cells. ATC and PDTC 
showed robust expression compared to the control (P<0.001). 
By contrast, PTC or FTC showed high expression compared 
to control (P<0.01). Notably, CD133 expression was also 
significantly higher in ATC than in PDTC (P<0.001). CD133 
expression in PDTC was higher than that in PTC and FTC 
(P<0.01). These results revealed that CD133 expression 
is strongly associated with the degree of thyroid cancer 
differentiation.

Discussion

Studies show that CTCs are strongly associated with cancer 
development (21,32). A number of clinical studies have 
revealed that the CTC count of the peripheral blood in patients 
with advanced stages of cancer is an important guideline for 
predicting patient prognosis (17‑19). A few reports have indi‑
cated that CTCs of patients with thyroid cancer are involved 
in disease progression (22,23,33). However, data investigating 
CTCs in patients with thyroid cancer at early stages are 
limited. The present study showed that the total CTCs and 
their subtypes had a significant clinical association with the 
prediction of thyroid cancer prognosis.

CTCs in the blood stream can often be identified as 
epithelial, mesenchymal, or both mixed types according to 
their surface markers with different immunofluorescence 
stains (34,35). Studies indicate that EMT marker expression in 
CTCs in a number of types of cancer, such as gastric cancer, 
colorectal cancer, non‑small cell lung cancer, breast cancer and 
prostate cancer are relevant to invasion and metastasis (36‑39). 

Table II. Comparison of OS on MTC, PDTC and ATC patients.

Variables HR 95% CI P‑value

CTC in MTC >6 vs. ≤6/5 ml 3.762 1.299‑10.89 <0.01
CTC in PDTC >6 vs. ≤6/5 ml 4.219 1.034‑13.2 <0.05
CTC in ATC >6 vs. ≤6/5 ml 3.278 1.077‑9.8 <0.01

OS, overall survival; MTC, medullary thyroid cancer; PDTC, poorly 
differentiated follicular thyroid cancer; ATC, anaplastic thyroid 
cancer; HR, hazard ratio; CI, confidence interval; CTC, circulating 
tumor cell.

Figure 4. CD133 expressions in thyroid cancer subtype. Data shows CD133 
relative expression by reverse transcription‑quantitative PCR. ***P<0.001; 
**P<0.01. ns, no significant difference; PTC, papillary thyroid cancer; FTC, 
follicular thyroid cancer; MTC, medullary thyroid cancer; PDTC, poorly 
differentiated thyroid cancer; ATC, anaplastic thyroid cancer.
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Previous studies show that CTCs in thyroid cancer can be 
detected with immunochemical staining of EpCAM epithelial 
marker (23) or based on cell size (40) and antibody capture (41). 
However, these methods have low sensitivity and are less reliable 
than RNA‑ISH. Antibody capture needs ≤27.5 ml peripheral 
blood. By contrast, the RNA‑ISH has very high sensitivity and 
specificity in only 5 ml peripheral blood. It was found that 
if the total CTC and MCTC counts were high at diagnosis, 
patients were more likely to have rapid tumor progression. The 
present study also showed that if patient blood samples had <6 
MCTCs, OS of patients with thyroid cancer were significantly 
longer than that of patients with >6 CTCs. Similarly, patients 
with an increased MCTC percentage following surgery relapse 
earlier in hepatocellular cancers (42). Finding from past studies 
support that CTC monitoring identifies not only the nature of 
the tumor, but also provides the underlying biology of tumor 
recurrence and metastasis (43‑45). For example, the presence 
of CTCs is closely associated with metastasis of small cell 
lung cancer (46). de Sousa e Melo et al (47) found that a high 
number of CTCs indicates relapse in patients with colorectal 
cancer. Therefore, the detection of CTCs, EMT CTCs and 
changes in patients with thyroid cancer may provide another 
predictor of recurrence compared with conventional clinical 
parameters.

In addition to the clinical significance of CTCs, a number of 
studies have also explored other biomarkers for the prognosis 
of thyroid cancer (48‑50). Among these biomarkers, CD133 is 
an interesting gene because it is involved in a number of types 
of cancers (51‑53). Ge et al (54) reveal that targeting CD133 
may greatly improve the prognosis of ATC. This result shows 
that high CD133 expression promotes thyroid cancer prolif‑
eration. Indeed, the present study indicated that higher CD133 
levels were strongly associated with poorly differentiated 
thyroid cancer. These data confirm that CD133 is also a good 
biomarker for the diagnosis and therapy of thyroid cancer.

The present study indicated that CTCs in peripheral blood 
were strongly associated with OS in patients with thyroid 
cancer. High levels of CTCs or MCTCs were significantly 
correlated with early recurrence or metastasis. CD133 is a new 
biomarker for the diagnosis and therapy of thyroid cancer.
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