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Abstract. The expression of genes is altered in various 
diseases and is responsible for the disease's initiation, progres‑
sion and pathology. Several other genes, predominantly 
inactivated, may become activated in a given condition and 
contribute to the initiation and progression of the disease. 
Similarly, human endogenous viruses (HERVs) are an incom‑
plete, non‑productive and inactive viral sequence present in 
the heterochromatin of the human genome, and are often 
referred to as junk DNA. HERVs were inserted into the host 
genome millions of years ago. However, they were silenced 
due to multiple mutations and recombination that occurred 
over time. However, their expression is increased in cancers 
due to either epigenetic or transcriptional dysregulation. Some 
of the HERVs having intact open reading frames have been 
reported to express virus‑like particles, functional peptides 
and proteins involved in tumorigenesis. To summarize, there is 
involvement of different HERVs in the initiation and progres‑
sion of several cancers. The present review aims to provide 
concise information on HERV and its involvement in the 
initiation and progression of multiple types of cancer.
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1. Introduction

Human endogenous retroviruses (HERVs) are molecular 
remnants of exogenous retroviruses that infected the human 
germline millions of years ago (horizontal transmission). 
These genetic fragments are stably integrated into the human 
genome; they are called endogenous retroviruses (1). They 
are often considered ‘non‑functional DNA’ and account for 
approximately 8.29% of the human genome (2). They are 
inherited from parents to the offspring like any other gene 
(vertical transmission) (Fig. 1). The retroviruses are known 
for their transforming potential in their animal host via 
reverse transcription, but the HERVs are typically silenced 
or non‑productive due to the accumulation of mutations 
and therefore rendered inadequate to produce virions (3). 
However, due to epigenetic dysregulation, some HERVs can 
retain their potency, produce virus‑like particles, and express 
some immunogenic protein products, such as Syncytins (4), 
Np9, and Rec (5). The production of these proteins by the 
retroelements affects the biological functions and cancer 
immunoregulation (2).

HERVs are not usually expressed in normal cells. 
Nevertheless, some of their gene products and viral compo‑
nents can be expressed in human cells as antigens in some 
instances. Their expression has been reported to have a dual 
impact on human physiology (2). They aid in human physi‑
ological functions like regulating pluripotency of embryonic 
stem cells (6), involvement in placental morphogenesis (7), 
modulating the innate immune response (8), and regulating 
gene expression (9). On the contrary, they are also involved 
in the pathogenesis of multiple sclerosis (10), rheumatoid 
arthritis (11), schizophrenia (12), AIDS (13), cellular senes‑
cence	(14),	and	diabetes	(15).	HERVs	have	gained	a	significant	
attraction due to their association with various cancers and 
their progression (3). Due to their abnormal expression in 
multiple malignancies and their pleiotropic role in oncogenesis, 
extensive research has targeted HERV antigens for immu‑
notherapy by triggering both innate and adaptive immune 
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response (16,17). Blocking the expression and function of 
HERVs in tumor cells via small interfering RNA (siRNA) or 
CRISPR (18), and anti‑viral drugs (19) have also been studied 
by researchers (20). Since HERVs are extensively present in 
the human genome, their gene products can also be used as 
biomarkers to detect cancer progression (21).

2. Structure and classification of HERVs

HERVs have diverse structures ranging from solo LTR (long 
terminal repeats) to partially or fully intact open reading 
frames (ORFs) (22). The most active HERV group reported 
having a relatively intact ORF is the HERV‑K HML‑2 
subtype (23). Classical HERVs structure contains the general 
components of the retroviruses, including protein‑encoding 
sequences,	GAG	(gene‑specific	antigen),	PRO	(protease	gene),	
POL	(polymerase	gene),	and	ENV	(envelope	gene)	flanked	by	
non‑coding LTRs (Fig. 2) which are the regulatory region and 
can act as a promoter or an enhancer. Until now, 31 discrete 
groups of HERVs have been discovered. They can be catego‑
rized into three classes of retroviruses based on their similar 
phylogenetic origin to exogenous viruses (24) (Fig. 3).

3. Activation of HERVs

Generally, HERVs, having intact ORF, remain inactive due to 
CpG hypermethylation of their sequence which is catalyzed 
by DNA methylase‑1 (25). However, they can be activated by 
multiple factors like exogenous viruses such as human immu‑
nodeficiency virus (HIV) (26), Kaposi sarcoma‑associated 
herpesvirus (KSHV), also known as human herpesvirus 
8 (HHV8) (27), Epstein‑Barr virus (28), and human T‑cell 
leukemia virus‑1 (29). Also, epigenetic modifications (DNA 
demethylation,	histone	modification)	(30),	chemical	substances	
(hydroquinone (31), phorbol‑12‑myristate‑13‑acetate (PMA) (32), 
phytohemagglutinin (PHA) (33), cupric salt (34)), physical factors 
(X‑rays, UV‑B) (35,36), and cytokines (37) (Fig. 4).

4. Role of HERV in cancer

Upon their activation, HERVs can be transcribed into 
full‑length mRNA (38), spliced mRNA (39), and non‑coding 
mRNA (40), resulting in either intact protein (41) or truncated 
protein (42). These HERV elements are found to be widely 
expressed in a variety of cancers like germ cell cancers (43), 
colorectal cancer (40), breast cancer (41), prostate cancer (44), 
ovarian cancer (45), lung cancer (46), melanoma (47), bladder 
cancer (48), lymphoma (39), hepatobiliary cancer (49), soft 
tissue sarcoma (50), Kaposi's sarcoma (27), seminomas (51), 
choriocarcinoma (52), and leukemia (53). Thus, these are 
potential biomarkers for cancers (49) and may have therapeutic 
potential if pursued to understand the causal relationship with 
individual disease types. However, according to the literature, 
HERVs have a dual opposing role in some cancer where they 
can either promote carcinogenesis or suppress it (2). Both the 
aspects of HERV mediated regulation will be discussed in the 
upcoming sections.

Cancer promoting effects. The Env proteins (Eg. syncytins, 
Np9, Rec) of different HERV groups HK2, HERV‑W, HERV‑V, 

HERV‑H, and HERV‑P (54) have been reported to suppress the 
immune system (55), affect the cell signaling pathways (56), 
and trigger cell‑to‑cell fusion (57) (Fig. 5). Thus, having an 
oncogenic effect. They may promote cell proliferation, growth, 
migration, invasion, metastasis, and stemness in different 
types of cancers, such as breast cancer (41), melanoma (58), 
leukemia (59), Kaposi's sarcoma (27), pancreatic cancer (60), 
etc. Therefore, HERV Env proteins are an exciting target for 
anti‑cancer therapy. Few studies have shown that the expres‑
sion of several HERV groups like HERV‑W and HERV‑K has 
contributed to cancer stemness or pluripotency in colorectal 
cancer (19) and melanoma cells (58), respectively. However, 
the underlying mechanisms are yet to be studied. Further, 
non‑allelic recombination of HERV sequences causes their 
translocation to different regions in the genome. Their new 
proximity may activate their expression resulting in the 
activation	of	specific	oncogenes	(61)	or	disruption	of	a	tumor	
suppressor gene (62). Besides, HERV LTR can act as an 
alternative promoter that can regulate cellular gene expres‑
sion, leading to abnormal gene expression, such as switching 
on	of	proto‑oncogenes,	and	finally	contributing	 to	 tumori‑
genesis (16) (Fig. 6). Also, HERV‑E derivative exon E1B has 
been observed to downregulate the surface expression of CD5 
on T‑cell in the case of T‑cell acute lymphoblastic leukemia 
(T‑ALL), thereby, inhibiting its functions and causing uncon‑
trolled proliferation of leukemic T‑cells (63) (refer to section 
5.5). Therefore, it can be concluded that HERVs have a major 
role in oncogenesis, especially the Env protein of different 
HERV subgroups (3,27,41,56‑59,64‑67) (Table I).

Cancer suppressing effects. On the contrary, HERVs can exert 
suppressive effects on cancer instead of promoting it. The 
HERV protein products have been reported to stimulate innate, 
humoral, and cellular immune responses against malignant 
tumors by acting as an antigen like PAMP (pathogen‑associated 
molecular patterns) recognized by pattern recognition recep‑
tors (PRRs) of immune cells (68). This triggers an immune 
response	and	causes	the	pro‑inflammatory	signals	to	exert	an	
anti‑viral effect against the HERV antigens by treating them 
as exogenous infections (2,69). This phenomenon has been 
reported in the case of clear cell renal cell carcinoma (ccRCC), 
where the infiltration of CD8+ cytotoxic T‑cells triggered 
by HERV‑E antigen was increased in ccRCC patients with 
hematopoietic stem cell transfer, which negatively affected the 
cancer progression (70). It might happen due to viral mimicry, 
which causes the activation of the interferon signaling pathway 
to upregulate the antitumor immune responses (3,16,71) like 
HERV‑W interacts explicitly with the TLR4 and CD14 recep‑
tors, inducing the production of IL‑1β, IL‑6, and TNF‑α 
pro‑inflammatory	cytokines.	These	cytokines	further	activate	
the dendritic cells, resulting in a Th‑1 response (72). Different 
HERV Env	peptides	activate	specific	cytotoxic	T‑cells	and	
dendritic cells (DCs) in cancers like ovarian, breast, and 
colorectal cancer (2). Activation of B‑cells and production of 
antibodies have been seen in the case of breast cancer (73). 
Hence, it can be concluded that triggering the viral mimicry 
pathway and targeting the HERV proteins/transcripts can be a 
potential anti‑cancer therapy.

To summarize, HERVs, especially the HK‑2 group 
(Env protein) (3,27,41,56‑60,64‑67), play an accessory role 
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in promoting carcinogenesis by suppressing the immune 
response by inhibiting tumor suppressor genes and activating 

Figure 1. Transmission of human endogenous virus. Horizontal transmission and vertical transmission.

Figure 2. Structure of HERV. (A) Complete pro‑viral sequence of HERV. 
Two	LTRs	flank	GAG,	PRO,	POL	and	ENV	genes.	The	viral	genes	and	the	
correspondent protein products are indicated: GAG, MA, CA and NC; PRO, 
PR; POL, RT, RH and IN; ENV, SU and TM. (B) Incomplete open reading 
frame of HERV with missing protein sequences due to multiple mutations 
over time. (C) Solitary LTR is present in a majority of the HERVs. HERVs, 
human endogenous viruses; LTRs, long terminal repeats; MA, matrix; CA, 
capsid; NC, nucleocapsid; PR, pro‑pol protease; RT, reverse transcriptase; 
RH, ribonuclease H; IN, integrase; SU, surface; TM, transmembrane; GAG, 
group antigens gene; PRO, protease gene; POL, polymerase gene; ENV, 
envelope gene.

Figure	3.	Classification	of	HERVs.	Class,	genus	and	family.	HERVs,	human	
endogenous viruses; ERV, endogenous retrovirus; FRD, phenylalanine argi‑
nine aspartic acid motif; FTD, phenylalanine threonine aspartic acid motif; 
HML, human mouse mammary tumor virus like.



SAHU et al:  HERV REGULATES INITIATION AND PROGRESSION OF CANCERS4

multiple oncogenic signaling pathways. However, the viral 
mimicry effect of the HERV antigens induces an anti‑cancer 
response. Therefore, HERVs remain an attractive target for 
immunotherapy.

5. Expression of HERV in various cancer types

Germ cell cancers. Most germ cell tumors (GCTs) like 
teratocarcinoma, multiple GCTs, and testicular cancers are 
known to express HERV‑K for a long time. Mueller et al (74) 
performed a study on different stages of GCTs and suggested 
that the expression of HERV‑K is regulated by the epigenetic 
mechanisms occurring during different stages of cellular 
development, which also affects the neighboring cells. Its 
expression is linked with oncogenesis, migration, and resis‑
tance to chemotherapy and correlates with poor prognosis (42). 
A variety of HERV‑K viral particles promote tumor develop‑
ment in multiple GCTs (75). Teratocarcinoma is known to be 
a classical model for the study of HERV‑K. An increase in the 
Np9 accessory protein in teratocarcinoma has the oncogenic 
potential (42,64). An increased expression of Gag protein in 
teratocarcinoma was also seen due to hypomethylation of the 
HERV‑K sequence (76). Likewise, an increase in syncytin‑1 
transcribed by HERV‑W Env was seen in seminoma patients, 
which may be involved in oncogenesis (2).

Breast cancer. HERV‑K is the most reported and studied 
ERV in breast cancer. It is associated with tumor metastasis 

and invasion. It is also involved in cancer cell stemness and 
endothelial to mesenchymal transition (EMT) (41). HERV‑K 
Env is involved in the carcinogenesis of breast cancer. The 
Env proteins downregulate the p53 cancer suppressor gene, 
causing the induction of cancer (77). They are also involved 
in the activation and upregulation of the RAS/ERK pathway, 
thus, causing the growth and proliferation of tumor cells (78). 
Anti‑HERV‑K Env antibody was able to inhibit tumor growth 
and induced breast cancer cells apoptosis, thus, showing 
an anti‑tumor response (73). Increased HERV ENV, GAG 
mRNA, and RT (reverse transcriptase) expression in breast 
cancer are associated with poor prognosis (79,80). Detection 
of Env proteins in the early stages suggests that they may be 
involved in initiating oncogenesis in breast cancer (81). Thus, 
understanding the downstream function of Env may offer a 
new therapeutic target besides improving our knowledge. 
Besides, using vaccines against HERV‑K Env may prevent 
breast cancer (82). Also, HERV‑K RT can be used as an early 
prognostic biomarker for breast cancer as its expression was 
found in patients who develop cancer (79).

Both HERV‑FRD Env and HERV‑W Env (syncytin‑1 
and syncytin‑2) proteins are expressed in breast cancer cells, 
promoting cell‑to‑cell fusion between endothelial cells and 
breast cancer cells (65). Non‑coding RNA encoded by HERVs 
also promotes cancer progression in breast cancer. ZMYND8 
protein, which is involved in suppressing metastatic cancer genes 
(VEGFR, TROJAN, CD44, and Slug), is degraded by ubiquiti‑
nation by long non‑coding RNA derived from HERV (83,84).

Figure 4. Activation of HERV. Various environmental and host factors activate HERV transcription and translation. HERV, human endogenous virus; LTR, long 
terminal	repeat;	PMA,	phorbol‑12‑myristate‑13‑acetate;	PHA,	phytohemagglutinin;	HIV,	human	immunodeficiency	virus;	KSHV,	Kaposi	sarcoma‑associated	
herpes virus; GAG, group antigens gene; PRO, protease gene; POL, polymerase gene; ENV, envelope gene; ncRNA, non‑coding RNA.
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Skin cancers. HERV‑K	protein	expression	and	HERV‑K	specific	
antibodies are found in different melanoma cell lines, assisting 
in cell‑to‑cell fusion. HERV‑K proteins are immunogenic; there‑
fore, antibodies are generated against them, resulting in increased 
antibody titer, which is correlated with poor prognosis. The Env 
protein maintains the tumor cell stemness and promotes pheno‑
typic switching of tumorigenic cells, making them non‑adherent 
and malignant (3,20). The overall expression of Env, Rec, Np9 
and Gag has been reported in melanoma patients (85,86). 
Similarly, HERV‑H is also found in a cell line Hs294T of 
melanoma which promotes dedifferentiation of tumor cells and 
helps them escape the immune cells (87). Further, HERV‑W 
Env is expressed in cutaneous T cell lymphoma (CTCL), which 
promotes cell fusion (88), similar to its function in mediating 
trophoblast fusion during placental development (89).

Prostate cancer. Until now, only HERV‑K expression has 
been reported in the case of prostate cancer. HERV‑K Env 
protein was upregulated in prostate cancer patients (90). 
Targeting the Env protein via CRISPR/Cas9 downregulated 
the proto‑oncogene SF2/ASF and RAS pathway expression 
in prostate cancer cell lines (44). Likewise, HERV‑K Gag 
protein expression was also upregulated in prostate cancer due 
to demethylation and androgen stimulation (91). Gag protein 
expressions are also associated with smoking, old age, and 
disease status, leading to more aggressive prostate cancer (90). 
Anti‑HERV‑K Gag antibody titer was increased in stage III 
and stage IV of cancer compared to stage I and II, promoting 
carcinogenesis and depicting worse survival (91). Both HERV 
mRNA and anti‑HERV antibodies have been reported to be 
used as potential biomarkers in prostate cancer (90).

Figure 5. Pro‑oncogenic activity of HERV ENV subunits, SU and TM. SU and TM cause cell adhesion and fusion, respectively, which leads to syncytia forma‑
tion, and genetic and chromosomal instability. TM also contributes to immune suppression activity, leading to immune‑evasiveness by not only preventing 
activation of cytotoxic T‑cells, but also inhibiting apoptosis in cancerous cells. HERV, human endogenous virus; SU, surface; TM, transmembrane; ENV, 
envelope gene.
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Blood cancers. The expression of HERVs has been reported in 
acute myeloid leukemia (AML) (12,92‑94), acute lymphoblastic 
leukemia (ALL) (12,93,94), acute mixed lineage leukemia 
(AMLL) (94), chronic myeloid leukemia (CML) (12), chronic 
lymphoblastic leukemia (CLL) (94), chronic mixed myeloid 
leukemia (CMML) (92), non‑Hodgkin's lymphoma (NHL) and 
other lymphomas (94‑96), essential thrombopenia (ET) (97), 
and myelodysplastic syndrome (MDS) (53) (Table II). The Np9 
protein expressed by HERV‑K activates a cascade of cellular 
signaling pathways (β‑catenin, ERK, AKT, and Notch1), 
which helps in the proliferation of leukemia cells by increasing 
le1ukemia stem and progenitor cells (2,20). Expressions of 
HERV‑K Env and Gag proteins are also reported in lymphoma 

patients. Likewise, HERV‑W Env (syncytin‑1) expression 
is found in leukemic patients and is a potential diagnostic 
marker	(94).	How	these	viral	antigens	influence	oncogenesis	is	
not clearly understood.

In a study performed by Rai et al (63) on T‑ALL, exon 
E1B was observed to be regulating the surface expression of 
the CD5 gene on the T‑cells. Exon E1B is a non‑conventional 
exon of CD5 and a derivative of the HERV‑E sequence. Exon 
E1B expression is seen to be upregulated in the case of T‑ALL, 
while there is downregulation of conventional exon E1A. Due 
to the lack of leader peptide in the case of exon E1B, surface 
expression of CD5 is decreased and it is accumulated inside 
the cytoplasm. Consequently, the negative regulation function 
of CD5 is compromised, causing the uncontrolled prolifera‑
tion of leukemic T‑cells, thus, promoting carcinogenesis (63).

Kidney cancer. Cytotoxic T‑cells were involved in the regres‑
sion of kidney cancer in clear cell renal cell carcinoma 
(ccRCC) patients undergoing hematopoietic stem cell transfer. 
After the investigation, it was found that CT‑RCC, a highly 
immunogenic antigen encoded by HERV‑E, induces the 
activation of CD8+ T‑cells and, therefore, triggers an immune 
response against the RCC cells. This led to tumor regression 
in‑vitro and in‑vivo (70). Further, it was found that an increase 
in the HERV‑E expression was strongly correlated with the 
non‑functional von Hippel Lindau (VHL) tumor suppressor 
gene. Absence of VHL protein induced the expression of 
HIF‑2α, which regulated the expression of HERV‑E due to the 
presence of hypoxia regulatory element (HRE) on the 5' LTR 
of HERV‑E (98‑100). A full‑length protein of HERV‑E, Env 
expression, was also selectively expressed in ccRCC patients, 
which can serve as a biomarker for ccRCC (101).

Kaposi's sarcoma. Kaposi's sarcoma is caused by the infec‑
tion of human herpesvirus 8 (HHV8), also known as Kaposi's 
sarcoma‑associated herpesvirus (KSHV), and is the leading 
cause of mortality in HIV infection (102). It is characterized 
by the most common AIDS‑related malignancies, which still 
require effective treatment options. Kaposi's sarcoma is a 
classic example of activation of HERV through exogenous viral 
infection. KSHV infection was found to upregulate the produc‑
tion of HERV‑K Np9 protein, which advanced the invasiveness 
of primary endothelial cells by the action of disintegrins and 
metalloproteinases, contributing to carcinogenesis increasing 
the morbidity among Kaposi's sarcoma patients (27).

Ovarian cancer. Various HERVs have been reported to be 
expressed in ovarian cancer. Both HERV‑K Env and RT 
expressions were increased in ovarian cancer compared to 
adjacent healthy and benign tissues. HERV‑K Env antigens 
triggered	the	proliferation	and	activation	of	specific	cytotoxic	
T‑cells and IFNγ production. This led to the lysis of autolo‑
gous tumor cells (45). Also, demethylation of ovarian cancer 
cells by DNA methyltransferase inhibitors (DNMTis) induces 
the production of double‑stranded RNA (dsRNA) of HERV, 
which activates the viral defense pathway, enhancing the 
innate immune response and apoptosis (103).

Colorectal cancer. Various HERV expression in colorectal 
cancer (CRC) has been reported, including HERV‑K, 

Figure 6. Potential mechanisms of HERV‑mediated oncogenesis. 
(A) Chromosome aberrations: Homologous recombination leads to chromo‑
somal re‑arrangements. (B) Insertional mutagenesis: New HERV integrations 
may disrupt the tumor‑suppressor gene. (C) LTR function: HERV‑LTR can 
function as an alternative promoter for downstream oncogenes. (D) HERV 
products: ncRNAs, functional peptides and dsDNAs produced by HERV may 
affect tumorigenesis. HERV, human endogenous virus; LTR, long terminal 
repeat; ncRNA, noncoding RNA; GAG, group antigens gene; PRO, protease 
gene; POL, polymerase gene; ENV, envelope gene; dsDNA, double‑stranded 
DNA.
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HERV‑W, HERV‑H, HERV‑FRD, and HERV‑3. HERV‑K is 
involved in cell growth, proliferation, migration, and coloni‑
zation (20). Expression of HERV‑W is correlated with poor 
prognosis in syncytintal cancer (104). HERV‑H Env exerts an 
immune‑modulatory effect (40). HERVs are also suggested 
to be used as a biomarker and clinical examination for better 
predicting CRC patient survival (105).

Pancreatic cancer. HERV‑K Env	plays	a	significant	role	in	
pancreatic cancer, whose high expression is associated with a 
poor prognosis. It promotes tumor cell proliferation, growth, 

and metastasis. In particular, HERV‑K Env interferes with 
the signal transduction pathway RAS/ERK/RSK pathway and 
thus promotes carcinogenesis. HERV‑K RT activity was also 
observed in pancreatic cancer tissues (60).

6. Conclusion

HERVs have been associated with cancer for a long time. Their 
abnormal level of expression has been found in a variety of 
cancers. Different groups of HERV are found to be overex‑
pressed in different cancers. Multiple factors are responsible for 

Table I. Putative pro‑oncogenic activity of Env molecules of important HERV groups.

 HERV     
First author/s, year group Tumor type Molecules Oncogenic effect (Refs.)

Zhou et al, 2016; HERV‑ Breast cancer Env  Increase proliferation, migration (41,56)
Lemaître et al, 2017 K/HK2   and invasiveness of the tumor, and 
    cell‑to‑cell fusion 
Argaw‑Denboba et al, 2017  Melanoma Env Involved in EMT, stemness and (58)
    maintenance of tumor cells 
Chen et al, 2013  Leukemia Env (Np9) Increase in the growth of the tumor (59)
Grandi and Tramontano, 2018;  Germline cancer Env (Np9, Rec) Increase in cell proliferation and (3,64)
Denne et al, 2007    growth of the tumor, and inhibition 
    of apoptosis of tumor cells 
Li et al, 2017  Pancreatic cancer Env Increase in the tumor growth, cell (60)
    proliferation and metastasis of the 
    tumor 
Dai et al, 2018  Kaposi's sarcoma Env (Np9) Increase in cell proliferation and (27)
    invasiveness of the tumor 
Bjerregaard et al, 2006 HERV‑W Breast cancer Env (syncytin) Involved in cell‑to‑cell fusion (57)
Strissel et al, 2012  Endometrial cancer Env (syncytin) Involved in cell‑to‑cell fusion (65)
Yu et al, 2014  Bladder urothelial Env (syncytin) Increase in cell proliferation and (66)
  cells carcinoma  stemness of tumor 
Li et al, 2013  Neuroblastoma Env (syncytin) Neuron excitotoxicity and (67)
    neurological diseases 

HERV, human endogenous retrovirus; Env, envelope protein.

Table II. Expression of reported HERVs in different blood cancers.

First author/s, year HERV group Expression in blood cancer type (Refs.)

Chen et al, 2013; Saini et al, 2020; HERV‑K AML, ALL, CML, ET, multiple myeloma, B cell (59,92,95‑97)
Contreras‑Galindo et al, 2008;  lymphoma, large cell lymphoma, mantle cell 
Tatkiewicz et al, 2020;  lymphoma 
Morgan and Brodsky, 2004   
Saini et al, 2020; Alqahtani et al, 2016; HERV‑W AML, ALL, AMLL, CML, CLL, CMML, MDS, NHL (92‑94)
Sun et al, 2010
Saini et al, 2020 HERV‑E AML, CMML, MDS (92)

HERV, human endogenous retrovirus; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CML, chronic myeloid leukemia; 
ET, essential thrombopenia; AMLL, acute mixed lineage leukemia; CLL, chronic lymphoblastic leukemia; CMML, chronic mixed myeloid 
leukemia; MDS, myelodysplastic syndrome; NHL, non‑Hodgkin's lymphoma.
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their activation like epigenetic dysregulation (30), exogenous 
infections (26‑29), radiations (35,36), cytokines (37), chemical 
induction (31‑34), etc. They encode highly immunogenic 
antigens whose expression can promote or inhibit cancer 
advancement by modulating the immune system. HERVs are 
correlated with tumor cell proliferation, migration, decreased 
apoptosis, endothelial to mesenchymal transition (EMT), 
and immune suppression, thus initiating and promoting 
oncogenesis (20). Since the expression of HERV is a natural 
phenomenon, each HERV protein must be characterized sepa‑
rately to elucidate its role in the pathogenesis of different cancer 
and other diseases. Future studies may shed light on the effect 
of	vaccination	against	a	specific	epitope	of	HERV	elements	and	
monoclonal antibody (MAB) on the control and prevention of 
certain cancers. It suggests the need to develop an onco‑immu‑
notherapy approach for rapidly evolving cancer types.
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