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Abstract. The expression of genes is altered in various
diseases and is responsible for the disease's initiation, progres-
sion and pathology. Several other genes, predominantly
inactivated, may become activated in a given condition and
contribute to the initiation and progression of the disease.
Similarly, human endogenous viruses (HERVs) are an incom-
plete, non-productive and inactive viral sequence present in
the heterochromatin of the human genome, and are often
referred to as junk DNA. HERVs were inserted into the host
genome millions of years ago. However, they were silenced
due to multiple mutations and recombination that occurred
over time. However, their expression is increased in cancers
due to either epigenetic or transcriptional dysregulation. Some
of the HERVs having intact open reading frames have been
reported to express virus-like particles, functional peptides
and proteins involved in tumorigenesis. To summarize, there is
involvement of different HERVs in the initiation and progres-
sion of several cancers. The present review aims to provide
concise information on HERV and its involvement in the
initiation and progression of multiple types of cancer.
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1. Introduction

Human endogenous retroviruses (HERVs) are molecular
remnants of exogenous retroviruses that infected the human
germline millions of years ago (horizontal transmission).
These genetic fragments are stably integrated into the human
genome; they are called endogenous retroviruses (1). They
are often considered ‘non-functional DNA’ and account for
approximately 8.29% of the human genome (2). They are
inherited from parents to the offspring like any other gene
(vertical transmission) (Fig. 1). The retroviruses are known
for their transforming potential in their animal host via
reverse transcription, but the HERVs are typically silenced
or non-productive due to the accumulation of mutations
and therefore rendered inadequate to produce virions (3).
However, due to epigenetic dysregulation, some HERVs can
retain their potency, produce virus-like particles, and express
some immunogenic protein products, such as Syncytins (4),
Np9, and Rec (5). The production of these proteins by the
retroelements affects the biological functions and cancer
immunoregulation (2).

HERVs are not usually expressed in normal cells.
Nevertheless, some of their gene products and viral compo-
nents can be expressed in human cells as antigens in some
instances. Their expression has been reported to have a dual
impact on human physiology (2). They aid in human physi-
ological functions like regulating pluripotency of embryonic
stem cells (6), involvement in placental morphogenesis (7),
modulating the innate immune response (8), and regulating
gene expression (9). On the contrary, they are also involved
in the pathogenesis of multiple sclerosis (10), rheumatoid
arthritis (11), schizophrenia (12), AIDS (13), cellular senes-
cence (14), and diabetes (15). HERVs have gained a significant
attraction due to their association with various cancers and
their progression (3). Due to their abnormal expression in
multiple malignancies and their pleiotropic role in oncogenesis,
extensive research has targeted HERV antigens for immu-
notherapy by triggering both innate and adaptive immune
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response (16,17). Blocking the expression and function of
HERVs in tumor cells via small interfering RNA (siRNA) or
CRISPR (18), and anti-viral drugs (19) have also been studied
by researchers (20). Since HERVs are extensively present in
the human genome, their gene products can also be used as
biomarkers to detect cancer progression (21).

2. Structure and classification of HERVs

HERVs have diverse structures ranging from solo LTR (long
terminal repeats) to partially or fully intact open reading
frames (ORFs) (22). The most active HERV group reported
having a relatively intact ORF is the HERV-K HML-2
subtype (23). Classical HERVs structure contains the general
components of the retroviruses, including protein-encoding
sequences, GAG (gene-specific antigen), PRO (protease gene),
POL (polymerase gene), and ENV (envelope gene) flanked by
non-coding LTRs (Fig. 2) which are the regulatory region and
can act as a promoter or an enhancer. Until now, 31 discrete
groups of HERVs have been discovered. They can be catego-
rized into three classes of retroviruses based on their similar
phylogenetic origin to exogenous viruses (24) (Fig. 3).

3. Activation of HERVs

Generally, HERVs, having intact ORF, remain inactive due to
CpG hypermethylation of their sequence which is catalyzed
by DNA methylase-1 (25). However, they can be activated by
multiple factors like exogenous viruses such as human immu-
nodeficiency virus (HIV) (26), Kaposi sarcoma-associated
herpesvirus (KSHV), also known as human herpesvirus
8 (HHVS8) (27), Epstein-Barr virus (28), and human T-cell
leukemia virus-1 (29). Also, epigenetic modifications (DNA
demethylation, histone modification) (30), chemical substances
(hydroquinone (31), phorbol-12-myristate-13-acetate (PMA) (32),
phytohemagglutinin (PHA) (33), cupric salt (34)), physical factors
(X-rays, UV-B) (35,36), and cytokines (37) (Fig. 4).

4. Role of HERY in cancer

Upon their activation, HERVs can be transcribed into
full-length mRNA (38), spliced mRNA (39), and non-coding
mRNA (40), resulting in either intact protein (41) or truncated
protein (42). These HERV elements are found to be widely
expressed in a variety of cancers like germ cell cancers (43),
colorectal cancer (40), breast cancer (41), prostate cancer (44),
ovarian cancer (45), lung cancer (46), melanoma (47), bladder
cancer (48), lymphoma (39), hepatobiliary cancer (49), soft
tissue sarcoma (50), Kaposi's sarcoma (27), seminomas (51),
choriocarcinoma (52), and leukemia (53). Thus, these are
potential biomarkers for cancers (49) and may have therapeutic
potential if pursued to understand the causal relationship with
individual disease types. However, according to the literature,
HERVs have a dual opposing role in some cancer where they
can either promote carcinogenesis or suppress it (2). Both the
aspects of HERV mediated regulation will be discussed in the
upcoming sections.

Cancer promoting effects. The Env proteins (Eg. syncytins,
Np9, Rec) of different HERV groups HK2, HERV-W, HERV-V,

HERV-H, and HERV-P (54) have been reported to suppress the
immune system (55), affect the cell signaling pathways (56),
and trigger cell-to-cell fusion (57) (Fig. 5). Thus, having an
oncogenic effect. They may promote cell proliferation, growth,
migration, invasion, metastasis, and stemness in different
types of cancers, such as breast cancer (41), melanoma (58),
leukemia (59), Kaposi's sarcoma (27), pancreatic cancer (60),
etc. Therefore, HERV Env proteins are an exciting target for
anti-cancer therapy. Few studies have shown that the expres-
sion of several HERV groups like HERV-W and HERV-K has
contributed to cancer stemness or pluripotency in colorectal
cancer (19) and melanoma cells (58), respectively. However,
the underlying mechanisms are yet to be studied. Further,
non-allelic recombination of HERV sequences causes their
translocation to different regions in the genome. Their new
proximity may activate their expression resulting in the
activation of specific oncogenes (61) or disruption of a tumor
suppressor gene (62). Besides, HERV LTR can act as an
alternative promoter that can regulate cellular gene expres-
sion, leading to abnormal gene expression, such as switching
on of proto-oncogenes, and finally contributing to tumori-
genesis (16) (Fig. 6). Also, HERV-E derivative exon E1B has
been observed to downregulate the surface expression of CD5
on T-cell in the case of T-cell acute lymphoblastic leukemia
(T-ALL), thereby, inhibiting its functions and causing uncon-
trolled proliferation of leukemic T-cells (63) (refer to section
5.5). Therefore, it can be concluded that HERVs have a major
role in oncogenesis, especially the Env protein of different
HERYV subgroups (3,27,41,56-59,64-67) (Table I).

Cancer suppressing effects. On the contrary, HERVs can exert
suppressive effects on cancer instead of promoting it. The
HERY protein products have been reported to stimulate innate,
humoral, and cellular immune responses against malignant
tumors by acting as an antigen like PAMP (pathogen-associated
molecular patterns) recognized by pattern recognition recep-
tors (PRRs) of immune cells (68). This triggers an immune
response and causes the pro-inflammatory signals to exert an
anti-viral effect against the HERV antigens by treating them
as exogenous infections (2,69). This phenomenon has been
reported in the case of clear cell renal cell carcinoma (ccRCC),
where the infiltration of CD8+ cytotoxic T-cells triggered
by HERV-E antigen was increased in ccRCC patients with
hematopoietic stem cell transfer, which negatively affected the
cancer progression (70). It might happen due to viral mimicry,
which causes the activation of the interferon signaling pathway
to upregulate the antitumor immune responses (3,16,71) like
HERV-W interacts explicitly with the TLR4 and CD14 recep-
tors, inducing the production of IL-1p, IL-6, and TNF-a
pro-inflammatory cytokines. These cytokines further activate
the dendritic cells, resulting in a Th-1 response (72). Different
HERV Env peptides activate specific cytotoxic T-cells and
dendritic cells (DCs) in cancers like ovarian, breast, and
colorectal cancer (2). Activation of B-cells and production of
antibodies have been seen in the case of breast cancer (73).
Hence, it can be concluded that triggering the viral mimicry
pathway and targeting the HERV proteins/transcripts can be a
potential anti-cancer therapy.

To summarize, HERVs, especially the HK-2 group
(Env protein) (3,27,41,56-60,64-67), play an accessory role
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Figure 2. Structure of HERV. (A) Complete pro-viral sequence of HERV.
Two LTRs flank GAG, PRO, POL and ENV genes. The viral genes and the
correspondent protein products are indicated: GAG, MA, CA and NC; PRO,
PR; POL, RT, RH and IN; ENV, SU and TM. (B) Incomplete open reading
frame of HERV with missing protein sequences due to multiple mutations
over time. (C) Solitary LTR is present in a majority of the HERVs. HERVs,
human endogenous viruses; LTRs, long terminal repeats; MA, matrix; CA,
capsid; NC, nucleocapsid; PR, pro-pol protease; RT, reverse transcriptase;
RH, ribonuclease H; IN, integrase; SU, surface; TM, transmembrane; GAG,
group antigens gene; PRO, protease gene; POL, polymerase gene; ENV,
envelope gene.
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Figure 3. Classification of HERVs. Class, genus and family. HERVs, human
endogenous viruses; ERV, endogenous retrovirus; FRD, phenylalanine argi-
nine aspartic acid motif; FTD, phenylalanine threonine aspartic acid motif;
HML, human mouse mammary tumor virus like.

in promoting carcinogenesis by suppressing the immune
response by inhibiting tumor suppressor genes and activating
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Figure 4. Activation of HERV. Various environmental and host factors activate HERV transcription and translation. HERV, human endogenous virus; LTR, long
terminal repeat; PMA, phorbol-12-myristate-13-acetate; PHA, phytohemagglutinin; HI'V, human immunodeficiency virus; KSHV, Kaposi sarcoma-associated
herpes virus; GAG, group antigens gene; PRO, protease gene; POL, polymerase gene; ENV, envelope gene; ncRNA, non-coding RNA.

multiple oncogenic signaling pathways. However, the viral
mimicry effect of the HERV antigens induces an anti-cancer
response. Therefore, HERVs remain an attractive target for
immunotherapy.

5. Expression of HERYV in various cancer types

Germ cell cancers. Most germ cell tumors (GCTs) like
teratocarcinoma, multiple GCTs, and testicular cancers are
known to express HERV-K for a long time. Mueller et al (74)
performed a study on different stages of GCTs and suggested
that the expression of HERV-K is regulated by the epigenetic
mechanisms occurring during different stages of cellular
development, which also affects the neighboring cells. Its
expression is linked with oncogenesis, migration, and resis-
tance to chemotherapy and correlates with poor prognosis (42).
A variety of HERV-K viral particles promote tumor develop-
ment in multiple GCTs (75). Teratocarcinoma is known to be
a classical model for the study of HERV-K. An increase in the
Np9 accessory protein in teratocarcinoma has the oncogenic
potential (42,64). An increased expression of Gag protein in
teratocarcinoma was also seen due to hypomethylation of the
HERV-K sequence (76). Likewise, an increase in syncytin-1
transcribed by HERV-W Env was seen in seminoma patients,
which may be involved in oncogenesis (2).

Breast cancer. HERV-K is the most reported and studied
ERYV in breast cancer. It is associated with tumor metastasis

and invasion. It is also involved in cancer cell stemness and
endothelial to mesenchymal transition (EMT) (41). HERV-K
Env is involved in the carcinogenesis of breast cancer. The
Env proteins downregulate the p53 cancer suppressor gene,
causing the induction of cancer (77). They are also involved
in the activation and upregulation of the RAS/ERK pathway,
thus, causing the growth and proliferation of tumor cells (78).
Anti-HERV-K Env antibody was able to inhibit tumor growth
and induced breast cancer cells apoptosis, thus, showing
an anti-tumor response (73). Increased HERV ENV, GAG
mRNA, and RT (reverse transcriptase) expression in breast
cancer are associated with poor prognosis (79,80). Detection
of Env proteins in the early stages suggests that they may be
involved in initiating oncogenesis in breast cancer (81). Thus,
understanding the downstream function of Env may offer a
new therapeutic target besides improving our knowledge.
Besides, using vaccines against HERV-K Env may prevent
breast cancer (82). Also, HERV-K RT can be used as an early
prognostic biomarker for breast cancer as its expression was
found in patients who develop cancer (79).

Both HERV-FRD Env and HERV-W Env (syncytin-1
and syncytin-2) proteins are expressed in breast cancer cells,
promoting cell-to-cell fusion between endothelial cells and
breast cancer cells (65). Non-coding RNA encoded by HERVs
also promotes cancer progression in breast cancer. ZMYNDS
protein, which is involved in suppressing metastatic cancer genes
(VEGFR, TROJAN, CD44, and Slug), is degraded by ubiquiti-
nation by long non-coding RNA derived from HERV (83,84).
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Skin cancers. HERV-K protein expression and HERV-K specific
antibodies are found in different melanoma cell lines, assisting
in cell-to-cell fusion. HERV-K proteins are immunogenic; there-
fore, antibodies are generated against them, resulting in increased
antibody titer, which is correlated with poor prognosis. The Env
protein maintains the tumor cell stemness and promotes pheno-
typic switching of tumorigenic cells, making them non-adherent
and malignant (3,20). The overall expression of Env, Rec, Np9
and Gag has been reported in melanoma patients (85,86).
Similarly, HERV-H is also found in a cell line Hs294T of
melanoma which promotes dedifferentiation of tumor cells and
helps them escape the immune cells (87). Further, HERV-W
Env is expressed in cutaneous T cell lymphoma (CTCL), which
promotes cell fusion (88), similar to its function in mediating
trophoblast fusion during placental development (89).

Prostate cancer. Until now, only HERV-K expression has
been reported in the case of prostate cancer. HERV-K Env
protein was upregulated in prostate cancer patients (90).
Targeting the Env protein via CRISPR/Cas9 downregulated
the proto-oncogene SF2/ASF and RAS pathway expression
in prostate cancer cell lines (44). Likewise, HERV-K Gag
protein expression was also upregulated in prostate cancer due
to demethylation and androgen stimulation (91). Gag protein
expressions are also associated with smoking, old age, and
disease status, leading to more aggressive prostate cancer (90).
Anti-HERV-K Gag antibody titer was increased in stage 111
and stage IV of cancer compared to stage I and II, promoting
carcinogenesis and depicting worse survival (91). Both HERV
mRNA and anti-HERV antibodies have been reported to be
used as potential biomarkers in prostate cancer (90).
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Figure 6. Potential mechanisms of HERV-mediated oncogenesis.
(A) Chromosome aberrations: Homologous recombination leads to chromo-
somal re-arrangements. (B) Insertional mutagenesis: New HERYV integrations
may disrupt the tumor-suppressor gene. (C) LTR function: HERV-LTR can
function as an alternative promoter for downstream oncogenes. (D) HERV
products: ncRNAs, functional peptides and dsDNAs produced by HERV may
affect tumorigenesis. HERV, human endogenous virus; LTR, long terminal
repeat; ncRNA, noncoding RNA; GAG, group antigens gene; PRO, protease
gene; POL, polymerase gene; ENV, envelope gene; dsDNA, double-stranded
DNA.

Blood cancers. The expression of HERVs has been reported in
acute myeloid leukemia (AML) (12,92-94), acute lymphoblastic
leukemia (ALL) (12,93,94), acute mixed lineage leukemia
(AMLL) (94), chronic myeloid leukemia (CML) (12), chronic
lymphoblastic leukemia (CLL) (94), chronic mixed myeloid
leukemia (CMML) (92), non-Hodgkin's lymphoma (NHL) and
other lymphomas (94-96), essential thrombopenia (ET) (97),
and myelodysplastic syndrome (MDS) (53) (Table II). The Np9
protein expressed by HERV-K activates a cascade of cellular
signaling pathways (B-catenin, ERK, AKT, and Notchl),
which helps in the proliferation of leukemia cells by increasing
lelukemia stem and progenitor cells (2,20). Expressions of
HERV-K Env and Gag proteins are also reported in lymphoma

patients. Likewise, HERV-W Env (syncytin-1) expression
is found in leukemic patients and is a potential diagnostic
marker (94). How these viral antigens influence oncogenesis is
not clearly understood.

In a study performed by Rai et al (63) on T-ALL, exon
E1B was observed to be regulating the surface expression of
the CD5 gene on the T-cells. Exon EIB is a non-conventional
exon of CD5 and a derivative of the HERV-E sequence. Exon
E1B expression is seen to be upregulated in the case of T-ALL,
while there is downregulation of conventional exon E1A. Due
to the lack of leader peptide in the case of exon E1B, surface
expression of CD5 is decreased and it is accumulated inside
the cytoplasm. Consequently, the negative regulation function
of CD5 is compromised, causing the uncontrolled prolifera-
tion of leukemic T-cells, thus, promoting carcinogenesis (63).

Kidney cancer. Cytotoxic T-cells were involved in the regres-
sion of kidney cancer in clear cell renal cell carcinoma
(ccRCC) patients undergoing hematopoietic stem cell transfer.
After the investigation, it was found that CT-RCC, a highly
immunogenic antigen encoded by HERV-E, induces the
activation of CD8+ T-cells and, therefore, triggers an immune
response against the RCC cells. This led to tumor regression
in-vitro and in-vivo (70). Further, it was found that an increase
in the HERV-E expression was strongly correlated with the
non-functional von Hippel Lindau (VHL) tumor suppressor
gene. Absence of VHL protein induced the expression of
HIF-2a, which regulated the expression of HERV-E due to the
presence of hypoxia regulatory element (HRE) on the 5' LTR
of HERV-E (98-100). A full-length protein of HERV-E, Env
expression, was also selectively expressed in ccRCC patients,
which can serve as a biomarker for ccRCC (101).

Kaposi's sarcoma. Kaposi's sarcoma is caused by the infec-
tion of human herpesvirus 8 (HHVS), also known as Kaposi's
sarcoma-associated herpesvirus (KSHV), and is the leading
cause of mortality in HIV infection (102). It is characterized
by the most common AIDS-related malignancies, which still
require effective treatment options. Kaposi's sarcoma is a
classic example of activation of HERV through exogenous viral
infection. KSHYV infection was found to upregulate the produc-
tion of HERV-K Np9 protein, which advanced the invasiveness
of primary endothelial cells by the action of disintegrins and
metalloproteinases, contributing to carcinogenesis increasing
the morbidity among Kaposi's sarcoma patients (27).

Ovarian cancer. Various HERVs have been reported to be
expressed in ovarian cancer. Both HERV-K Env and RT
expressions were increased in ovarian cancer compared to
adjacent healthy and benign tissues. HERV-K Env antigens
triggered the proliferation and activation of specific cytotoxic
T-cells and IFNy production. This led to the lysis of autolo-
gous tumor cells (45). Also, demethylation of ovarian cancer
cells by DNA methyltransferase inhibitors (DNMTis) induces
the production of double-stranded RNA (dsRNA) of HERYV,
which activates the viral defense pathway, enhancing the
innate immune response and apoptosis (103).

Colorectal cancer. Various HERV expression in colorectal
cancer (CRC) has been reported, including HERV-K,
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Table I. Putative pro-oncogenic activity of Env molecules of important HERV groups.

HERV

First author/s, year group Tumor type Molecules Oncogenic effect (Refs.)

Zhou et al, 2016; HERV-  Breast cancer Env Increase proliferation, migration (41,56)

Lemaitre et al, 2017 K/HK2 and invasiveness of the tumor, and
cell-to-cell fusion

Argaw-Denboba et al, 2017 Melanoma Env Involved in EMT, stemness and (58)
maintenance of tumor cells

Chen et al, 2013 Leukemia Env (Np9) Increase in the growth of the tumor 59)

Grandi and Tramontano, 2018; Germline cancer Env (Np9, Rec) Increase in cell proliferation and (3,64)

Denne et al, 2007 growth of the tumor, and inhibition
of apoptosis of tumor cells

Lietal,2017 Pancreatic cancer  Env Increase in the tumor growth, cell (60)
proliferation and metastasis of the
tumor

Dai et al, 2018 Kaposi's sarcoma  Env (Np9) Increase in cell proliferation and 27)
invasiveness of the tumor

Bjerregaard et al, 2006 HERV-W Breast cancer Env (syncytin) Involved in cell-to-cell fusion (&1

Strissel et al, 2012 Endometrial cancer Env (syncytin) Involved in cell-to-cell fusion (65)

Yu et al, 2014 Bladder urothelial ~ Env (syncytin) Increase in cell proliferation and (66)

cells carcinoma stemness of tumor

Lietal, 2013 Neuroblastoma Env (syncytin) Neuron excitotoxicity and (67)
neurological diseases

HERYV, human endogenous retrovirus; Env, envelope protein.

Table II. Expression of reported HERVs in different blood cancers.

First author/s, year HERV group Expression in blood cancer type (Refs.)

Chen et al, 2013; Saini et al, 2020; HERV-K AML, ALL, CML, ET, multiple myeloma, B cell (59,92,95-97)

Contreras-Galindo et al, 2008; lymphoma, large cell lymphoma, mantle cell

Tatkiewicz et al, 2020; lymphoma

Morgan and Brodsky, 2004

Saini et al, 2020; Algahtani ef al,2016; HERV-W  AML,ALL,AMLL, CML, CLL, CMML, MDS, NHL (92-94)

Sun et al, 2010

Saini et al, 2020 HERV-E AML, CMML, MDS (92)

HERYV, human endogenous retrovirus; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; CML, chronic myeloid leukemia;
ET, essential thrombopenia; AMLL, acute mixed lineage leukemia; CLL, chronic lymphoblastic leukemia; CMML, chronic mixed myeloid
leukemia; MDS, myelodysplastic syndrome; NHL, non-Hodgkin's lymphoma.

HERV-W, HERV-H, HERV-FRD, and HERV-3. HERV-K is
involved in cell growth, proliferation, migration, and coloni-
zation (20). Expression of HERV-W is correlated with poor
prognosis in syncytintal cancer (104). HERV-H Env exerts an
immune-modulatory effect (40). HERVs are also suggested
to be used as a biomarker and clinical examination for better
predicting CRC patient survival (105).

Pancreatic cancer. HERV-K Env plays a significant role in
pancreatic cancer, whose high expression is associated with a
poor prognosis. It promotes tumor cell proliferation, growth,

and metastasis. In particular, HERV-K Env interferes with
the signal transduction pathway RAS/ERK/RSK pathway and
thus promotes carcinogenesis. HERV-K RT activity was also
observed in pancreatic cancer tissues (60).

6. Conclusion

HERVs have been associated with cancer for a long time. Their
abnormal level of expression has been found in a variety of
cancers. Different groups of HERV are found to be overex-
pressed in different cancers. Multiple factors are responsible for
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their activation like epigenetic dysregulation (30), exogenous
infections (26-29), radiations (35,36), cytokines (37), chemical
induction (31-34), etc. They encode highly immunogenic
antigens whose expression can promote or inhibit cancer
advancement by modulating the immune system. HERVs are
correlated with tumor cell proliferation, migration, decreased
apoptosis, endothelial to mesenchymal transition (EMT),
and immune suppression, thus initiating and promoting
oncogenesis (20). Since the expression of HERV is a natural
phenomenon, each HERV protein must be characterized sepa-
rately to elucidate its role in the pathogenesis of different cancer
and other diseases. Future studies may shed light on the effect
of vaccination against a specific epitope of HERV elements and
monoclonal antibody (MAB) on the control and prevention of
certain cancers. It suggests the need to develop an onco-immu-
notherapy approach for rapidly evolving cancer types.
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