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Abstract. Nuclear pore complexes (NPCs) regulate the entry 
and exit of molecules from the cell nucleus. Small molecules 
pass through NPCs by diffusion while large molecules enter 
and exit the nucleus by karyopherins, which serve as transport 
factors. Exportin‑1 (XPO1) is a protein that is an important 
member of the karyopherin family and carries macromol‑
ecules from the nucleus to the cytoplasm. XPO1 is responsible 
for nuclear‑cytoplasmic transport of protein, ribosomal RNA 
and certain required mRNAs for ribosomal biogenesis. 
Furthermore, XPO1‑mediated nuclear export is associated 
with various types of disease, such as cancer, inflammation 
and viral infection. The key role of XPO1 in carcinogenesis 
and its potential as a therapeutic target has been demon‑
strated by previous studies. Clinical use of novel developed 
generation‑specific XPO1 inhibitors and their combination 
with other agents to block XPO1‑mediated nuclear export are 
a promising new treatment strategy. The aim of the present 
study was to explain the working mechanism of XPO1 and 
inhibitors that block XPO1‑mediated nuclear export.
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1. Nucleo‑cytoplasmic transport

Nuclear pore complexes (NPCs) regulate the entry and exit of 
molecules from the cell nucleus. Small molecules (≤30 kDa) 
pass through NPCs by diffusion. However, larger molecules, 
such as RNA and proteins, enter and exit the cell nucleus via 
proteins called karyopherins, which are transport factors (1). 
Karyopherins (nuclear‑cytoplasmic transport receptors 
family) denote a family of receptors associated with transport 
of molecules between the cytoplasm and nucleus of eukary‑
otic cells and comprise >19 members (including importins, 
exportins and transportins) (1,2). They are called karyopherins 
because they are found inside the nucleus in the karyoplasm 
(or nucleoplasm). Importins transport the cargo molecule 
from the cytoplasm to the nucleus, while exportins transport 
the cargo molecule from the nucleus to the cytosol. Moreover, 
transportins can transport molecules both from the nucleus to 
the cytoplasm and from the cytoplasm to the nucleus (3,4).

Karyopherins recognise and select the cargo molecule 
from its target sequences and transport it across the nuclear 
membrane (1,2). The nuclear target sequence is a short amino 
acid sequence, which enables the cargo molecule to be recog‑
nised by carrier karyopherins for entry and exit to the cell 
nucleus; it also determines the direction of transport (5). The 
nuclear target sequence recognised by importins when trans‑
porting the cargo molecule from the cytoplasm to the nucleus 
is referred to as the nuclear localization signal (NLS). The 
NLS sequence commonly comprises hydrophilic amino acids 
(especially lysine) (2,3). The target sequence that is recognized 
by the exportins when transporting the cargo molecule from 
the nucleus to the cytoplasm is called the nuclear export 
signal (NES) (2‑4,6). The NES sequence is a short peptide 
of 10‑15 amino acids with 3‑4 regular leucine‑rich hydro‑
phobic amino acid repeats (generally conserved sequence 
Φ1‑X2,3‑Φ2‑X2,3‑Φ3‑X‑Φ4, where Φ is leucine, valine, isoleu‑
cine, phenylalanine or methionine and X is any amino acid) (7). 
Various mechanisms, such as post‑translational modification 
(phosphorylation, acetylation, sumoylation), mutation or 
protein interaction, lead to changes in the intracellular loca‑
tion of the cargo molecule via the creation of new NES/NLS 
sequences, thus concealing the target sequence or changing 
the affinity of karyopherins to the cargo molecule (8,9).

The transfer of molecules larger than 30  kDa from 
NPCs, which cannot pass through the NPC by diffusion, is 
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an energy‑dependent process, and the function of importins 
and exportins is mediated by Ras‑related nuclear protein 
(Ran). To perform their function, importins bind to Ran/GDP, 
whereas exportins bind to Ran/GTP (10). Exportins creates a 
cargo‑exportin‑Ran/GTP ternary complex in the nucleus by 
facilitating binding between cargo molecules and RanGTP. As 
this complex passes from the NPC to the cytosol, Ran/GTP 
is hydrolysed, Ran/GDP is formed and exportin releases 
the cargo molecule in the cytoplasm and then returns to 
the nucleus (11,12). By contrast, importins bind to RanGTP, 
releasing the cargo protein (2).

2. Structure of XPO1

In the human genome, exportins are encoded by six genes, one 
of the primary nuclear exporters is the Exportin‑1 (XPO1) gene, 
also known as CRM1 (Ensembl no. ENSG000000828987). 
The XPO1 protein functions as a shuttle as a nuclear transport 
receptor between the cell nucleus and the cytoplasm (13,14). 
The XPO1 gene was discovered by Adachi and Yanagida in 
Saccharomyces cerevisiae and Schizosaccharomyces pombe 
cells in 1989. Mutations in the XPO1 gene first observed in 
mutant yeast strains deform the chromosome structure and the 
XPO1 gene is associated with preservation of chromosome 
structure. Therefore, the gene product has been named chromo‑
some region maintenance 1 (CRM1) (15). The S. pombe XPO1 
protein is homologous to the human protein originally named 
CC112. Given this homology, it became referred to as XPO1 
instead of CC112 (16). The XPO1 gene is localized in the 2p16 
region of the second chromosome in humans (17). It consists 
of 60,778 bases organized into 25 exons and separated by 24 
introns. This gene has 24 transcript variants. The XPO1 gene 
product is a 112 kDa protein. This mature polypeptide consists 
of 1,071 amino acids (13); it is a modular protein consisting of 
numerous functional domains and mediates the transport of 
~220 proteins (18). Given that the N‑terminal region of XPO1 
protein (UniProtKB no. O149803) interacts with GTPase/Ran, 
it is believed that the affinity of its C‑terminal region (707‑1,034 
residues) with cargo molecules is increased (19).

The C‑terminal region (amino acids 707‑1,027) of the 
CRM1 protein is composed of two U‑shaped antiparallel 
α‑helices and the HEAT repeat 15A‑21A crystal structure was 
reported in 2004. In the Protein Data Bank, 26 data show the 
crystal structure of XPO1 alone or its interaction complexes 
with different proteins (20). Various methods, such as X‑ray 
crystallography and electron microscopy, have revealed that 
XPO1 displays conformational flexibility as a transporter 
protein (21). They also shed light on the X‑ray structure of the 
XPO1‑RanGTP‑Snurportin 1 and XPO1‑RanGTP‑RanBP1 
(Ran binding protein 1) complexes. HEAT 9 interacts with 
the NES sequence of cargo proteins, serving as an allosteric 
inhibitor and controlling formation of the complex (22,23).

3. Physiological function of XPO1 in cells

XPO1 demonstrates weak binding with RanGTP in the nucleus 
and with the NES sequence of cargo molecules (24) However, 
when XPO1 simultaneously binds to RanGTP and to cargo 
molecules, its affinity for both increases by 500‑1,000 times, 
and it passes from the NPC to the cytosol by forming a ternary 

complex (25). The hydrolysis of Ran/GTP to Ran/GDP in the 
cytoplasm decreases the affinity of XPO1 to cargo molecules 
by causing conformational changes in the protein structure, 
facilitating the release of cargo molecules (10‑12) (Fig. 1). 
XPO1 and RanGDP pass through the NPC and return to the 
nucleus for a new transport cycle (2,25).

The human XPO1 gene is expressed in a cell cycle‑depen‑
dent manner; mRNA transcription begins during the G1 phase 
of the cell cycle and increases during the G2/M phase (26). 
During interphase, the XPO1 protein is localized inside the 
nucleus near the nuclear membrane  (26,27). High XPO1 
expression levels have been observed in the brain, thymus, 
lung, spleen, liver, heart, pancreas, skeletal muscle, prostate, 
testis, placenta, ovary, small intestine, colon and peripheral 
blood leukocytes (14,19).

XPO1 mediates the transport of certain types of RNA, 
including viral/cellular mRNA, ribosomal RNA, transfer RNA 
and small nuclear RNAs (snRNAs), as well as various macro‑
molecules, such as ribosomal subunit and NES‑containing 
proteins rich in leucine, short peptide stretches containing 
hydrophobic residues, shuttle proteins, tumour suppressor 
proteins (TSPs), cellular or non‑spliced or incomplete spliced 
RNAs of various viruses [such as human immunodeficiency 
virus (HIV)‑1, human T‑lymphotropic virus type‑1 (HTLV‑1) 
and influenza A] and HIV‑1 Rev protein and HTLV‑1 Rex 
protein that interact with Ran/GTP in the nucleus and 
cytosol (4,19,23,28‑30).

4. XPO1 export of protein

In the proteomic analysis of yeast cells, 285 proteins regulated 
by XPO1 were detected, with ~45% of these containing known 
NES sequences  (31). NES sequences for XPO1 comprise 
hydrophobic amino acids, including isoleucine, leucine, methi‑
onine, valine and phenylalanine  (32). The NES sequences 
have a common conserved motif containing 10‑15  amino 
acids with hydrophobic character [HX2‑3HX2‑3HXH, where 
H is a hydrophobic amino acid (such as isoleucine, leucine, 
methionine, valine and phenylalanine), X is any amino acid 
and the number is the potential number of repeats] (33). These 
hydrophobic amino acids form an α‑helix or the entire loop 
structure, thus allowing XPO1 to attach to the hydrophobic 
pocket (25). However, NES sequences are yet to be sufficiently 
defined, as evidenced by the fact that <40% are known (7). The 
change in the cargo molecule's three‑dimensional structure by 
mutation, phosphorylation and dephosphorylation results in 
the formation of a new NES to which XPO1 binds (8,34,35). 
It also causes NES sequences to be lost or masked or leads 
to the emergence of new sequences by additional modifica‑
tions, including ubiquitination (33‑35), acetylation (34), 10 
sumoylation (9) or binding protein to specific cofactors such as 
RanGTP. Therefore, it alters the affinity of XPO1 to the cargo 
molecule (36,37).

Nuclear export of proteins, including STAT, NF‑κB, nucleo‑
phosmin (NPM)1, Ras association domain family member 
SF2, Merlin, TSPs, such as APC, p53, p73, forkhead box O 
(FOXO), IKB, BCR‑ABL, eukaryotic translation initiation 
factor 4E, BRCA1, viral proteins, regulatory/pro‑inflamma‑
tory p21CIP, p27Kip1, retinoblastoma, anti‑apoptotic proteins, 
such as NPM and AP‑1 and oncogenic proteins, such as 
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Cox‑2, c‑MYC, epidermal growth factor receptor and hypoxia 
inducible factor‑1, is key for cell cycle and cell proliferation. 
In addition, their nuclear export is mediated by XPO1 (38). 
Furthermore, XPO1 contributes to carcinogenesis by regu‑
lating the activity of TSPs and oncogenes. XPO1 controls 
multiple intracellular processes by regulating the localization 
of cyclin B, MPAK, MAPK‑associated protein kinase 2, p21, 
p33, p27 and Survivin (39,40). Moreover, the overexpression 
of XPO1 leads to transport of Rev and U snRNA from the 
nucleus to the cytoplasm (13). It has been reported that the 
transcription factors nuclear transcription factor Y/CBP 
(CREB‑binding protein), Sp1 and p53 are associated with the 
promoter of the XPO1 gene and serve an important role in 
the transformation of cancer cells by activating the promoter 
of XPO1 (41). The XPO1 gene plays a role in the control of 
cell proliferation and affects the loss of control in cancer 
cell proliferation via various pathways. As a nuclear export 
factor, XPO1 regulates direct intracellular localization of cell 
cycle regulators, TSPs and pro‑apoptotic proteins; therefore, 
the displacement of these proteins containing nuclear export 
sequences contributes to carcinogenesis and the development 
of drug‑resistance mechanisms by regulating the activity of 
oncogenes.

5. Single nucleotide polymorphisms (SNPs) of XPO1

Genotypical variations in XPO1 may affect the function of the 
nuclear‑cytoplasmic transport by altering expression levels of 
XPO1, resulting in emergence of certain disease phenotypes. 
The SNP c.1871A> G in XPO1 (pD624G) has been found to 
be associated with oesophageal squamous cell carcinoma and 
chronic lymphocytic leukaemia (42,43). Structural modelling 
study have shown that it is necessary to create a critical salt 

bridge with lysine at position 144 in the area where aspartic 
acid amino acid located at 624 of the XPO1 protein attaches 
to the target cargo molecule of XPO1. It has been reported 
that the conversion of the amino acid at the position 624 to 
glycine may cause the loss of this salt bridge and increase 
the nuclear‑cytoplasmic transport efficiency by changing the 
affinity of XPO1 to the cargo molecule (42). SNP rs6735330 
in XPO1 is associated with autism  (44). In addition, SNP 
rs7600515 in XPO1 has been reported as a prognostic 
factor for Crohn's disease (45). SNP rs4430924 in XPO1 is 
also associated with the risk of developing hepatotoxicity of 
anti‑tuberculosis drugs (46).

6. XPO1 in cancer

XPO1 is reported to be overexpressed in certain types of 
cancer (Table I).

In ovarian  (47), cervical  (48), glioma  (49), osteosar‑
coma (50), pancreatic  (51), oesophageal  (52,53), lung  (54), 
gastric (55), head and neck (56,57), renal cell carcinoma (58), 
hepatocellular carcinoma  (59), acute lymphoid leukaemia 
(ALL)  (60,61), chronic myeloid/lymphoid leukaemia 
(CML/CLL), multiple myeloma (MM)  (62), mantle cell 
lymphoma (MCL) (63,64) plasma cell leukaemia (65), acute 
myeloid leukaemia (AML) (66) and breast cancer  (67), an 
increase in the expression level of XPO1 was detected and 
it has been reported that this increase was associated with 
metastasis, increased tumour size, histological grade and 
decreased overall survival. The increased expression of XPO1 
causes accumulation or mislocalisation of TSPs, cell cycle 
regulator and/or pro‑apoptotic proteins in the cytoplasm with 
excessive nucleo‑cytoplasmic transport, as well as deregu‑
lating ribosomal biogenesis, increasing carcinogenesis and 

Figure 1. XPO1‑mediated nuclear export. Ran/GTP and cargo bind to XPO1 and form a ternary complex. Afterwards, it passes through the nuclear pore 
complex. The affinity of XPO1 to the cargo molecule decreases because of hydrolysis of Ran/GTP to Ran/GDP in the cytoplasm. Subsequently, the cargo is 
released into the cytoplasm. XPO1, exportin 1; Ran, Ras‑related nuclear protein; Phosphate, P.
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development of resistance to chemotherapy (10). In addition, 
Crm1‑dependent pathways serve a role in cancer pathogenesis 
since it is active in the control of mitosis and the dispersion of 
chromosomes and is important in maintaining and chromo‑
some protected structure (68). One study reported that XPO1 
overexpression in all solid tumour types except liver cancer and 
haematological malignancies (69). Higher XPO1 expression 
has been associated with worse patient prognosis in ovarian, 
pancreatic, oesophageal, thymic epithelial and breast tumour, 
as well as glioma. On the other hand, high XPO1 expression 
has been associated with a better prognosis in patients with 
osteosarcoma. Given XPO1 overexpression and its association 
with negative clinical outcome in various types of malig‑
nancy, it has become an attractive potential therapeutic target 
molecule in oncology (47,49‑51,64).

7. Inhibitors of XPO1

It has been reported that suppressing XPO1‑mediated nuclear 
export with specific agents or suppressing gene expression 
by XPO1‑specific small interfering RNA activates apoptotic 
pathways and increases the sensitivity of tumour cells to 
chemotherapy drugs, such as doxorubicin, etoposide  (70), 
cisplatin (71) and imatinib mesylate (72). Table II summarizes 
compounds that have been described as XPO1 inhibitors.

Numerous inhibitors of nuclear export derived from 
natural and synthetic sources have been identified  (73). 

Leptomycin B (LMB), a natural compound, emerged as the 
first inhibitory molecule to block the function of the XPO1 
protein  (14,74). LMB is covalently bound at the specific 
cysteine ​​(Cys528) residue located in the NES‑binding cleft of 
the XPO1 protein; this inhibits binding of XPO1 to the target 
cargo molecule  (74). LMB has been examined in multiple 
cancer cell lines and murine xenograft tumour models (75). 
Phase‑I clinical LMB studies are continuing to investigate its 
use as an anti‑cancer agent (70,75). However, LMB has not yet 
been used in clinical practice due to its low therapeutic index 
and high toxicity (76).

Other natural inhibitors of XPO1 include anguinomycins, 
isolated from Streptomyces species with selective cytotoxicity 
to transformed cells (77), and goniothalamin, obtained from 
Goniothalamus  macrophyllus. Goniothalamin has been 
reported to induce G2/M phase cell cycle arrest and apoptosis 
in breast cancer cells (78,79). Moreover, 15d‑PGJ2, a prosta‑
glandin family member with both anti‑ and pro‑inflammatory 
properties (80) and plumbagin, derived from Plumbago zeyl-
anica, have been shown to have a suppressive role in XPO1 
nuclear export function. In the presence of plumbagin, 
interactions between XPO1 and Foxo1, p21, p53 and p73 are 
disrupted (81). In particular, plumbagin serves an anti‑tumour 
effect via suppression of nuclear export (82). Furthermore, 
piperlongumine, an alkaloid of the long pepper, induces 
nuclear retention of major TSPs including Foxo1, p53, p21 
and IкB‑α and blocks interactions between XPO1 and these 

Table I. Cancer types associated with exportin 1.

Cell line	 Study design	 Cancer	 (Refs.)

OVCAR‑3, SKOV‑3, CAOV‑3, ES‑2, A2780, Mdah2744,	 In vitro	 Ovarian	 (47)
OAW42, EFO21, EFO27, FU‑OV‑1, PA‑1
HeLa (HPV18), SiHa (HPV16), CaSki (HPV16 and 18), 	 In vitro	 Cervical	 (48)
ME180, MS751 (HPV18), C33A
U251, SHG‑44 U118, U87	 In vitro and in vivo	 Glioma 	 (49)
U2OS, HOS, Saos2, MG63	 In vitro	 Osteosarcoma 	 (50)
MiaPaCa‑2, HPAC, AsPC‑1, PANC‑1	 In vitro and in vivo	 Pancreatic	 (51)
WHCO1, WHCO5, WHCO, ECA109, TE1, TE8, KYSE306	 In vitro and in vivo	 Esophageal 	 (52,53)
A549, H460 	 In vitro	 Lung 	 (54)
NCI‑N87, SNU‑1, SNU‑16 	 In vitro and in vivo	 Gastric	 (55)
UT‑SCC‑16A, UT‑SCC‑16B, UT‑SCC‑60A, UT‑SCC‑60B,	 In vitro	 Head and neck 	 (56,57)
UT‑SCC‑74, UT‑SCC‑74B,
e ACHN, Caki‑1, 786‑O	 In vitro and in vivo	 Renal cell carcinoma 	 (58)
SK‑HEP‑1, Huh7, MHCC97H,  SNU‑182, SNU‑387, HepG2	 In vitro and in vivo	 Hepatocellular carcinoma 	 (59)
Plat‑E, 293, OCI‑AML‑3, MOLM‑13, and MV4	 In vitro	 Acute myeloid/lymphoid 	 (60,61)
		  leukemia (AML/ALL)
HS‑5	 In vitro and in vivo	 Chronic myeloid/lymphoid	 (62)
		  leukemia
HS‑5	 In vitro and in vivo	 Multiple myeloma  	 (63)
JVM‑2, Maver‑1, NCEB‑1, Jeko‑1, DBsp53, Granta519, 	 In vitro and in vivo	 Mantle cell lymphoma	 (64,65)
JVM‑13, Z‑138, Rec‑1
MM1S, MM1R, INA6, INA6GFP, ANBL6 KMS18, KMS20	 In vitro and in vivo	 Plasma cell leukemia 	 (66)
RPMI8226, MOLP8, 28BM, 12PE, XG1, U266
K562	 In vitro	 Acute myeloid leukemia 	 (67)
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proteins (83,84). The natural inhibitor ratjadon, isolated from 
Sorangium cellulosum, has anti‑proliferative effects (85). In 
a previous study, ratjadon exerted anti‑HIV activity (86). In 
one study, ratjadon was conjugated to small‑molecule targeted 
ligands, which induced the inhibition of nuclear export in 
extracellular targeted cancer therapy. These conjugates retain 
their inhibitory activity by binding to XPO1 (87).

These aforementioned natural inhibitors with molecular 
mechanisms similar to LMB bind covalently to Cys528 in 
the reactive XPO1 region. XPO1‑mediated nuclear export is 
inhibited by such binding, resulting in nuclear accumulation of 
TSPs and growth regulatory proteins (GRPs) (88,89).

Contrary to the other natural XPO1 inhibitors, curcumin, 
a natural polyphenol product, also suppresses p53 nuclear 
export  (90). Curcumin has various anti‑inflammatory, 
antimicrobial, antioxidative and anti‑cancer properties. 
Phase I/II studies of curcumin in multiple myeloma (MM) are 
ongoing (91).

Besides natural inhibitors, several synthetic compounds are 
also available to inhibit XPO1, including selective inhibitors 
of nuclear export (SINEs), KOS‑2464, (R)‑4'‑methylklavuzon, 
CBS9106, Compound S109, PKF050‑638 and Compound 
1l. SINE compounds are produced based on an in  silico 
molecular modelling strategy (82‑95). SINEs are covalently 
bound to Cys528 residue of XPO1 and hinder XPO1 binding 
to target cargo molecules (92). In in vivo studies, oral use of 
SINEs was observed to cause mild gastrointestinal symp‑
toms (93). The potential of SINEs to inhibit XPO1‑mediated 
nuclear export has been demonstrated. Apoptosis of cancer 
cells and arrest of cells in the G1 phase of the cell cycle are 
induced by SINEs  (62,93). The effectiveness of KPT‑330 
(selinexor), SINE compound, has been evaluated in clinical 
studies of solid tumours and haematological malignancy. The 
results of these clinical trials have shown it to be a prom‑
ising therapeutic candidate (10,94). KPT‑330 has been found 
to have positive effects in clinical studies of hematopoietic 
malignancy, such as MM, AML and non‑Hodgkin lymphoma 

(NHL). KPT‑330 has been subjected to phase I/II studies in 
patients with AML (92,95). Notable decreases in tumour size 
have been demonstrated in a preclinical animal study with 
KPT‑330. It has been demonstrated that KPT‑330 has high 
efficacy in combination with various standard therapies, 
including selinexor/doxorubicin and selinexor/dexametha‑
sone combinations (96,97). Moreover, a decrease in XPO1 
levels was observed in studies conducted with other SINEs, 
including KPT‑185 and KPT‑251  (98). Thus, the nuclear 
localisation of tumour suppressors may be preserved. 
Therefore, preclinical studies of XPO1 inhibition using SINE 
compounds may lead to a novel treatment for various types of 
cancer, including breast cancer (18,97,99). In addition, activity 
of KPT‑185 and KPT‑276 was investigated in NHL using 
in vitro and in vivo study. A high level of anti‑tumour activity 
was observed in mouse models in which KPT‑276 was orally 
applied. Therefore, KPT‑276 is a promising candidate for 
NHL treatment (100).

A not he r  sy nt he t ic  X P O1 i n h ib i to r  i s  ( R) ‑ 
4'‑methylklavuzon, which can retain tumour suppressor 
proteins in the nucleus by inhibiting the XPO1 protein. 
(R)‑4'‑methylklavuzon has been shown to be a novel drug 
candidate for treating hepatocellular carcinoma  (101). 
KOS‑2464, another synthetic molecule, is the most effective 
LMB analogue and has been reported to induce apoptosis 
at low nanomolar concentrations. Low toxicity and high 
anti‑tumour activity of KOS‑2464 have been demonstrated in 
various cancer cell lines and xenograft mouse models (33,59).

CBS9106 binds to the XPO1 reactive site, causing 
degradation, and its anti‑tumor activity has been demon‑
strated in in vitro in various cancer cell lines and in vivo in 
xenograft animal models (33). Compound S109 is a deriva‑
tive of CBS9106 that causes cell cycle arrest of large TSPs 
mediated by XPO1. Its anti‑tumour activity has been inves‑
tigated in colorectal and kidney cancer cells and it has been 
proven to inhibit proliferation and induce cell cycle arrest 
in these cells  (84,85,102). Furthermore, PKF050‑638 is a 
XPO1‑inhibitor used in HIV treatment to inhibit the nuclear 
export of HIV‑1 Rev protein; however, its anti‑cancer effect 
has not been investigated yet  (33,103). PKF050‑638 inter‑
acts with cysteine in the NES‑binding groove and prevents 
binding of the NES, similar to the mechanism of LMB (73). 
(R)‑6‑[(2‑isopropyl‑5‑methylphenoxy) methyl]‑5,6‑di‑
hydro‑2‑Pyron (compound 11) is a colourless oily liquid. The 
cytotoxic effects of compound 1l in HGC27 and MGC803 
gastric cancer cell lines have been investigated; compound 
1l was reported to degrade XPO1, inducing apoptosis in both 
MGC803 and HGC27 cell lines, exhibiting strong cytotoxic 
and anti‑tumour effects against these cells (104).

8. Conclusion and future directions

Studies have demonstrated the key role of XPO1 in carci‑
nogenesis and its potential as a therapeutic target (10,69). It 
has thus become the focus of efforts to develop new tumour 
treatment strategies. The clinical use of novel specific XPO1 
inhibitors and their combination with other agents is prom‑
ising. Suppressing gene expression with specific inhibitors or 
interference techniques have identified the biological function 
and intracellular mechanisms of XPO1 in malignancy, as well 

Table II. Exportin 1 nuclear export inhibitors.

Inhibitor	 Compound	 (Refs.)

Leptomycin B	A ntibiotic	 (14,74‑76)
Anguinomycins	A ntibiotic	 (77)
Goniothalamin	 Natural	 (78,79)
15d‑PGJ2	 Natural	 (80)
Plumbagin	 Natural	 (81,82)
Piperlongumine	 Natural	 (83,84)
Ratjadon	A ntibiotic	 (85,86,87)
Curcumin	 Natural	 (90,91)
SINE	 Synthetic	 (92‑100)
(R)‑4'‑methylklavuzon	 Synthetic	 (101)
KOS‑2464	 Synthetic	 (33,59)
CBS9106	 Synthetic	 (33)
Compound S109	 Synthetic	 (84,85,102)
PKF050‑638	 Synthetic	 (33,73,103)
Compound 1l	 Synthetic	 (104)
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as drug resistance. Targeting XPO1 offers advantages in treat‑
ment strategies by activating various apoptotic pathways to 
avoid the development of drug resistance.
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