
Abstract. Breast cancer ranks as the second most common
cause of cancer death among women in the United States.
Anticancer agents are an important component of breast cancer
therapy. Drugs frequently used to treat breast cancer include
methotrexate, 5-fluorouracil (5-FU), cyclophosphamide,
anthracyclines, taxanes, trastuzumab, tamoxifen and aromatase
inhibitors. These agents inhibit breast cancer progression by
a variety of different mechanisms. Mutations may occur in
cancer cells, which result in the elevated expression or consti-
tutive activation of various growth factor receptors. The Raf/
MEK/ERK and PI3K/Akt pathways are often activated by
mutations in these growth factor receptors. These pathways
are regulated by upstream Ras, which is mutated in 20-30% of
human cancers. Downstream B-Raf and PI3K are also activated
by mutation. Many of the events elicited by the Raf/MEK/ERK
and PI3K/Akt pathways have direct effects on survival and the
proliferative pathways. Aberrant regulation of the Raf/MEK/
ERK and PI3K/Akt pathways can contribute to uncontrolled
cell growth and lead to malignant transformation. Effective
targeting of these pathways may result in the suppression of
cell growth and the death of malignant cells. This review
focuses on the targeting of the Raf/MEK/ERK and PI3K/Akt
pathways with small molecule inhibitors, as well as on the
effects of conventional chemo- and hormonal therapies in the
treatment of breast cancer.
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1. Introduction

Over 210,000 new cases of breast cancer are diagnosed in the
United States each year (1). Accordingly, approximately 1 in 7
women in the United States will be diagnosed with breast
cancer during their lifetime (2). It is the cause of death of over
40,000 women in the United States each year, ranking it as the
second most common cause of cancer death among women,
and is a leading cause of cancer death in developed countries
worldwide. There is consequently an urgent need to improve
breast cancer therapy. Many drugs have been demonstrated
to extend survival in breast cancer patients. The anticancer
agents commonly used to treat the disease include methotrexate,
5-fluorouracil (5-FU), cyclophosphamide, anthracyclines,
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taxanes, trastuzumab, tamoxifen and aromatase inhibitors.
The mechanisms by which these agents inhibit breast cancer
progression vary from drug to drug.

2. Methotrexate and 5-fluorouracil

DNA synthesis requires thymidine 5'-triphosphate (TTP),
which is synthesized from thymidine 5'-monophosphate
(TMP). Thymidylate synthetase generates TMP by catalyzing
the transfer of a methyl group from N5,N10-methylenetetrahy-
drofolate to 2'-deoxyuridine 5'-monophosphate (dUMP).
Methotrexate and 5-FU treatment each prevent TMP synthesis.
Thymidylate synthetase is irreversibly inhibited by 5-fluoro-2'-
deoxyuridine 5'-monophosphate (FdUMP), which is produced
by 5-FU. In contrast, methotrexate treatment blocks TMP
synthesis by preventing the synthesis of N5,N10-methylenete-
trahydrofolate.

Methotrexate contains a single glutamic acid residue.
Folylpoly-γ-glutamate synthetase (FPGS) catalyzes the
addition of one or more glutamic acid moieties to metho-
trexate. Methotrexate and its polyglutamylated derivatives
inhibit dihydrofolate (DHF) reductase (DHFR). DHFR
reduces folate to DHF and DHF to tetrahydrofolate (THF).
Serine hydroxy-methyltransferase converts THF to N5,N10-
methylenetetrahydrofolate. Methotrexate treatment reduces
TMP production by eliminating a source of N5,N10-methyl-
enetetrahydrofolate synthesis. Reduction of TMP levels by
treatment with methotrexate or 5-FU inhibits TTP production.
This blocks cell proliferation by preventing DNA synthesis.

3. Cyclophosphamide

The hepatic metabolism converts cyclophosphamide to
4-hydroxycyclophosphamide, the tautomerization of which
yields aldophosphamide. Acrolein and N,N-bis-2-(2-chloro-
ethyl) phosphorodiamidate are produced by the spontaneous
cleavage of aldophosphamide. DNA is alkylated by N,N-bis-2-
(2-chloroethyl) phosphorodiamidate at multiple sites. The N7

position of guanine is a site that is particularly susceptible to
alkylation by N,N-bis-2-(2-chloroethyl) phosphorodiamidate.
Alkylation of the N7 position of guanine caused by cyclophos-
phamide treatment stabilizes the enol tautomer of guanine,
which causes guanine to pair with thymine instead of cytosine.
DNA damage caused by cyclophosphamide treatment induces
apoptotic cell death (3,4).

4. Anthracyclines

Anthracyclines frequently used to treat breast cancer include
doxorubicin (Adriamycin) and epirubicin. Anthracyclines
disrupt DNA structure by intercalating between adjacent
DNA base pairs. Disruption of the DNA structure by anthra-
cyclines inhibits the synthesis of both DNA and RNA (5,6).
The intercalation of anthracyclines within DNA also induces
DNA cleavage mediated by topoisomerase II isoforms
(7,8), including topoisomerase IIα, topoisomerase IIα-1 and
topoisomerase IIß-2 (9-12). This DNA cleavage likely makes
an important contribution to the cytotoxicity of anthracyclines,
because less expression of topoisomerase IIα is correlated with
decreased anthracycline sensitivity (13). These anthracyclines
induce apoptotic cell death.

5. Taxanes

The mitotic spindle of a dividing cell functions to distribute
chromatids to each daughter cell. Mitotic spindles are
composed of microtubules. Cellular control of microtuble
polymerization and depolymerization is essential for proper
spindle function. Taxanes disrupt mitotic spindle function by
stabilizing the microtubules (14-16), which are assembled from
tubulin heterodimers. Tubulin heterodimers are composed of
α-tubulin and ß-tubulin. Taxanes stabilize microtubules by
binding to ß-tubulin. Disruption of mitotic spindle function
by taxanes prevents cell division. Taxanes frequently used to
treat breast cancer include paclitaxel and docetaxel.

6. Trastuzumab

Trastuzumab (Herceptin) is a humanized mouse monoclonal
immunoglobulin G1 (IgG1) κ antibody that binds to the extra-
cellular domain of HER2 (17,18). HER2 is amplified and
overexpressed in 20-30% of breast cancers and is associated
with a poor prognosis. Endocytic degradation of HER2 is
accelerated by binding to trastuzumab. The induction of
HER2 degradation by trastuzumab decreases the activity of
the signal transduction cascades downstream of HER2 that
promote cell cycle progression and inhibit apoptosis. These
signal transduction cascades include the Raf/MEK/ERK and
PI3K/PDK/Akt pathways. Their deactivation by trastuzumab
treatment, which is most effective for breast cancers with
either high HER2 protein levels or amplification of the gene
encoding HER2 (19), prevents cell proliferation.

7. Tamoxifen

Tamoxifen and its metabolites inhibit the proliferation of
breast cancer cells by binding to estrogen receptors (ERs)
(20). ER isoforms include ERα and ERß (21-27), which bind
together in both homodimeric and heterodimeric combinations
(28-31). ERs are transcription factors that induce the expression
of the proteins that promote cell cycle progression and inhibit
apoptosis. These proteins include cyclin D1, which promotes
cell cycle progression, and Bcl-2, which prevents apoptosis
(32,33). The binding of ERs to estrogens stimulates the
transcription of these genes. Tamoxifen and its metabolites
compete with estrogens for the same ERα and ERß ligand
binding sites and, upon binding, prevent the estrogens from
promoting cell proliferation. This is because the transactivation
potential of ERs bound to tamoxifen is less than that of ERs
bound to estrogens. The treatment of MCF-7 cells with
tamoxifen decreased the levels of Bcl-2 mRNA, as well as of
Bcl-2 protein (34).

The transactivation potential of ERs bound to tamoxifen or
its metabolites is dependent on whether ERα or ERß isoforms
are present. Tamoxifen is a partial agonist for ERα homo-
dimers, but is a pure antagonist for ERß homodimers (35).
The hepatic metabolism converts tamoxifen to 4-hydroxy-
tamoxifen (4-HT), similar to tamoxifen in that it is a partial
agonist for ERα homodimers yet a pure antagonist for ERß
homodimers. The estrogenic effects of tamoxifen treatment are
likely responsible for its stabilization of bone mineral density
(BMD), as well as its association with increased frequencies
of endometrial cancer and thromboembolic disease (36-38).

STEELMAN et al:  COMBINING CHEMO-, HORMONAL AND TARGETED THERAPY140

139-160  8/2/08  16:07  Page 140



Tumor biopsy specimens from breast cancer patients are
analyzed for ERα expression by immunohistochemisty to
determine whether tamoxifen treatment is appropriate (39).
Tamoxifen is only administered to breast cancer patients with
ERα positive (ER+) tumors, as its therapeutic benefit is sub-
stantially higher in breast cancer patients with ER+ tumors than
in those with ER negative (ER-) tumors (40,41). Coadmin-
istration of tamoxifen together with chemotherapeutic drugs
is more effective than the administration of the same chemo-
therapeutic drugs without tamoxifen for the treatment of
breast cancer patients with ER+ tumors, but not for those with
ER- tumors (42).

8. Aromatase inhibitors

Estrogen biosynthesis is dependent on aromatase. Aromatase
inhibitors prevent the proliferation of breast cancer cells
by blocking estrogen production. There are two classes of
aromatase inhibitors, which differ in chemical structure and
mechanism of action. Non-steroidal aromatase inhibitors, such
as anastrozole and letrozole, bind reversibly to aromatase. In
contrast, steroidal aromatase inhibitors, such as exemestane,
bind irreversibly to aromatase. Anastrozole and letrozole have
each been reported to be superior to tamoxifen in first-line
therapy for post-menopausal patients with hormone receptor-
positive advanced breast cancer (43-46).

9. Overview of the Ras/Raf/MEK/ERK pathway

The Ras/Raf/MEK/ERK pathway is activated by many growth
factors and cytokines important in driving proliferation and
preventing the apoptosis of breast cells (47-51). An overview
of the effects of the Ras/Raf/MEK/ERK pathway on the
downstream signaling pathways leading to the growth and
prevention of apoptosis is presented in Fig. 1. After receptor
ligation, Shc, an Src homology (SH)-2 (SH2)-domain containing
protein, becomes associated with the c-terminus of the growth
factor receptor (52-54) and recruits the GTP-exchange complex
Grb2/Sos, resulting in the loading of membrane-bound Ras
with GTP (55,56). Ras:GTP then recruits Raf to the membrane
and is activated, likely by an Src-family tyrosine (Y) kinase
(57-59). Raf is responsible for the phosphorylation of mitogen
associated/extracellular regulated kinase-1 (MEK1) (60-62).
MEK1 phosphorylates extracellular regulated kinases 1 and 2
(ERKs 1 and 2) on specific threonine (T) and Y residues
(60-62). Activated ERK1 and ERK2 serine (S)/T kinases
phosphorylate and activate a variety of substrates including
p90Rsk1 (63-70), which can activate the cyclic-AMP response
element binding protein (CREB) transcription factor (65).
Moreover, ERK can translocate to the nucleus and phosphor-
ylate additional transcription factors, such as Elk1, CREB and
Fos, which bind the promoters of many genes, including the
growth factor and cytokine genes important in stimulating the
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Figure 1. Overview of the Raf/MEK/ERK and PI3K/Akt pathways. The Raf/MEK/ERK and PI3K/Akt pathways are regulated by Ras as well as by various
kinases. Many kinases serve to phosphorylate S/T and Y residues on Raf. Some of these phosphorylation events serve to enhance Raf activity (indicated by a
black P in a white circle) whereas others serve to inhibit Raf activity (indicated by a white P in a black circle). Moreover, there are phosphatases, such as PP2A, that
remove phosphates on certain regulatory residues. The PI3K/Akt pathway is also activated after receptor ligation. Akt has many downstream targets which serve
to regulate cell growth and apoptosis. The downstream transcription factors regulated by these pathways are indicated in diamond-shaped outlines.
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growth and survival of multiple cell types, including breast
cells (63,71-81). The Raf/MEK/ERK pathway can also
modulate the activity of many proteins involved in apoptosis,
including Bcl-2, Bad, Bim, Mcl-1, caspase 9 and survivin
(82-91). Raf-1 has many roles, independent of MEK and ERK,
that are involved in the prevention of apoptosis (51). These
non-MEK/ERK effects are not be sensitive to inhibition by
MEK inhibitors, but may be sensitive to Raf inhibitors if they
are dependent on Raf kinase activity.

Recently, Raf-1 was shown to interact with mammalian
sterile 20-like kinase (MST-2) and prevent its dimerization and
activation (92). MST-2 is activated by pro-apoptotic agents,
such as staurosporine and Fas ligand. Raf-1, but not B-Raf,
binds MST-2. Depletion of MST-2 from Raf-1-/- cells abro-
gated sensitivity to apoptosis, while overexpression of MST-2
increased sensitivity to apoptosis. It was proposed that Raf-1
might control MST-2 by sequestering it into an inactive
complex. This complex of Raf-1:MST-2 is independent of
MEK and downstream ERK. Raf-1 can also interact with the
apoptotic signal kinase (ASK1) to inhibit apoptosis (51,93).
ASK1 is a general mediator of apoptosis and is induced in
response to a variety of cytotoxic stresses, including tumor
necrosis factor (TNF), Fas and reactive oxygen species (ROS).
ASK1 appears to be involved in the activation of the Jun
N-terminal kinase (JNK) and p38 MAP kinases.

10. Effects of the Raf/MEK/ERK pathway on the regulation
of apoptosis

The Raf/MEK/ERK pathway contributes to the transcriptional
regulation of Bcl-2 family members as it can regulate CREB
phosphorylation. CREB binds the Mcl-1 and Bcl-2 promoter
regions (94-98). Moreover, the Raf/MEK/ERK pathway
phosphorylates pro-apoptotic Bcl2 homology-3 (BH3)-only
domain protein Bad, which prevents its apoptotic effects and
leads it to become cytoplasmically localized (97,99,100).
Another MAP kinase, JNK, phosphorylates 14-3-3 proteins

and results in their disassociation from cytoplasmically-
localized Bad, which then translocates to the mitochondrion
(101). When Bad associates with Bcl-2 or Bcl-XL, it promotes
apoptosis by preventing them from interacting with Bax
(102-108). In contrast, the anti-apoptotic Mcl-1 protein is not
reported to interact with Bad (107). An overview of the
effects of the Raf/MEK/ERK pathway on the prevention
of apoptosis is presented in Fig. 2.

The Raf/MEK/ERK pathway can phosphorylate the
BH3-only domain protein Bim (89,109). When Bim is phos-
phorylated by ERK, it is targeted for ubiquitination and
degradation in the proteosome (91). Mcl-1 can bind Bim, which
prevents the activation and mitochondrial translocation of Bax
(88,91). In contrast, JNK can phosphorylate Bim at S65, which
enhances its ability to induce Bax activation and stimulates
apoptosis (104). Mcl-1 can also bind pro-apoptotic Bak (107).
This Mcl-1:Bak interaction can be disrupted by the binding of
the BH3-only domain Noxa protein, which results in Mcl-1
being ubiquitinated and degraded in the proteosome (103). Bak
can then form active dimers and induce apoptosis. Unlike Bcl-2
and Bcl-XL, the half-life of the Mcl-1 protein is short due to the
amino terminal PEST sequence, and its expression is regulated
by both transcriptional and post-translational mechanisms
(110). Certain chemotherapeutic drugs, such as taxol, will
induce Mcl-1 phosphorylation at sites other than those phos-
phorylated by ERK (T163) (88). Oxidative stress can activate
JNK, which induces the phosphorylation of Mcl-1 on S121
and T163 (111). Cytokine deprivation of certain cells induces
GSK-3ß, which in turn induces the phosphorylation of Mcl-1
at S159, resulting in its ubiquitination and degradation (112).

The expression of the BH3-only domain Puma and Noxa
proteins is under the control of the p53 and PI3K/Akt pathways
(113). Noxa interacts specifically with Mcl-1, but not with
Bcl-2 or Bcl-XL (107). Bak associates with Mcl-1 and Bcl-XL,
but not Bcl-2. Upon the induction of Puma and Noxa by p53,
Puma and Noxa displace Mcl-1 from Bak, which is then able
to oligomerize and induce apoptosis. This may lead to Mcl-1
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Figure 2. Effects of the Raf/MEK/ERK and PI3K/Akt pathways on apoptotic circuity. Growth factors can induce multiple signal transduction pathways, which
can affect the expression of apoptotic molecules by transcriptional and post-transcriptional mechanisms. The effects of the Raf/MEK/ERK and PI3K/Akt
pathways are often counterbalanced by JNK and GSK-3ß, which can serve to promote apoptosis.

JNK or GSK-3ß phosphorylation of

Mcl-1 induces proteosomal

degradation and apoptosis.
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degradation and apoptosis. The Raf/MEK/ERK pathway
increases Mcl-1 protein levels and stability, which may lead to
an increase in Mcl-1 associated with Noxa and Puma, and a
decrease in free Bak levels and less apoptosis. Targeting Raf/
MEK/ERK could stimulate apoptosis by decreasing Mcl-1
levels and altering its phosphorylation state.

Human caspase 9 was originally thought to be phos-
phorylated by Akt, but the murine caspase 9 lacks the Akt
consensus phosphorylation site (66). Caspase 9 is phosphor-
ylated by the Raf/MEK/ERK pathway at T125, which inhibits
the activation of the caspase cascade (69). Mcl-1 is a substrate
for activated caspase 3, thus decreased caspase 9 activation
by ERK phosphorylation will reduce caspase 3 activation and
Mcl-1 cleavage, and apoptosis will be suppressed. Targeting
Raf/MEK/ERK could increase caspase 9 activation and
increase the apoptosis of breast cancer cells.

11. Role of the Ras/Raf/MEK/ERK pathway in neoplasia

Effective targeting of signal transduction pathways activated
by mutations and gene amplification may be an effective
means of limiting cancer growth and metastasis. The Raf/MEK/
ERK pathway can be activated by mutations/amplifications
of upstream growth factor receptors. An illustration of some
of the receptors, kinases and phosphatases mutated/amplified
in human cancer, and how they may impact the Raf/MEK/
ERK cascade, is presented in Fig. 3.

Mutations that lead to the expression of constitutively-
active Ras proteins have been observed in ~20-30% of human
cancers (114,115). These are often point mutations which
alter key residues affecting Ras activity, although amplification
of Ras is also detected in some tumors. Mutations that result in
increased Ras activity also perturb the Raf/MEK/ERK kinase
cascade.

B-Raf has been reported to be mutated in ~7% of all cancers
(116). However, this frequency may change as increasing
numbers of diverse tumors are examined for B-Raf mutation.
Recent studies have indicated the presence of mutated alleles
of Raf-1 in therapy-induced acute myelogenous leukemia
(t-AML) (117), arising after the chemotherapeutic treatment of
breast cancer patients. The mutated Raf-1 genes detected were
transmitted in the germ line, and were thus not a spontaneous
mutation in the leukemia, but rather may have been associated
with the susceptibility to induction of t-AML in the Austrian
breast cancer patients.

For many years, the Raf oncogenes were not thought to be
frequently mutated in human cancer; more attention to the
abnormal activation of this pathway was dedicated to Ras
mutations, which can regulate both the Raf/MEK/ERK and
PI3K/Akt pathways. However, it was recently shown that
B-Raf is frequently mutated in melanoma (27-70%), papillary
thyroid cancer (36-53%), colorectal cancer (5-22%) and
ovarian cancer (30%) (116,118-120). The reasons for mutation
at B-Raf and not Raf-1 or A-Raf in melanoma patients are not
entirely clear. Based on the mechanism of activation of B-Raf,
it may be easier to select for B-Raf than for either Raf-1 or
A-Raf mutations. Due to the amino acids present at two key
regulatory sites in the different Raf isoforms, activation of
B-Raf would require one genetic mutation, whereas activation
of either Raf-1 or A-Raf would require two. It was recently
proposed that the structure of B-Raf, Raf-1 and A-Raf may

dictate the ability of activating mutations to occur at these
molecules, which can permit the selection of oncogenic forms
(116,119,121). These predictions have arisen from the deter-
mination of the crystal structure of B-Raf (121) which, like
many enzymes, is proposed to have small and large lobes
separated by a catalytic cleft. The structural and catalytic
domains of B-Raf, and the importance of the size and
positioning of the small lobe, may be critical to its ability to
be stabilized by certain activating mutations. In contrast, the
precise substitutions in A-Raf and Raf-1 are not predicted to
result in small lobe stabilization, thus preventing the selection
of mutations at A-Raf and Raf-1, which would result in
activated oncogenes (121). Raf-1 has been known for years
to interact with heat shock protein 90 (Hsp90), which may
stabilize activated Raf-1, B-Raf and A-Raf. The role played
by Hsp90 in the selection of activated Raf mutations is highly
speculative, yet very intriguing, and the effects of drugs which
target Hsp90 will be discussed later.

The most common B-Raf mutation is a change at nucleotide
600 that converts a valine to a glutamic acid (V600E) (116).
This B-Raf mutation accounts for over 90% of the B-Raf
mutations found in melanoma and thyroid cancer. It has been
proposed that B-Raf mutations may occur in certain cells that
express high levels of B-Raf due to hormonal stimulation.
Certain hormonal signaling events will elevate intracellular
cAMP levels and result in B-Raf activation, leading to
proliferation. Melanocytes and thyrocytes are two such cell
types, which have elevated B-Raf expression as they are often
stimulated by the appropriate hormones (122). Moreover, it
is now thought that B-Raf is the most important kinase in
the Raf/MEK/ERK cascade (116), with mutation at B-Raf
activating downstream MEK and ERK. In some models, wild-
type and mutant B-Raf activate Raf-1, which in turn activates
MEK and ERK (116,123,124). Multiple pharmaceutical/bio-
technological companies are attempting to develop inhibitors
which specifically target mutant B-Raf alleles, but do not
inhibit WT B-Raf.
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Figure 3. Sites of mutation which can result in the activation of the Raf/MEK/
ERK and PI3K/Akt cascades. Amplification of HER2 is observed in breast
cancer, which can result in the activation of both the Raf/MEK/ERK and PI3K/
Akt cascades. Ras is mutated in ~35% of human cancer, although not usually
in breast cancer. The PI3K/PTEN/Akt pathway is also activated in breast
cancer due to mutations at PI3K and PTEN. Mutations at either gene can result
in Akt activation, which is associated with a poorer prognosis in breast cancer.
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In some cells, B-Raf mutations are believed to be initiating
events, though not sufficient for full-blown neoplastic trans-
formation (125,126). Moreover, there appear to be cases in
which certain B-Raf (V600E) and Ras mutations are not
permitted in the transformation process, as they might result in
the hyperactivation of Raf/MEK/ERK signaling and expression
and lead to cell cycle arrest (118). In contrast, there are other
situations that depend on the particular B-Raf mutation and
require both B-Raf and Ras mutations for transformation. The
B-Raf mutations in these cases result in weaker levels of B-Raf
activity (118,126).

Different B-Raf mutations have been mapped to various
regions of the B-Raf protein. Some of the other B-Raf muta-
tions are believed to result in B-Raf molecules with impaired
B-Raf activity, which must signal through Raf-1 (116,123).
Heterodimerization between B-Raf and Raf-1 may allow the
impaired B-Raf to activate Raf-1. Other mutations, such as
D593V, may activate alternative signal transduction pathways
(116).

12. Overview of the PI3K/Akt pathway

Growth factor/cytokine receptor ligation also leads to rapid
activation of phosphatidylinositol 3-kinase (PI3K) (127). PI3K
consists of an 85-kDa regulatory subunit, containing SH2 and
SH3 domains, and a 110-kDa catalytic subunit (127,128,130).
Cytokine stimulation often creates a PI3K binding site on the
cytokine receptor, which the p85 subunit SH2 domain asso-
ciates with (127-129). The p85 subunit is then phosphorylated,
leading to the activation of the p110 catalytic subunit. Activated
PI3K phosphorylates the membrane lipid phosphatidylinositol
(4,5)-bisphosphate [PtdIns(4,5)P2] to phosphatidylinositol
(3,4,5)-tris-phosphate [PtdIns(3,4,5)P3], which activates PI3K-
dependent kinase (PDK1). PDK1 then phosphorylates Akt at
threonine 308 (T308), and a second kinase phosphorylates
Akt on serine 473 (S473) (131-135).

Akt can transduce an anti-apoptotic signal by phos-
phorylating the downstream target proteins involved in the
regulation of cell growth [e.g., glycogen synthase kinase-3ß
(GSK-3ß), ASK1, Bim, Bad, MDM-2, p21Cip1, X-linked
inhibitor of apoptosis (XIAP) and the Foxo3α transcription
factor] (108,131,136-145). Phosphorylated Foxo3α loses its
ability to induce Fas, p27Kip1, Bim, Noxa and Puma gene
transcription (146,147). Akt also phosphorylates I-κK, which
subsequently phosphorylates I-κB, resulting in its ubiqui-
tination and subsequent degradation in proteosomes (148-160).
The disassociation of I-κB from NF-κB enables NF-κB to
translocate into the nucleus to promote gene expression. The
PI3K/Akt pathway can also phosphorylate and activate CREB,
which regulates the transcription of anti-apoptotic genes,
including Mcl-1 and Bcl-2 (96,161,162). The PI3K pathway
also results in the activation of the mammalian target of
rapamycin (mTOR) and ribosomal protein kinases such as
p70S6K (163-170). It is worth noting that Akt can cause the
activation of specific substrates (e.g., IκKα and CREB) or
may mediate the inactivation of other proteins [e.g., Raf-1,
B-Raf (by the Akt related kinase SGK), p21Cip-1, Bim, Bad,
procaspase 9, Foxo3α and GSK-3ß].

The PI3K pathway is negatively regulated by phos-
phatases. PTEN (phosphatase and tensin homologue deleted

on chromosome 10) is primarily a lipid phosphatase that
removes the 3-phosphate from the PI3K lipid product
PtdIns(3,4,5)P3 to produce PtdIns(4,5)P2, which prevents Akt
activation (129,171-175). PTEN is also a protein phosphatase
(174,176,177). Two other phosphatases, SHIP-1 and SHIP-2,
remove the 5-phosphate from PtdIns(3,4,5)P3 to produce
PtdIns(3,4)P2 (178-182). Mutations in these phosphatases,
which eliminate their activity, can lead to tumor progression.
Consequently, the genes encoding these phosphatases are
referred to as anti-oncogenes or tumor suppressor genes.

13. Interactions between the PI3K/Akt and Raf/MEK/ERK
pathways which regulate apoptosis

Akt can phosphorylate Raf-1 and B-Raf and lead to their
inactivation (183-186). Akt can also activate Raf-1 through a
Ras-independent, but protein kinase C (PKC)-dependent,
mechanism, which results in the suppression of apoptosis
(187). The suppression of apoptosis in some cells by Raf and
MEK requires PI3K-dependent signals (188-192).

Both the PI3K/Akt and Raf/MEK/ERK pathways contri-
bute to the transcriptional regulation of Bcl-2 family members,
as they can regulate CREB phosphorylation. CREB binds the
Mcl-1 and Bcl-2 promoter regions (94,96,98). Moreover, both
pathways phosphorylate pro-apoptotic BH3-only domain
protein Bad, which prevents its apoptotic effects and leads it
to become cytoplasmically localized (95,97,99,100). Another
MAP kinase, JNK, phosphorylates 14-3-3 proteins and results
in their disassociation from cytoplasmically-localized Bad,
which then translocates to the mitochondrion (101). When
Bad associates with Bcl-2 or Bcl-XL, it promotes apoptosis
by preventing Bcl-2 or Bcl-XL from interacting with Bax
(102-108). Bad is phosphorylated in most AML specimens,
suggesting that the inhibition of Bad phosphorylation may be
therapeutically important in AML (193). In contrast, the anti-
apoptotic Mcl-1 protein is not reported to interact with Bad
(107).

Both the Raf/MEK/ERK and PI3K/Akt pathways can
phosphorylate the BH3-only domain protein Bim (89,108).
When Bim is phosphorylated by ERK and Akt, it is targeted
for ubiquitination and degradation in the proteosome (91).
Mcl-1 can bind Bim, which prevents the activation and mito-
chondrial translocation of Bax (88,91). In contrast, JNK can
phosphorylate Bim at S65, which enhances its ability to
induce Bax activation and hence stimulates apoptosis (104).
Mcl-1 can also bind pro-apoptotic Bak (107). The Mcl-1:Bak
interaction can be disrupted by the binding of the BH3-only
domain Noxa protein, resulting in Mcl-1 being ubiquitinated
and degraded in the proteosome (108). Bak can then form
active dimers and induce apoptosis. Unlike Bcl-2 and Bcl-XL,
the half-life of the Mcl-1 protein is short due to the amino
terminal PEST sequence, and its expression is regulated by
both transcriptional and post-translational mechanisms (110).

14. Roles of the PI3K/Akt pathway in neoplasia

Some Ras mutations can result in PI3K/Akt activation
(194-200). Mutations at the p85 subunit of PI3K have been
detected in Hodgkin's lymphoma cells (201), and the p110
subunit of PI3K is frequently mutated (~25%) in breast and
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some other cancers, but not in leukemia (202-206). Mutations
and hemizygous deletions of PTEN have been detected in
AML and NHL (207-213). Increased Akt expression is linked
to tumor progression and drug/hormonal resistance (214-217).
SHIP mutations have been detected in AML (218,219).
Thus, many possible mechanisms could lead to elevated
Akt levels.

The relationship between dysregulated PI3K activity and
the onset of cancer is well documented. PI3K is the predo-
minant growth factor-activated pathway in LNCaP human
prostate carcinoma cells (220,221). Other reports directly
implicate PI3K activity in a variety of human tumors, includ-
ing breast cancer (222), lung cancer (223), melanomas (224)
and leukemia (225), among others. Activated Akt can affect
the expression and regulation of the responses of hormone
receptors, and can lead to the ineffectiveness of hormone
ablation therapies (226-228).

Activated Akt has been reported to be detected in over
50% of primary AML samples, and is associated with a poor
prognosis (229). Furthermore, the Akt pathway has been shown
to be involved in the regulation of multidrug resistance
protein-1 (MRP-1) and drug resistance in AML (230-233).
Taken together, these data endorse the substantial role that
PI3K signaling plays in oncogenesis and drug resistance.
Moreover, targeted inhibition of the central components of this
pathway appears to be an excellent choice for future therapeutic
approaches. It has been observed that overexpression of both
the Raf/MEK/ERK and PI3K/Akt pathways in AML is
associated with a worse prognosis than the overexpression of a
single pathway (229). Thus, the development of inhibitors
which target both pathways, or the formulation of combinations
of inhibitors, may prove effective in the treatment of certain
cancers.

15. Signaling pathways and breast cancer

Breast cancer is among the most common form of cancer. Over
210,000 new cases are diagnosed in the USA each year and,
this year alone, ~40,000 women will die from the disease. It
affects about 1 in 7 women in the USA, and is the second most
frequent cause of cancer death (1). Although much progress
has been made in breast cancer treatment, metastatic breast
cancer remains a generally incurable and fatal disease as 50%
of patients die from it. Cytotoxic drug treatment is an important
weapon against cancer. However, cancerous cells frequently
develop drug resistance to these agents.

Breast cancer originates from genetic causes. Mutated or
amplified genes are either inherited or occur sporadically.
Hereditary breast cancer only accounts for about 10% of all
breast cancer cases, and generally results from the lack of a
tumor suppressor gene, as opposed to the gain of an oncogene.
Approximately 45% of hereditary breast cancer is attributable
to mutations in breast cancer-associated gene-1 (BRCA1), and
an additional 45% is attributable to mutations in BRCA2 (1).
Other tumor suppressor genes implicated in hereditary breast
cancer include p53 and PTEN (174). The p53 tumor suppressor
is a transcription factor involved in cell cycle regulation and
DNA damage repair. Germline p53 mutation is present in
~50% of patients with Li-Fraumeni syndrome (LFS), which is
a multicancer familial syndrome that includes adrenocortical

carcinoma, brain tumors, leukemia and osteosarcomas, in
addition to early onset breast cancer. Breast cancer attributable
to germline p53 mutation in the absence of LFS is rare. Germ-
line PTEN mutation is present in ~80% of patients with
Cowden syndrome (174,234). This disease, also known as
multiple hamartoma syndrome, is another familial syndrome
that includes many different types of cancer conditions,
including early onset breast cancer. Mutations have been
reported to occur at PTEN in breast cancer at varying fre-
quencies (5-21%) (235-239). Loss of heterozygosity is
probably more common (30%) (236). PTEN promoter methy-
lation leads to low PTEN expression. In one study, 26% of
primary breast cancers had low PTEN levels, correlated with
lymph node metastases and poor prognoses (236,238,240,241).
Mutations at certain residues of PTEN, which are associated
with Cowden's disease, affect the ubiquitination of PTEN
and prevent nuclear translocation. These mutations leave
phosphatase activity intact (242). Inhibition of PTEN activity
leads to centromere breakage and chromosome instability
(243). PTEN therefore has diverse activities, and the disruption
of PTEN activity by various genetic mechanisms could
have far-reaching effects on different processes affecting the
sensitivity of breast cancers to various therapeutic approaches.

Sporadic breast cancer accounts for the remaining 90% of
all breast cancer cases. The PI3K p110 catalytic subunit is
mutated in ~25% of breast cancer specimens, with the muta-
tions frequently resulting in the activation of its kinase activity
(202-205,239,244). Somatic mutation of p53 is associated with
many cancers, and is present in ~20% of sporadic breast cancer
cases. In contrast, somatic mutation of BCRA1 or BCRA2 is
rare in breast cancer patients. Another important cause of
sporadic breast cancer is the amplification/ overexpression of
HER2, which occurs in ~20-30% of breast cancer cases. This
gene encodes human epidermal growth factor (EGF) receptor-2
(HER2 a.k.a., c-ErbB-2), which is a receptor tyrosine kinase.
The expression and activity of downstream signal transduction
cascades, such as the Raf/MEK/ERK and PI3K/Akt pathways,
changes as a result of these mutations. ERK and Akt are
frequently activated in breast cancer specimens (239,245).
Consequently, the Raf/MEK/ERK and PI3K/Akt pathways are
therapeutic targets in breast cancer.

The association of the genes that regulate signal trans-
duction pathways with breast cancer implies that the pathways
play an important role in the disease. Perhaps the best example
of this is the association of HER2 gene amplification with
breast cancer. While a normal breast cell possesses 20,000-
50,000 HER2 molecules, amplification of this gene can
increase levels of HER2 to up to 2,000,000 molecules per cell
(129,246). The overexpression of HER2 in breast cancer is
linked to comedo forms of ductal carcinoma in situ and occurs
in ~90% of these cases. HER2 overexpression will lead to
increased expression of both the Raf/MEK/ERK and PI3K/Akt
pathways.

We have observed that ERK is activated after tamoxifen
treatment of the MCF-7 breast cancer cell line. This is impor-
tant with regards to the sensitivity of breast cancer cells to
MEK inhibitors. ERK can phosphorylate and contribute to
the inactivation of the tuberous sclerosis complex (TSC-2).
Akt can also phosphorylate TSC-2 at a different residue,
which leads to its inactivation. This leads to mTOR activation.
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Inhibition of TSC-2 phosphorylation by Raf/MEK and PI3K/
Akt inhibitors may make cells more sensitive to chemo- and
hormonal therapy.

Activated Akt is furthermore often upregulated in breast
cancer cells, and its overexpression is associated with a poor
prognosis. However, this may actually render the breast
cancer cells sensitive to Akt, as well as to downstream mTOR
inhibitors. The formation of the rapamycin-sensitive mTORC1
complex [consisting of mTOR, regulatory-associated protein
of mTOR (Raptor) and mLST8] in drug-resistant breast cancer
cells that overexpress activated Akt may be different than in
drug sensitive breast cells that do not overexpress activated
Akt. In cells which express activated Akt, the Akt should
phosphorylate TSC-2 and result in its inactivation. The
mTORC1 complex is formed and downstream p70S6K and
4E-BP1 are phosphorylated, allowing the disassociation of
eIF-4E, ribosome biogenesis and protein synthesis. In contrast,
in the absence of Akt and ERK activation, this complex should
not be formed. Rapamycin targets this complex, hence breast
cancer cells that constitutively express activated Akt are more
sensitive to rapamycin than those which do not. In breast cells
that do not, this complex should be transiently assembled
after growth factor treatment. In contrast, the assembly of the
rapamycin-insensitive mTORC2 complex [consisting of the
rapamycin-insensitive companion of mTOR (Rictor), mTOR,
mLST8] should be lower in cells that constitutively express
activated Akt than in those that do not, as there is equilibrium
between the mTORC1 and mTORC2 complexes. The signi-
ficance of these complex biochemical signaling events is that
drug-resistant breast cancer cells which overexpress activated
Akt or lack PTEN expression have an Achilles heel with
regards to therapeutic intervention, as they are highly sensitive
to rapamycin treatment. Drug-resistant breast cancer may
also be hypersensitive to Raf/MEK inhibitors, as ERK plays
a critical role in the phosphorylation of TSC-2 and p70S6K.

16. Aberrant regulation of apoptosis may contribute to
breast cancer and subsequent drug resistance

Cell death following cytotoxic drug treatment is generally
apoptotic as opposed to necrotic. Many chemotherapeutic
drugs induce apoptosis by activating the intrinsic cell death
pathway, which involves cytochrome c release and the acti-
vation of the apoptosome-catalyzed caspase cascade. During
apoptosis, activation of caspase family cysteine proteases
occurs. Although, as discussed earlier, the various cytotoxic
drugs differ in their mechanisms of action, each ultimately
relies upon built-in apoptotic machinery to elicit cell death
(130,166,174,234,247,248). Caspase family cysteine proteases
are responsible for the proteolytic cleavage of the carboxyl
terminal of cellular proteins to aspartate residues.

In a study involving 46 breast cancer patients, 75% lacked
caspase 3 mRNA transcripts and protein expression (249). The
MCF-7 cell line has a mutation in caspase 3 and is deficient in
certain aspects of apoptosis. In this respect, MCF-7 cells are a
stringent model for the investigation of breast cancer apoptosis
(250). Caspase 9 can be activated in MCF-7 cells, which can
result in the sequential activation of caspases 7 and 6 (251).
Caspase 7 is activated by the apoptosome complex and forms
a XIAP-caspase 7 complex. This XIAP-caspase 7 complex is

more stable in MCF-7 cells due to the absence of functional
caspase 3. ERK activity maintains XIAP levels; however, the
mechanism by which this occurs is unknown. Resistance to
chemotherapeutic drugs induced by the Raf/MEK/ERK path-
way may be due in part to prolonged XIAP and caspase 9
expression, which prevents caspase 7 from exerting its effects
on apoptosis (145,252). ERK phosphorylates caspase 9,
inhibiting its activation. The negative regulation of the caspases
by ERK represents a mechanism by which Raf/MEK/ERK
pathway activation prevents apoptosis. Raf/MEK inhibitors
may affect caspase 9 activation and XIAP levels, and promote
the apoptosis of cancer cells.

17. Therapeutic targeting of the Raf/MEK/ERK pathway

Small molecule inhibitors, such as Imatinib, have proven
effective in the treatment of CML and certain other cancers
which proliferate in response to BCR-ABL (e.g., some ALLs)
and for cancers which proliferate in response to mutant
platelet-derived growth factor receptor (PDGF-R) and c-Kit
genes (49,234,239,253-255), such as gastro-intestinal stromal
tumors. Lung carcinomas which have mutations in EGFR are
sensitive to EGFR inhibitors (51,246,256-260). Raf and
MEK inhibitors have been developed, and some are in
clinical trials (174,234,239,254,261). We have determined
that a consequence of doxorubicin treatment in breast, hema-
topoietic and prostate cancer cell lines is the induction of
ERK (51). Eliminating the deleterious side-effect of these
therapies with Raf and MEK inhibitors may enhance their
ability to kill drug-resistant cancer. PI3K, PDK, Akt and
mTOR inhibitors have been developed. mTOR inhibitors
have been used for many years as immunosuppressive drugs
in kidney transplant patients, but have as a side effect the
inhibition of a negative feedback pathway, which can result
in Akt activation (262). Bcl-2 inhibitors have been developed
which suppress Bcl-2 and Bcl-XL, but not Mcl-1 (263).
MDM-2 inhibitors have been developed which enhance WT
p53 stability and activity (264). These inhibitors may augment
the effects of chemo-, radio- and hormonal-based breast
cancer therapies. A diagram illustrating the sites of action
and other inhibitors is presented in Fig. 4.

Raf inhibitors have been developed as well, and some are
being evaluated in clinical trials. A few ‘Raf’ inhibitors
(Sorafenib) are approved for the treatment of certain cancers
(e.g., renal cell carcinoma) (265-269). Certain Raf inhibitors
have been developed that are small molecule competitive
inhibitors of the ATP-binding site of Raf protein. These (e.g.,
L-779,450, ZM 336372 or Bay 43-9006, a.k.a Sorafenib) bind
the Raf kinase domain and therefore prevent its activity. Some
may affect a single Raf isoform (e.g., Raf-1), others may affect
similar Raf proteins (Raf-1 and A-Raf), while other pan-Raf
inhibitors may affect all three Raf proteins (Raf-1, A-Raf and
B-Raf). We have observed that the L-779,450 inhibitor sup-
presses the effects of A-Raf and Raf-1 more than the effects
of B-Raf (269). Like many Raf inhibitors, L-779,450 is not
specific for Raf; it also inhibits the closely-related p38MAPK.
Likewise, Sorafenib inhibits other kinases besides Raf (e.g.,
VEGF-II Receptor, PDGF-R, Kit, Flt-3 and Fms) and is more
appropriately referred to as a multi-kinase inhibitor. Knowledge
of the particular Raf gene mutated or overexpressed in certain
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tumors may provide critical information regarding how to treat
the patient, as some cancers which overexpress a particular Raf
gene may be more sensitive to inhibition by agents which target
that particular Raf protein. The inhibition of some Raf proteins
might prove beneficial, while the suppression of others might,
under certain circumstances, prove detrimental. Thus, the
development of unique and broad-spectrum Raf inhibitors may
prove useful in human cancer therapy.

Chaperonin proteins, such as 14-3-3 and Hsp90, regulate
Raf activity (268), which is regulated by dimerization. These
biochemical properties result in Raf activity being sensitive
to drugs which block protein:protein interactions, such as
geldanamycin (270). Geldanamycin and its 17-allyamino-17-
demethoxygeldanamycin (17-AAG) analogue are non-specific
Raf inhibitors as they also affect the activity of many proteins
which are stabilized by interaction with Hsp90. They are
currently in clinical trials (271). We often think of a single
Raf protein carrying out its biochemical activity. However,
Raf isoforms dimerize with themselves and other Raf isoforms
to become active. Drugs such as coumermycin, which inhibit
Raf dimerization, and others such as geldanamycin, which
prevent the interaction of Raf with Hsp90 and 14-3-3 proteins,
suppress Raf activity. Geldanamycin has also been shown to
be effective in suppressing the growth of non-small cell lung
carcinoma (NSCLC) cells, which are gefitinib and erlotinib
(both are EGFR inhibitors) resistant due to a second mutation
in the EGFR (272). Furthermore, 17-AAG potentated the
effects of paclitaxel in ovarian breast cancer lines that exp-
ressed high levels of activated Akt (273).

An alternative approach to targeting Raf is to prevent Raf
activation by targeting the kinases (e.g., Src, PKC, PKA, PAK

or Akt) and phosphatases (e.g., PP2A) involved in Raf acti-
vation. It can be predicted that some Src kinase inhibitors,
such as Dasatinib, would inhibit Raf activation by suppressing
Raf-1 and A-Raf, but not B-Raf, activation by Src. It is worth
noting that some of these kinases normally inhibit Raf acti-
vation (Akt and PKA). A major limitation of this approach
would be that these kinases and phosphatases could result in
the activation or inactivation of other proteins, and would thus
have other effects on cell physiology.

Currently, it is believed that MEK1 is not frequently
mutated in human cancer. There was recently a report that
MEK1 and MEK2, as well as B-Raf, are mutated in some
patients with cardio-facio cutaneous syndrome (274). Aberrant
expression of MEK1 is observed in many different cancers due
to the activation of the Raf/MEK/ERK pathway by upstream
kinases (e.g., BCR-ABL) and growth factor receptors (e.g.,
EGFR, Fms, Flt-3, PDGFR), as well as by other unknown
mechanisms. Specific inhibitors to MEK have been developed
[PD98059, U0126, PD184352 (a.k.a., CI1040), PD-0325901,
Array MEK inhibitors (ARRY-142886 and others)] (261).
Their successful development may be due to the relatively
small number of phosphorylation sites on MEK involved in
activation/inactivation. MEK inhibitors differ from most other
kinase inhibitors as they do not compete with ATP binding.
This confers a very high specificity (275). MEK inhibitors are
very specific and do not inhibit many different protein kinases,
including p38MAPK and JNK (276). The crystal structures of
MEK1 and MEK2 have been determined as ternary complexes
with ATP and PD184352, and have revealed that both MEK1
and MEK2 have unique inhibitor binding sites located on a
hydrophobic pocket adjacent to, but not overlapping, the ATP
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binding site (277). Furthermore, effective targeting of MEK1,2
is highly specific; ERK1,2 are its only well-described down-
stream targets. An advantage of targeting the Raf/MEK/ERK
cascade is that it can be done without knowledge of the precise
genetic mutation, which results in its aberrant activation. This
is important as the nature of critical mutation(s), which leads
to the malignant growth of at least 50% of AMLs and other
cancers, is currently unknown. An advantage of targeting
MEK is that the Raf/MEK/ERK pathway is a convergence
point where a number of upstream signaling pathways can be
blocked by the inhibition of a single kinase (MEK). MEK
inhibitors, such as ARRY-142886 (AZD6244), are also being
evaluated to treat hematopoietic malignancies, such as multiple
myeloma (278-280).

To the best of our knowledge, no small molecular weight
ERK inhibitors have been developed yet; however, inhibitors
to ERK could prove very useful, as ERK can phosphorylate
many targets (Rsk, c-Myc, Elk and at least 150 more). There
are at least 2 ERK molecules regulated by the Raf/MEK/
ERK cascade, ERK1 and ERK2. Little is known about their
different in vivo targets; however, it has been postulated that
ERK2 has pro-proliferative effects, while ERK1 may have
anti-proliferative effects (281). The development of specific
inhibitors to ERK1 and ERK2 might eventually prove useful
in the treatment of certain diseases.

18. Combination therapies to enhance toxicity

An approach that we have been investigating recently is to
determine whether the inhibition of two signal transduction
pathways is a more effective means to induce apoptosis than
the inhibition of a single one. We have observed that the
inhibition of the Raf/MEK/ERK and PI3K/Akt pathways is
usually a more effective means, and that synergy between the
two inhibitors is often observed. Many transformed cells have
elevated Raf/MEK/ERK and/or PI3K/Akt signaling. These
two pathways play prominent roles in the promotion of growth
and the prevention of apoptosis. The PI3K/Akt pathway
may be inhibited with PI3K (LY294002, PX-866), PDK1
(OSU-03012, Celecoxib), Akt (A-443654) inhibitors or down-
stream mTOR inhibitors, such as rapamycin and modified
rapamycins (CCI-779, RAD001). Initially, mTOR inhibitors
showed much promise, as PTEN is often deleted in various
tumors. However, it has recently been determined that the
mTOR pathway has a complicated feedback loop that actually
involves the suppression of Akt, hence it can be predicted that
mTOR inhibitors would activate Akt in some cells. Recent
evidence has highlighted that mTOR can also be activated by
Raf/MEK/ERK (233,282). This may well be another relevant
cross-talk between the Ras/Raf/MEK/ERK and the PI3K/Akt
pathways, and might offer a further rationale for treatments
combining drugs which inhibit both signaling networks.
The effects of the combination of mTOR and Sorafenib are
being evaluated in clinical trials to treat melanoma (283).
The effects of combining EGFR and mTOR or mTOR and
MEK inhibitors on cell cycle progression in the induction of
apoptosis in kidney cells were examined, and synergistic
effects were observed (284). The effects of EGFR and MEK
inhibitors were enhanced by the addition of rapamycin, which
resulted in enhanced G1 arrest. Similar experiments have

been performed on NSCLC with gefitinib and either the MEK
inhibitor U0126 or the farnesyl transferase inhibitor SCH66336
(285).

In some cases, the precise gene responsible for driving the
proliferation of the malignant cell is known (e.g., BCR-ABL in
CML, EGFR in some cases of NSCLC, FLT-3 in some AMLs
and B-Raf in melanoma). However, in many cancers there
may be additional genes which are also critical to malignant
transformation. Treatment of some of these diseases with
specific kinase inhibitors is often effective; however, resistance
to the inhibitors may develop due to further mutations in
aberrant kinases, which often prevent the signal transduction
inhibitor from inhibiting the altered kinase. In these novel
‘drug-resistant’ cases, additional therapeutic approaches are
necessary. In some of these cases, it may be possible to inhibit
the drug-resistant cells with novel inhibitors that will suppress
the resistant oncoprotein or combinations of the MEK and
PI3K/Akt inhibitors. We have observed that Imatinib-resistant
hematopoietic cells (which have mutated BCR-ABL kinase)
are sensitive to MEK inhibitors, a result which is not surprising
as an Src inhibitor (Dasatinib) is used to inhibit them. These
cells often have overexpression of an activated Src family
kinase, such as Lyn, which likely acts by inducing the Raf/
MEK/ERK cascade.

Classic chemotherapy often remains the most used anti-
cancer therapy for many different types of cancer treatment.
Drugs such as doxorubicin and taxol are effective in the
treatment of many cancers, although in some cases drug
resistance does develop after prolonged treatment. Doxorubicin
and taxol target cellular events, such as DNA replication and
cell division, which are downstream of the targets of signal
transduction pathway inhibitors. Thus, by combining classic
chemotherapy with targeted therapy, it may be possible to
enhance toxicity while lowering the effective concentrations of
classic chemotherapeutics necessary for the complete elimi-
nation of a particular tumor.

We have investigated the effects of combining classic
chemotherapy or hormonal therapy with signal transduction
inhibitors in suppressing the growth of breast cancer cells.
Treatment of breast cancer cells with MEK or mTOR inhibitors
and either doxorubicin or tamoxifen resulted in a synergistic
response documenting the effectiveness of classic chemo-
therapy with targeted therapy.

19. Combining signal transduction inhibitors with anti-
body, hormonal and chemotherapeutic-based therapies

Recent studies have indicated that the effectiveness of certain
antibody-based therapies (e.g., Herceptin, which targets HER2)
may be greatly enhanced by the inclusion of mTOR inhibitors.
These observations have been seen in preclinical studies
performed in tissue culture and in xenograft models, and are
being further evaluated in Phase II clinical trials (286). The
cytotoxic effects of Herceptin can also be improved by the
addition of an inhibitor such as Lapatinib, which targets both
EGFR and HER2 (287).

The effectiveness of combining PI3K and mTOR inhibitors
with the chemotherapeutic drug fludarabine has been examined
in human leukemia cell lines (288). The combination of
fludarabine and either PI3K or mTOR inhibitors resulted in
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increased apoptosis compared to what was observed following
fludarabine treatment alone.

Rapamycin exerted synergistic effects when combined
with paclitaxel, carboplatin and vinorelbine in certain respon-
sive breast cancer lines in vitro (289). Rapamycin combined
with paclitaxel resulted in a significant reduction in tumor
volume in xenograft models when rapamycin sensitive tumors
were examined. mTOR inhibitors also increased the chemo-
sensitivity of cervical cancer cells to paclitaxel (290). The
effects of rapamycin on sensitivity to paclitaxel are depen-
dent on functional glycogen synthase kinase 3ß (GSK-3ß), as
rapamycin induced toxicity in GSK-3ß WT cells but not in
GSK-3ß null cells (291).

Combinations of rapamycin and the cell cycle checkpoint
kinase (Chk1) inhibitor UCN-01 also resulted in a synergistic
induction of apoptosis in human leukemic cells, regulated by
the Raf/MEK/ERK, Akt and JNK signal transduction pathways
(292). Coadministration of UCN-01 and rapamycin reduced the
levels of Mcl-1, Bcl-XL, cyclin D1 and p34cdc2. Similar studies
were performed with the farnesyl-transferase inhibitor L744832
and UCN-01, which also revealed a synergistic interaction
in terms of the induction of apoptosis and the interruption of
both Akt and MEK/ERK pathways and the activation of
SEK1/JNK (293). L744832 blocked the induction of ERK
normally stimulated by UCN-01.

Novel PI3K inhibitors have been developed. PWT-458
is a novel pegylated-17-hydroxywortmannin which inhibits
PI3K and has been shown to suppress glioma, NSCLC and
renal cell carcinoma in xenograft models (294). PWT-458
augmented the anticancer effects of paclitaxel and pegylated
rapamycin in certain xenograft models.

The PI3K inhibitor LY294002 has been shown to block
drug export from drug-resistant colon carcinoma cells over-
expressing MRP-1 (295). Furthermore, combining the PI3K
inhibitor with doxorubicin resulted in enhanced apoptosis,
while combining doxorubicin with the MEK inhibitor did not.

Perifosine is an oral bioactive novel alkylphospholipid that
inhibits Akt. Perifosine enhanced dexamethasome, doxo-
rubicin and melphalan, and bortezomib induced multiple
myeloma cytotoxicity (296). Furthermore, perifosine syner-
gistically increased the effects of etoposide on the induction
of apoptosis in human T-ALL cells (297). Additional Akt
inhibitors have been developed. An Akt inhibitor developed
by Abbott (A-443654) augmented the effectiveness of
paclitaxel and rapamycin in suppressing tumor growth in xeno-
graft models (298). Treatment of cells with this Akt inhibitor
resulted in increased detection of activated Akt. Similar events
are also observed with some MEK inhibitors; the incubation of
cells with these resulted in increased levels of activated MEK
but suppressed levels of activated ERK. There are two
problems associated with the Abbott Akt inhibitor: increased
toxicity and glucose secretion. There are also toxicity problems
with the PI3K inhibitor LY294002, and pharmacological
problems with some of the MEK inhibitors (CI1040) that
prevent their usage in human cancer patients.

Suntinib was developed as a selective inhibitor of vascular
endothelial growth factor-receptor (VEGFR). However, it has
since been shown to have multiple targets. Suntinib sensitizes
ovarian cancer cells to cisplatin via the suppression of nucle-
otide excision repair activity by inhibiting the expression of

G1 cell cycle checkpoint regulators (p53, p21Cip-1, p27Kip-1 and
MDM2) (299). The chemosensitizing effects of Suntinib
may be mediated by inhibiting G1 checkpoint control and up-
regulating the apoptotic response to cisplatin.

Multitargeted kinase inhibitors, such as Sorafenib and
Sunitib, are being combined with an antibody (Bevacizumab)
that targets the VEGF, and are being evaluated in clinical trials
(300). Bevacizumab is also being combined with Erlotinib,
an EGFR inhibitor, in a Phase II clinical trial for renal cell
carcinoma patients. Furthermore, Beracizumab and mTOR
inhibitors are being combined in clinical trials for renal cell
carcinoma and melanoma patients (300).

20. Enhancing the effects of Ras/Raf/MEK/ERK pathway
inhibitors by combination therapy

Although the precise targets of farnesyltransferase inhibitors
remain controversial, the farnesyltransferase inhibitor R115777
(Zarnestra) was shown to result in disease stabilization in
64% of multiple myeloma patients in a Phase II clinical trial
(301). Furthermore, R115777 was found to synergize with
paclitaxel and docetaxel, but not with doxorubicin, 5-flurouracil,
cisplatin, melphalan, mitoxantrone and dexamethasone.

A side-effect of some chemotherapeutic drugs, such as
taxol, is the induction of the Raf/MEK/ERK pathway. Activa-
tion of this pathway can, under certain circumstances, promote
proliferation and prevent apoptosis. Combining taxol treatment
with MEK inhibitors has been observed to synergistically
enhance apoptosis and inhibit tumor growth (302,303). The
synergistic effects of paclitaxel and MEK inhibitors are
complex and not fully elucidated, but may be mediated in
part by the inhibition of Bad phosphorylation at S112 by
ERK (304).

Moreover, the cytotoxic effects of combinations of MEK
inhibitors and paclitaxel may be specific for cells of certain
origins and may depend on the levels of endogenous activated
MEK/ERK present in those cells. Some studies with NSCLC
cells that constitutively expressed activated MEK/ERK
revealed no increase in paclitaxel-induced apoptosis upon
treatment with a MEK inhibitor (305). In contrast, the addition
of a dominant negative MEK gene to these cells potentiated
paclitaxel-induced apoptosis.

MEK inhibitors have also been observed to affect cisplatin
resistance in squamous cell carcinoma, implicating the Raf/
MEK/ERK pathway in their drug resistance (306). In neuro-
blastoma cells, cisplatin-induced apoptosis was associated
with an increase in p53 and Bax proteins. Activated ERK1,2
levels were also increased earlier in these cells with cisplatin
treatment. Culture of these cells with MEK inhibitors blocked
apoptotic cell death, which prevented the cisplatin-induced
accumulation of p53 and Bax (307).

MEK inhibitors have also been observed to synergize
with arsenic trioxide (ATO) to induce apoptosis in acute
promyelocytic leukemia (APL) and AML cells (308,309).
The p53-related gene p73 is a molecular target of the combined
therapy. ATO modulates the expression of the p73 gene by
inducing the pro-apoptotic and anti-proliferative 73 isoforms.
p53 requires p63 and p73 for the induction of apoptosis in
response to DNA-damaging drugs. p73 exists as a multiple
transactivation competent (TA) of pro-apoptotic and anti-
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proliferative p73 COOH-terminal splicing isoform (α, ß, γ, δ,
ε, ζ), of which the two major forms are p73α and p73ß.
Dominant-negative (ΔN) p73 variants are expressed from a
second promoter. These DN ΔNp73 variants lack the amino-
terminal transactivation domain, act as transrepressors of p53-
and p73-dependent transcription and have anti-apoptotic and
pro-proliferative potential. Treatment of APL cells with the
PD184352 MEK inhibitor reduced the level of ΔNp73 and
decreased the ATO-mediated upregulation of ΔNp73, thus
causing an increase in the TA/ΔNp73 ratio of dual-treated
cells. High doses of ATO induced p53 accumulation in 11 of
21 patients. Combined treatment resulted in the induction of
the pro-apoptotic p53/p73 target gene p53AIP1 (p53-regulated
apoptosis-inducing protein 1) and greatly enhanced the
apoptosis of treated cells (309). This study consequently
documented the effectiveness of combining ATO with MEK
inhibitors in the treatment of APL, and identified the molecular
mechanism responsible for the observed synergism.

MEK inhibitors have been observed to synergize with
UCN-01 and induce apoptosis in multiple myeloma cells (310).
Part of the synergy may be due to UCN-01 inducing ERK
activation, which is suppressed by the MEK inhibitor.

It should be pointed out that the combination of MEK
inhibitors and a chemotherapeutic drug may not always result
in a positive interaction; in some cases combination therapy
results in an antagonistic response. For example, combining
MEK inhibitors with betulinic acid, a drug lethal to melanoma
cells, antagonized the effects that betulinic acid normally has on
apoptosis (311). Furthermore, the precise timing of the addition
of two drugs is important, as they may differentially affect cell
cycle progression. Therefore, one drug may need to be added
before the other for a synergynistic response to be observed,
and perhaps to prevent an antagonistic one (297).

21. Role of the Raf/MEK/ERK pathway in drug resistance
to reactive oxygen intermediate-inducing cancer treatments

Many cancer therapies induce the generation of oxygen
radicals within cells. These therapies include treatments such as
chemotherapeutic drugs and irradiation, and newer treatments
such as photodynamic therapy (PDT). Doxorubicin, one of the
chemotherapeutic drugs most effective against a wide range of
cancers, works via two main mechanisms to exert anti-tumor
effects and toxicity. It intercalates in the DNA and interferes
with DNA polymerase by disrupting helicase activity (312). It
also induces the production of free radicals and oxidative stress,
which are involved in its anti-tumor effects (313,314). The
generation of oxygen radicals is important for the therapeutic
effectiveness of doxorubicin, because scavenging reactive
oxygen intermediates result in decreased cell killing by this
drug (315).

The initial reactive oxygen species generated as a conse-
quence of ionization radiation is OH-, which is short-lived
and only diffuses about 4 nm before reacting. Secondary
reactive oxygen species, produced in response to ionizing
radiation, include O2- and H2O2. Studies with fluorescent dyes
have demonstrated the generation of reactive oxygen species
within cells within 15 min after irradiation (316). Similar to
doxorubicin, the generation of oxygen radicals is important
for the therapeutic effectiveness of radiation therapy because

scavenging reactive oxygen intermediates results in decreased
cell killing in response to radiation (317).

PDT is a three-component treatment used in cancer cases
(318) that requires a photosensitizer, molecular oxygen and a
laser of a wavelength matching the absorption spectrum of the
photosensitizer (porphyrins and porphyrin-related compounds).
When a porphyrin molecule absorbs light, it can transform an
oxygen molecule to an activated state. Similar to doxorubicin
and irradiation, PDT also requires the production of oxygen
radicals to mediate some of its anti-tumor effects (319). Thus,
three well-known cancer treatments result in the generation of
reactive oxygen intermediates. These same three treatments
have also been shown to lead to the activation of ERK1,2
(320-323).

The Raf/MEK/ERK signaling pathway can play an adaptive
role in protecting cells from oxidative stress (324). In a non-
malignant murine alveolar epithelial cell line, blocking MEK
activation using the MEK inhibitor U0126 prevents hypoxia-
induced Nrf2 upregulation (324). Deletion of ASK1 protects
cells from oxidant-induced cell death, but not from death
receptor-induced apoptosis (325). Conversely, hydrogen
peroxide is capable of inducing apoptosis in cardiomyocytes,
which can be increased in MEKK1 negative cells (326). The
deletion of ASK1 protects against hydrogen peroxide-induced
apoptosis in fibroblasts and also prevents prolonged p38
activation, suggesting an apoptotic role for p38 in response to
oxidative stress (327). Ras activation and subsequent signaling
via Rho can also activate this pathway, as does ligation of the
TNF receptor (328-331). Redox activation of ERK5/BMK1
exhibits an anti-apoptotic effect (332). U0126 and PD98059
are also reported to inhibit the activity of MEK5, the MAPKK
involved in ERK5/BMK1 activation (332-335). These inhi-
bitors decreased PC12 cell viability in response to hydrogen
peroxide treatment. This decrease in cell viability occurred
when the ERK5/BMK1 protein was completely downregulated
using siRNA, suggesting that the effects of U0126 and
PD98059 were mediated in part via the ERK5/BMK1 pathway
(332). These data indicate the potential for both the ERK1/2
and ERK5/BMK pathways to promote treatment resistance to
currently-used reactive oxygen intermediate-inducing cancer
treatments.

22. Conclusions

A variety of anticancer agents have been observed to extend
survival in breast cancer patients. Novel drugs for the treatment
of breast cancer patients will undoubtedly become available
in the near future. Additional therapeutic options include
radiation and surgery. The large number of choices available
underscore the need to identify the optimal treatment for each
individual breast cancer patient. It is likely that the selection of
breast cancer therapy will increasingly depend on molecular
features. Expression of ERα and HER2 are but two of the
many characteristics that may impact breast cancer treatment
decisions in the future.

Over the past 25 years, there has been much progress in
elucidating the involvement of the Ras/Raf/MEK/ERK cascade
in promoting normal cell growth and regulating apoptosis, and
in understanding the etiology of human neoplasia and the
induction of chemotherapeutic drug resistance. From initial
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seminal studies which shed light on the oncogenes present in
avian and murine oncogenes, we learned that ErbB, Fms, Ras,
Src, Abl, Raf, Fos, Ets and NF-κB (Rel) were originally cellular
genes which were captured by retroviruses. Biochemical
studies continue to elucidate the roles that these cellular and
viral oncogenes have in cellular transformation. We have
learned that many of these oncogenes are connected to the Ras/
Raf/MEK/ERK pathway, and either feed into this pathway
(e.g., BCR-ABL, ErbB, Fms) or are downstream targets that
regulate gene expression (e.g., Fos, Ets and NF-κB).

The Ras/Raf/MEK/ERK pathway has what often appears
to be conflicting roles in cellular proliferation, differentiation
and the prevention of apoptosis. Classical studies indicated that
Ras/Raf/MEK/ERK can promote proliferation and malignant
transformation, in part due to the stimulation of cell growth,
and at the same time prevent apoptosis. Furthermore, an often
overlooked aspect of Raf/MEK/ERK is its effects on cytokine
and growth factor gene transcription, which can stimulate
proliferation. The latest ‘hot’ area of the Ras/Raf/MEK/ERK
pathway is the discovery of B-Raf mutations in human cancer,
which can promote proliferation and transformation (116).
The development and characterization of B-Raf inhibitors is
a key research area in the pipeline for many pharmaceutical
companies.

It was initially thought that Raf-1 was the most important
Raf isoform. It was certainly the earliest-studied one, with
homologous genes present in both murine and avian trans-
forming retroviruses. Originally, it was shown that Raf-1
was ubiquitously expressed, indicating a more general and
important role for it, while B-Raf and A-Raf had more limited
patterns of expression. However, it is now believed that B-Raf
is the more important activator of the Raf/MEK/ERK cascade
and that, in some cases, Raf-1 activation may require B-Raf.
However, Raf-1 has reared its head again in the field of cancer,
thanks to the recent discovery that there are mutant Raf-1
alleles in certain breast cancer therapy-induced t-AMLs that
are transmitted in a Mendelian fashion (117). The role of
A-Raf remains poorly defined, yet it is an interesting isoform.
It is the weakest Raf kinase, yet it can stimulate cell cycle
progression and proliferation without the negative effects on
cell proliferation that B-Raf and Raf-1 can exert. It should be
remembered that, under certain conditions, the hyperactivation
of B-Raf and Raf-1 can promote cell cycle arrest (51). Thus,
fine-tuning these mutations will probably influence whether
cell cycle arrest or malignant transformation occurs.

The activation of the Raf proteins is very complex, as there
are many phosphorylation sites on Raf. Phosphorylation at
different sites can lead to either activation or inactivation.
Clearly, there are many kinases and phosphatases which
regulate Raf activity, and the state of phosphorylation deter-
mines whether Raf is active or inactive. While the kinases
involved in the regulation of the Raf/MEK/ERK pathway have
been extensively studied, there is but very limited knowledge
of the specific phosphatases involved in these regulatory
events.

Raf-1 has many roles which are apparently independent of
downstream MEK/ERK. Some of these functions occur at the
mitochondria and are intimately associated with the prevention
of apoptosis. Raf-1 may function as a scaffolding molecule to
inhibit the activity of kinases, which promote apoptosis. Thus,

the development of Raf inhibitors may prove useful in the
suppression of some of these non-MEK/ERK mediated events.

The Raf/MEK/ERK pathway is both positively [Hsp90,
kinase suppressor of Ras (KSR), MEK partner-1 (MP-1)] and
negatively (RKIP, 14-3-3) regulated by its association with
scaffolding proteins. The expression of some of the scaffolding
proteins is altered in some human cancers (e.g., RKIP). Some
of these scaffolding proteins (e.g., Hsp90) are being evaluated
as potential therapeutic targets (geldanamycin). The potential
roles of Hsp90 in stabilizing activated forms of Raf are intri-
guing, and may allow the evolution of activated mutant forms
of Raf.

The Raf/MEK/ERK pathway is intimately linked to the
PI3K/PTEN/Akt pathway, both of which can be regulated by
Ras. Furthermore, in some cell types Raf activity is negatively
regulated by Akt, indicating a cross-talk between the two
pathways. Both pathways may result in the phosphorylation
of many downstream targets, and impose themselves on
the regulation of cell survival and proliferation. Thus, the
development of strategies to inhibit the pathways may be
clinically important. These pathways phosphorylate many
key proteins involved in apoptosis (e.g., Bad, Bim, Mcl-1,
caspase 9, ASK-1 and others), which serves to alter their
activities and subcellular localization. The phosphorylation
events mediated by the Raf/MEK/ERK and PI3K/Akt path-
ways are associated with the prevention of apoptosis. In
contrast JNK, which is another MAPK, also phosphorylates
many of these molecules; these phosphorylation events often
have effects opposite to those elicited by the Raf/MEK/ERK
and PI3K/Akt pathways.

Ras and Raf mutations may not always have similar out-
comes. For example, it could be predicted that a Ras mutation
would activate both the Raf/MEK/ERK and PI3K/Akt
pathways, with activation of PI3K/Akt resulting in the
suppression of Raf/MEK/ERK. However, mutation at either
B-Raf or Raf-1 results only in the activation of Raf/MEK/
ERK. Thus, depending on the particular cancer and biological
effect targeted, it is appropriate to develop Ras, Raf and
MEK inhibitors.

Although we often think of the phosphorylation of these
molecules as being associated with the prevention of apoptosis
and the induction of gene transcription, this view is over-
simplified. For example, in certain situations the Raf/MEK/
ERK pathway may be inhibited. In such cases, the phosphor-
ylation of Bad and CREB, normally mediated by the Raf/
MEK/ERK cascade, which is associated with the prevention of
apoptosis, is suppressed. Likewise, it is important to remember
that, at some protein residues, phosphorylation results in
enhanced activity, whereas at others it results in decreased
activity. For example, thr phosphorylation of Bim by JNK is
associated with the promotion of apoptosis, while the phos-
phorylation of Bim by the Raf/MEK/ERK or PI3K/Akt path-
ways is associated with the prevention of apoptosis.

A consequence of diverse cancer therapies (e.g., chemo-
therapy, radiation therapy, photodynamic therapy) is the
induction of the Raf/MEK/ERK pathway, which may in some
cases provide a survival function. The mechanism of induction
of these pathways may in part be in response to ROS generated
by the different therapies. Thus, in some cases it may be
appropriate to combine these conventional therapies with
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small molecular weight inhibitors which target the Raf/MEK/
ERK pathway.

Although it has been known for many years that the Raf/
MEK/ERK pathway can affect cell cycle arrest, differentiation
and senescence, these are probably some of the least studied
research areas in the field. This is due to the often cell lineage-
specific effects that must be evaluated in each cell type. An
intriguing aspect of human cancer therapy is that, in some
cases, stimulation of the Raf/MEK/ERK pathway may be
requried to promote terminal differentiation, while in other
types of malignant cancer cells, which proliferate in response
to Raf/MEK/ERK activity, inhibition of the Raf/MEK/ERK
pathway may be required to suppress proliferation. Thus, we
must be flexible in dealing with the Raf/MEK/ERK pathway
and, as we learn more, our conceptions will continue to change.
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