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Abstract. Reactive oxygen species (ROS) are involved in 
myocardial injury. ROS are known to inactivate lipid phos-
phatase and tension homolog on chromosome 10 (PTEN), an 
enzyme that increases apoptosis in neonatal cardiomyocytes. 
BpV(pic) and bpV(phen), two bisperoxovanadium molecules 
and PTEN inhibitors, may be involved in limiting myocardial 
infarction. To compare the protective effects of bpV(pic) and 
bpV(phen) on ROS-induced cardiomyocyte injury and their 
possible mechanisms, we selected two popular models of 
hypoxia/reoxygenation (H/R) and H2O2-induced injury in 
H9c2 cardiomyoblasts to investigate their effects against injury. 
We found that pre-treatment with bpV(pic) and bpV(phen) 
increased the viability and protected the morphology of H9c2 
cells under the conditions of H/R and H2O2 by inhibiting LDH 
release, apoptosis and caspases 3/8/9 activities. However, their 
respective inhibitory abilities in the two models were different, 
suggesting that the quantity of ROS from the two models might 
be different. However, the conflict between ROS and PTEN may 
affect the action of bpV(pic) and bpV(phen). Taken together, the 
results demonstrate that bpV(pic) and bpV(phen) have inhibitory 
effects on oxidative stress-induced cardiomyocyte injury that 
may be partially modulated by the action of ROS on PTEN.

Introduction

Myocardial ischemia/reperfusion injury (MIRI), which may 
lead to various complications, including myocardial infarc-
tion, cardiac contractile dysfunction and arrhythmia (1-4), has 
become an increasingly common problem in clinics. However, 
few strategies directed against MIRI have been tested under 
clinical conditions (5,6). Recently, a new finding showed 

that the pharmacological inhibition of lipid phosphatase 
and tension homolog on chromosome  10 (PTEN) limited 
myocardial infarct size and improved left ventricular function 
post-infarction (7). Moreover, protein tyrosine phosphatase 
inhibitors and bisperoxovanadium molecules (bpV) inhibited 
PTEN specifically at low concentrations (8). The protective 
effects of bpV(HOpic) on myocardial injury in  vitro and 
in vivo have been observed in previous studies (7). However, 
other bpV molecules have not been studied and compared for 
their actions against MIRI.

Based on the cellular mechanisms of ischemia/reperfusion 
injury that have been extensively explored (9-11), reactive 
oxygen species (ROS) generated with the re-admission of 
oxygen are considered the first and main cause of ischemia/
reperfusion injury (12). Thus, scavenging excessive ROS and 
restoring the reduction-oxidation (redox) balance in the body 
is an important strategy in inhibiting reperfusion injury, as the 
redox balance is the solid physiological condition in humans 
from birth (13,14), and, despite evolution, this balance has 
always been conserved in all organisms (15,16).

Hydrogen dioxide (H2O2), a famous ROS, inhibits the lipid 
phosphatase activity of the tumour suppressor PTEN enzyme 
(17), which suggests that when produced under pathological 
conditions, such as during MIRI or chronic inflammation, 
H2O2  may contribute to the inhibition of apoptosis or necrosis 
and be involved in cardioprotection. However, a comparative 
study of this phenomenon in different models of ROS produc-
tion in cardiomyocytes has not yet been conducted.

In the present study, we selected hypoxia/reoxygenation 
(H/R) and H2O2-induced cardiomyocyte injury models in H9c2 
cardiomyoblasts to investigate and compare the cardioprotective 
effects of bpV(pic) and bpV(phen), two vanadium compounds 
and PTEN inhibitors (8), and to further discuss the different 
actions of the two selected models on H9c2 cells (Fig. 1).

Materials and methods

Reagents. BpV(pic) and bpV(phen) were obtained from Enzo 
Life Sciences Inc. (Farmingdale, NY, USA). H9c2 cardiomyo-
blasts were purchased from ATCC (Rockville, MD, USA). 
Dulbecco's modified Eagle's medium (DMEM) and fetal 
bovine serum (FBS) were purchased from Gibco (Grand Island, 
NY, USA). Malachite Green reagent, PTEN enzyme and its 
substrate PIP3 were purchased from Echelon Biosciences Inc. 
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(Salt Lake City, UT, USA); H2O2 solution and Trypsin EDTA 
from Sigma Aldrich (St. Louis, MO, USA); sodium dithionite 
(Na2S2O4) was purchased from SinoPharm Chemical Reagent 
(Shanghai, China); CCK-8 kit, caspases 3/8/9 kits, Annexin 
V-FITC kit, lysis buffer and BCA reagent were obtained from 
Beyotime (Haimen, China); and the lactate dehydrogenase 
(LDH) kit was obtained from Jiancheng Bioscience (Nanjing, 
China). Penicillin and streptomycin were purchased from 
Sunshine Bio (Nanjing, China). Any other chemicals used in 
this study were of analytical grade.

Cell culture and treatment. H9c2 cardiomyoblasts were 
cultured in 100-mm dishes in DMEM containing 4 mM gluta-
mine, 1.5 g/l sodium bicarbonate, 4.5 g/l glucose, 1.0 mM 
sodium pyruvate, 12% (vol/vol) FBS, 100 U/ml penicillin 
and 100 U/ml streptomycin. Cells were incubated at 37˚C in a 
humidified atmosphere containing 95% air, 5% CO2. Following 
trypsinization and washing, cells were seeded in 96-well plates 
(4x103 cells/well) or 60-mm dishes (3x105 cells/dish). At ~60% 
confluence, cells were treated with different concentrations of 
bpV(pic) or bpV(phen) in DMEM containing 12% (vol/vol) FBS 
for 24 h. For the H/R model, the medium was replaced with 
serum-free medium containing 4 mM of Na2S2O4. Following 
4 h of incubation, the medium was again replaced with fresh 
medium containing 12% (vol/vol) FBS. In the second part of the 
experiments, aimed at assessing the contribution of bpV(pic) 
and bpV(phen) to the protection against H2O2-induced cell 
injury, the medium was supplemented with 50 µM of H2O2. 

Cell viability and morphology analysis were conducted after 
4 or 24 h. Control cells were always incubated in DMEM 
containing 12% (vol/vol) FBS and model group cells were not 
treated with bpV(pic) or bpV(phen). Cell viability was deter-
mined using the colorimetric procedure based on the reduction 
of a water-soluble tetrazolium salt, 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) or CCK-8 
using a microplate reader (BioRad, Hercules, CA, USA). H9c2 
cell morphology was observed with an inverted microscope 
(Olympus IX-71, Tokyo, Japan).

Determination of PTEN activity. Recombinant PTEN (rPTEN) 
activity was determined as follows: 2  µg of rPTEN was 
incubated initially for 5 min at 37˚C with 50 nM of bpV(pic) 
or bpV(phen) and then for 30 min with 3 nM of PIP3. The 
reactions were stopped with 80% (vol/vol) of Malachite Green 
reagent and the released phosphates were measured 20 min 
later by a colorimetric procedure using a microplate reader 
(Tecan, Zurich, Switzerland) at 625 nm. PTEN activity was 
determined by free phosphates released and subsequently 
converted to a percentage of the control reaction.

Figure 1. Chemical structures of bpV(pic) and bpV(phen).

Figure 2. Inhibitory effects of bpV(pic) and bpV(phen) on PTEN activity. 
Recombinant PTEN was pre-incubated with 50 nM of bpV(pic) or bpV(phen) 
for 5 min and then incubated with 3 nM of PtdIns(3,4,5)P3 for 30 min. PTEN 
activity was determined by the colorimetric determination of inorganic 
H3PO4 levels and shown relative to the activity of uninhibited PTEN (control, 
100%). Data are shown as the means ± SD (n=5). ***P<0.001 vs. control.

Figure 3. Effects of bpV(pic) and bpV(phen) on the viability and morphology 
of H9c2 cardiomyoblasts. Cells were incubated with PBS (control) or with 
different concentrations of bpV(pic) and bpV(phen) for 24 h. (A) Cell viability, 
assessed by the CCK-8 assay, was expressed as a percentage of the control, 
and calculated as: OD treated/OD control x 100. Data are shown as the means 
± SD (n=5). **P<0.01 and ***P<0.001 vs. control. (B) Morphological changes 
were observed under an Olympus inverted microscope (magnification, x100).

  A

  B
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Measurement of LDH activity. The activity of LDH in H9c2 
cardiomyoblasts released into the medium following treatment 
with H/R or H2O2 was assessed as previously described (18), 
i.e., by a spectrophotometric analysis at 440 nm using an LDH 
assay kit, according to the manufacturer's instructions.

Flow cytometry. H9c2 cardiomyoblasts were harvested and 
resuspended in phosphate-buffered saline (PBS) buffer at a 
concentration of 1x106 cells/ml. Following centrifugation at 
1,000 x g for 5 min, 400 µl of FITC-conjugated annexin V 
binding buffer, 5 µl of annexin V-FITC and 5 µl of propidium 
iodide (PI) were added. Following gentle vortexing, the sample 
was analyzed using a dual-laser FACSCanto flow cytometer 
(Becton-Dickinson, Mountain View, CA, USA) within a 2-h 
period. The percentage of apoptotic cells for each sample were 
estimated.

Caspases 3/8/9 activities assay. H9c2 cardiomyoblasts were 
lysed with lysis buffer on ice for 15 min and the lysates were 
centrifuged (16,000 x g for 15 min at 4˚C). Subsequently, the 
protein concentration was determined using the BCA protein 

assay, and samples (20  µg) of the extracted protein were 
incubated with 100 µl of the reaction buffer containing 10 µl 
of caspase substrate (2 mM Ac-DEVD-pNA for caspase 3, 
Ac-IETD-pNA for caspase  8 and Ac-LEHD-pNA for 
caspase 9) at 37˚C for 60-120 min in a 96-well plate. Enzyme-
catalyzed release of p-nitroanilide was measured at 405 nm 
using a microplate reader.

Statistical analysis. Data obtained from different experiments 
were shown as the means ± SD from at least three indepen-
dent experiments, and were evaluated by analysis of variance 
(ANOVA) followed by the Student-Newman-Keuls test. P<0.05 
was considered to indicate statistically significant differences.

Results

Inhibitory effects of bpV(pic) and bpV(phen) on PTEN 
activity. To further compare and confirm the inhibitory effects 
of bpV(pic) and bpV(phen) on PTEN activity, and based on a 
previous study (19), we measured PTEN phosphatase activity 
in the presence of bpV(pic) or bpV(phen) in vitro. Compared 

  A   B

Figure 4. Effects of bpV(pic) and bpV(phen) on the viability and morphology of H9c2 cardiomyoblasts during H/R and H2O2 treatment. Cells were incubated 
with PBS (control) or different concentrations of bpV(pic) and bpV(phen) for 24 h. Cells underwent hypoxia for 1 h (4 mM of Na2S2O4) and reoxygenation 
for 24 h or were treated with 50 µM of H2O2 for 4 h. (A and B) Cell viability, assessed by MTT assay, was expressed as a percentage of the control, and 
calculated as: OD treated/OD control x 100. Data are shown as the means ± SD (n=5). ##P<0.01 and ###P<0.001 vs. control; **P<0.01 and ***P<0.001 vs. model. 
(C) Morphological changes were observed under an Olympus inverted microscope (magnification, x100). (a) and (e) control, (b) and (f) model, (c) and (g) cells 
treated with 2 µM of bpV(pic), (d) and (h) cells treated with 2 µM of bpV(phen).

  C
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to the control group, both bpV(pic) and bpV(phen) exhibited 
significant inhibitory effects on PTEN activity (Fig.  2), 
however, their inhibitions were different; the inhibitory rate 
of bpV(pic) was >70% (100 to 23.8%), while that of bpV(phen) 
was >45% (100 to 54.7%). The inhibitory degrees of these 
two compounds were in accordance with their IC50 values on 
PTEN activity, as previously mentioned (19).

Effects of bpV(pic) and bpV(phen) on the viability and 
morphology of normal H9c2 cardiomyoblasts. To investigate 
the effects of bpV(pic) and bpV(phen) on H9c2 cardiomyoblasts 
and to obtain a suitable concentration range for subsequent 
research, the CCK-8 kit was used to assess the viability of 
H9c2 cardiomyoblasts following treatment with different 
concentrations of bpV(pic) and bpV(phen) (1-100 µM) for 
24 h. The results showed that bpV(pic) and bpV(phen) did 
not cause any decrease in cell viability with concentra-
tions ranging from 1 to 10 µM. However, compared to the 
control group, the viability of cells decreased significantly 
in a concentration-dependent manner from 20 to 100 µM 
(Fig. 3A). Moreover, morphological changes were not evident 
at a low concentration (≤10 µM) of these two compounds, 
but at a higher concentration (≥50 µM), H9c2 cell growth 
was inhibited (Fig. 3B). Thus, a concentration range of 1 to 
10 µM of bpV(pic) and bpV(phen) was used for the subsequent 
investigation.

Effects of bpV(pic) and bpV(phen) on the viability and 
morphology of H9c2 cardiomyoblasts during H/R and H2O2 
treatment. To investigate and compare the protective effects 
of bpV(pic) and bpV(phen) on ROS-induced injury in the two 
models, MTT assay was used to measure the viability of H9c2 
cardiomyoblasts during H/R and H2O2 treatment following 
pre-treatment with different concentrations of bpV(pic) and 
bpV(phen) (1-10 µM) for 24 h. The data showed that cell 
viability in the H/R model dropped significantly compared to 
the control group, and cells treated with bpV(pic) (2-10 µM) 
or bpV(phen) (1-5 µM) showed a significantly high viability 
compared to the model group (Fig. 4A). However, there was a 
more notable decrease in viability in the H2O2 group compared 
to the H/R group, and cells treated with bpV(pic) (1-10 µM) 
or bpV(phen) (1-2 µM) showed a better viability compared to 
the model group (Fig. 4B). Moreover, the mortality of H9c2 
cardiomyoblasts caused by H/R was evident under the inverted 
microscope compared to the control group. At the concentra-
tion of 2 µM, both bpV(pic) and bpV(phen) protected cells 
against injury (Fig. 4C). H2O2-induced cell injury was more 
severe compared to that caused by H/R, and again at 2 µM, 
bpV(pic) and bpV(phen) protected cells against injury.

Effects of bpV(pic) and bpV(phen) on LDH release in H9c2 
cardiomyoblasts during H/R and H2O2 treatment. To further 
evaluate the protective effects of bpV(pic) and bpV(phen) 
in H/R and H2O2 models, we measured LDH release as an 
indicator for necrotic cell death (20). LDH release from H9c2 
cardiomyoblasts in H/R and H2O2 models was increased up 
to approximately 142.7±18.1 and 156.3±6.7%, respectively, 
compared to that in the control group (Fig. 5). H/R-induced cell 
death was inhibited by pre-treatment with 2 µM of bpV(pic) 
(61.4±5.1%) or bpV(phen) (70.3±7.7%) for 24  h (Fig.  5A). 

Moreover, H2O2-induced cell death was inhibited by pre-
treatment with 2 µM of bpV(pic) (118.9±19.0%) or bpV(phen) 
(125.5±6.8%) for 24 h (Fig. 5B).

Effects of bpV(pic) and bpV(phen) on apoptosis in H9c2 
cardiomyoblasts during H/R and H2O2 treatment. To evaluate 
the anti-apoptotic effects of bpV(pic) and bpV(phen) in the 
H/R and H2O2 models, the apoptotic rate was quantified by 
flow cytometry. Apoptotic cell levels increased from 4.3% 
in the control group to 31.6% in the H/R and 51.8% in the 
H2O2 group (Fig. 6). Pre-treatment with 2 µM of bpV(pic) and 
bpV(phen) for 24 h decreased the apoptotic rate in the H/R 
group to 6.3 and 14.4%, respectively, and in the H2O2 group to 
11.6 and 24.8%, respectively (Fig. 6B).

Effects of bpV(pic) and bpV(phen) on caspases 3/8/9 activities in 
H9c2 cardiomyoblasts during H/R and H2O2 treatment. To deter-
mine the underlying cardioprotective mechanism of bpV(pic) and 
bpV(phen) on H9c2 cardiomyoblast injury during H/R and H2O2 
treatment, caspases 3/8/9 activities were measured. The results 
revealed that bpV(pic) and bpV(phen) inhibited the increased 
caspases 3/8/9 activities in the H/R and H2O2 models in H9c2 
cardiomyoblasts (Fig. 7). The data also showed that caspases 
3/8/9 activities were different in the two models. Caspases 3/8 
activities were much higher in H9c2 cardiomyoblasts treated 
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Figure 5. Effects of bpV(pic) and bpV(phen) on LDH release in H9c2  
cardiomyoblasts during H/R and H2O2 treatment. Cells were incubated with 
PBS (control), 2 µM of bpV(pic) or bpV(phen) for 24 h. (A) Cells underwent  
hypoxia (4 mM of Na2S2O4) for 1 h and reoxygenation for 24 h or (B) were  
treated with 50 µM of H2O2 for 4 h. LDH release, assessed by LDH activity 
assay, was expressed as a percentage of the control, and calculated as: 
LDH activity treated/LDH activity of control x 100. Data are shown as 
the means ± SD (n=5). ##P<0.01 and ###P<0.001 vs. control; **P<0.01 and 
***P<0.001 vs. model.
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with H2O2 (308.4±41.5 and 250.6±20.7%, respectively) than 
in those from the H/R group (226.8±9.8 and 170.5±17.9%, 
respectively), whereas caspase 9 activity  varied slightly in the 
two models (146.4±23.8% in H2O2 and 167.3±26.5% in H/R). 
Finally, the protective effects of bpV(pic) and bpV(phen) against 
the injury in the two models were apparent.

Discussion

PTEN, a dual protein-lipid phosphatase, is the major downreg-
ulator of the pro-oncogenic PI3K/Akt pathway by degrading 
phosphatidylinositol 3,4,5-trisphosphate (PIP3) to an inactive 
form of phosphatidylinositol 4,5-bisphosphate (PIP2), and 
thus inhibits Akt activation (21-25). Overexpression of PTEN 
increases apoptosis in neonatal cardiomyocytes, whereas the 
inhibition of PTEN activates the Akt pro-survival pathway, 
reduces apoptosis and increases cell survival (8,26-28). 

Targeting PTEN via pharmacological inhibition may thus 
provide a new approach for the therapy of MIRI in clinics.

Although there are only a few highly specific PTEN 
inhibitors, bpV is a relatively specific inhibitor of PTEN (8). 

Figure 6. Inhibitory effects of bpV(pic) and bpV(phen) on apoptosis in H9c2 
cardiomyoblasts during H/R and H2O2 treatment. Cells were incubated with 
2 µM of bpV(pic) or bpV(phen) for 24 h and then underwent hypoxia (4 mM 
of Na2S2O4) for 1 h and reoxygenation for 24 h or were treated with 50 µM 
of H2O2 for 4 h. After adding Annexin V-FITC/PI, cells were analyzed 
with FACSCanto flow cytometer. (A) Flow cytometry of H/R and H2O2-
induced apoptosis in H9c2 cells with or without treatment with bpV(pic) 
and bpV(phen). (B) Quantitative analysis of the apoptotic rate using flow 
cytometry. Data are shown as the means ± SD (n=2). ###P<0.001 vs. control; 
**P<0.01 and ***P<0.001 vs. model.

  A

  B

Figure 7. Effects of bpV(pic) and bpV(phen) on caspases 3/8/9 activities in 
H9c2 cardiomyoblasts during H/R and H2O2 treatment. Cells were incubated 
with PBS (control), 2 µM of bpV(pic) or bpV(phen) for 24 h. (A) The cells then 
underwent hypoxia (4 mM of Na2S2O4) for 1 h and reoxygenation for 24 h, or 
(B) were treated with 50 µM of H2O2 for 4 h. Caspases 3/8/9 activities during 
both injuries were expressed as percentages of the control, and calculated 
as: caspases 3/8/9 activities treated/caspases 3/8/9 activities of control x 100. 
Data are shown as the means ± SD (n=5). #P<0.05 and ##P<0.01 vs. control; 
*P<0.05 and **P<0.01 vs. model.
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Figure 8. A proposed mechanism for the inhibitory effects of bpV(pic) and 
bpV(phen) on ROS-induced cell apoptosis and necrosis by affecting three 
pathways. Our data demonstrate that bpV(pic) and bpV(phen) attenuate the 
H/R and H2O2-induced apoptosis and necrosis of H9c2 cardiomyoblasts, 
which may be due to the inhibition of the caspases 3/8/9 and PTEN activities.  
H/R, hypoxia/reoxygenation; ROS, reactive oxygen species; PTEN, lipid 
phosphatase and tensin homolog on chromosome 10; PI, phosphatidylino-
sitol; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol 
3,4,5-trisphosphate; PI3K, phosphoinositide 3-kinase; eNOS, endothelial 
nitric oxide synthase.
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Furthermore, bpV(HOpic) has been shown to attenuate simu-
lated ischemia/reperfusion injury in cardiomyocytes, and to 
limit myocardial infarct size and ameliorate cardiac dysfuction 
post-infarct in vivo (7). To further investigate the protective 
effects of other bpVs on cardiomyocytes, we selected bpV(pic) 
and bpV(phen) from a list of bpV compounds that have already 
been tested on PTEN (8).

H9c2 is a rat-derived cardiomyoblast cell line that exhibits 
morphological characteristics similar to those of immature 
embryonic cardiomyocytes, but preserves several elements of 
the electrical and hormonal signaling pathway found in adult 
cardiac cells (29,30). H9c2 cardiomyoblasts have been widely 
used to screen active components (31,32). To investigate the 
potency of new inhibitors on MIRI, H/R and H2O2-induced 
cell injury models are often used in vitro (33-37). Therefore, 
the two models were also used in our study to evaluate the 
protective effects of bpV(pic) and bpV(phen).

In the present study, exogenous H2O2 (50 µM) (38,39) 
and oxygen scavenger Na2S2O4 (40) were selected to set up 
two in vitro chemical models for the study of ROS activity. 
Based on cell viability, cell morphology, LDH release and the 
apoptosis assay, we showed that the two in vitro models were 
different (Figs. 4-6). H2O2-induced injury in H9c2 cells was 
more severe than H/R from its impact on cell viability and 
morphology. Additionally, LDH release and apoptosis results 
were in accordance with the above results, indicating that the 
induced necrosis in the H2O2 model was more significant than 
that in the H/R model.

Based on the different inhibitory activities of bpV(pic) and 
bpV(phen) on PTEN in vitro and their non-toxic concentration 
range in H9c2 cells (Figs. 2 and 3), their individual effects on 
cell viability and morphology in H9c2 cells injured during 
H/R or H2O2 treatment, were studied. Our data reveal that 
both bpV(pic) and bpV(phen) significantly protected H9c2 cell 
injury induced in both models, with high activity of bpV(pic) 
(Fig. 4). Moreover, the results of LDH release, apoptosis and 
caspases 3/8/9 activities confirm the above-mentioned data 
regarding the cardioprotective activities of bpV(pic) and 
bpV(phen) that may be relevant to their inhibitory ability on 
PTEN activity (Figs. 5-7).

The present findings have shown that bpV(pic) and 
bpV(phen) protect H9c2 against ROS-induced injury by inhib-
iting cell necrosis and apoptosis, and thus potentially protect 
cardiomyocytes against I/R injury. Their mechanisms prob-
ably include three pathways: i) the inhibition of caspases 8 and 
3, ii) the inhibition of caspases 9 and 3, and iii) the inhibition 
of PTEN and the activation of the PI3K/Akt signaling pathway 
(Fig. 8).

Apoptosis and necrosis are linked to the excess of intracel-
lular ROS production (41,42). H2O2, as an important ROS, leads 
to the formation of hydroxyl radicals (OH·) mediated by intra-
cellular heavy metal ions through the Fenton reaction. On the 
other hand, cells subjected to H/R may produce a large quan-
tity of H2O2, O2

-, OH· and other ROS (43,44). All ROS induce 
severe intracellular oxidative stress, which damages various 
intracellular biomacro-molecules and eventually results in cell 
apoptosis and necrosis (45). Moreover, either endogenous H2O2 
or endogenous ROS production inhibit PTEN activity (17,46). 
Thus, the different effects of H/R and H2O2 on cell viability are 
not only relevant to the quantity of ROS, but also to the inhibi-

tory capacity of ROS on the PTEN enzyme, suggesting that 
the protective effects of bpV(pic) and bpV(phen) against H2O2 
and H/R-induced injuries in H9c2 cells are the comprehensive 
result of actions of the two compounds on the ROS system and 
PTEN and the action of ROS on PTEN as well.

In the present study, we assessed the protective effects of 
bpV(pic) and bpV(phen) on ROS-induced injury in H9c2 
cardiomyocytes. We also compared the different actions of the 
two ROS models and discussed the synergetic action of ROS 
and PTEN inhibitors through the PTEN enzyme, which is likely 
to be useful in preventing MIRI. Nevertheless, more studies are 
required to explore ROS balance and its role in health and injury.
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