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Abstract. The association between major depressive disorder 
(MDD) and cardiovascular disease (CVD) is among the best 
described medical comorbidities. The presence of MDD 
increases the risk of cardiac admissions and mortality and 
increases healthcare costs in patients with CVD, and simi-
larly, CVD affects the course and outcome of MDD. The 
potential shared biological mechanisms involved in these 
comorbid conditions are not well known. However, the 
enzyme monoamine oxidase-A (MAO-A), which has a key 
role in the degradation of catecholamines, has been associated 
with the pathophysiology and therapeutics of both MDD and 
CVD. Increased MAO-A activity results in the dysregulation 
of downstream targets of this enzyme and thus affects the 
pathophysiology of the two diseases. These deleterious effects 
include altered noradrenaline turnover, with a direct elevation 
in oxidative stress parameters, as well as increased platelet 
activity and cytokine levels. These effects were shown to be 
reversed by MAO inhibitors. Here, a model describing a key 
role for the MAO-A in comorbid MDD and CVD is proposed, 
with focus on the shared pathophysiological mechanisms and 
the potential therapeutic relevance of agents targeting this 
enzyme.
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1. Introduction

Comorbid major depressive disorder and cardiovascular 
disease: general aspects. Major depressive disorder (MDD) is 
a serious, recurrent, prevalent and disabling psychiatric illness 
affecting millions of individuals worldwide, which presents 
a negative impact on medical health and productivity (1). 
Similarly, an estimated 80 million Americans have at least one 
form of cardiovascular disease (CVD) (2).

The association between MDD and CVD is among the best 
described medical comorbidities (3). Early epidemiological 
studies showed that the age-adjusted mortality rate in depres-
sion was approximately 6 times higher than in the general 
population, with almost half of these cases directly related to 
‘diseases of the heart’ (4). Recent studies showed that around 
1/5 of subjects recently diagnosed with CVD also have MDD 
(5-7). Despite being well documented, MDD remains underdi-
agnosed in patients with CVD and presents a direct negative 
impact on the course and outcome of CVD (8). For instance, 
the presence of depressive symptoms significantly enhances 
the risk of cardiac admissions and mortality, also increasing 
healthcare costs in patients with a cardiac disease (9).

Furthermore, according to a recent survey, 50% of cardi-
ologists were unaware of MDD as an independent risk factor 
for CVD and 71% address the potential presence of MDD in 
less than half their patients with CVD. In total, 79% do not 
use any standard screening method to diagnose depression 
(10). Thus, the assessment of this comorbidity in clinical 
practice and the study of its potential biological variables may 
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potentially help in the development of new, improved treat-
ments able to treat the two conditions concomitantly.

Comorbid MDD and CVD: is there a primary and secondary 
condition? More than 100 studies have evaluated the potential 
association between MDD and CVD, showing that depression 
is more prevalent (20-35%) in populations with any CVD (11). 
Clearly, MDD has been associated with an increased incidence 
of cardiac disease and worsens the prognosis in patients with 
known coronary heart disease (e.g., doubling the risk of cardiac 
events) (9). Recently, Ellis et al (12) described that 41.2% of 
490 subjects with an acute coronary event present depressive 
symptoms, while only 10% of them were adequately treated 
with antidepressants and/or psychosocial support.

It has been proposed that the majority of coronary disease 
follows rather than precedes MDD, but it may be considered 
that previous environmental and/or genetic factors can lead 
to biological changes in the brain and periphery that may give 
rise to the two conditions (13). By contrast, certain authors 
suggest that MDD induces specific biological changes 
centrally that could increase the risk of CVD (13). Another 
possibility is that the association of MDD and CVD is indi-
rect. For example, there is evidence that depressed patients 
are less likely to comply with treatments for cardiovascular 
conditions (14). It has also been proposed that altered 
circadian rhythms described in mood disorders may disrupt 
cardiovascular physiology, such as heart rate and blood pres-
sure, thus increasing the risk for adverse cardiac events, such 
as heart attack and stroke (15).

Evidence for MDD as a primary condition. Convincing 
evidence has suggested a key role for MDD in the onset 
and course of CVD. First, the risk of CVD is clearly higher 
in subjects with MDD (16). Diverse meta-analyses have 
described effect sizes for MDD in the development of coro-
nary heart disease from ~1.5 to 2.7 (3,17-19). For instance, 
subjects presenting a depressive episode at the time of an 
acute myocardial infarction (MI) have a significant increase in 
mortality rates compared to those not in a depressive episode 
(20). Specifically, changes in depressive symptoms (21) or 
a new episode of MDD (22) enhance the risk of coronary 
events rather than chronic depressive symptoms. Depressive 
symptoms such as insomnia have also been associated with 
increased risk of MI (23) and cardiac mortality (24). These 
effects appear to involve several pathophysiological effects in 
MDD that may be directly connected to the arousal of adverse 
cardiac outcomes (25,26).

Evidence for CVD as a primary condition. MDD has been 
considered an independent risk factor for CVD (20). In 
patients with coronary heart disease, size effects for the 
prediction of MDD range between 1.6 and 2.2 (18,27,28). 
Notably, it was shown that following MI, more than 20% of 
all patients met criteria for MDD (29). Regarding potential 
indirect associations, many cardiovascular drugs are capable 
of inducing depressive symptoms, such as β-blockers, methyl-
dopa and reserpine (30).

Overall, the evidence supports a role for both MDD and 
CVD as the primary condition in this comorbidity, with more 
consistent data for MDD increasing risk for CVD.

2. The role of monoamine oxidase-A in the pathophysiology 
and therapeutics of MDD

Monoamine oxidases: general aspects. Monoamine oxidases 
(MAOs) are mitochondrial f lavoenzymes that catalyze 
oxidative deamination of dietary amines, monoamine 
neurotransmitters and hormones, including indoleamines 
[serotonin (5-HT) and tryptamine] and catecholamines, such 
as norepinephrine (NE), epinephrine and dopamine (DA) (31). 
Thus, MAO is responsible for the metabolism of biologically 
active amines. The process of oxidative deamination of these 
amines results in removal of the amino functional group to 
leave an oxidized oxygen, thus generating the toxic products 
ammonia (NH3) and hydrogen peroxide (H2O2) (32). H2O2 is a 
key mediator in the production of the most potent free oxygen 
radicals, namely the hydroxyl radical (OH·) (33), which induces 
deleterious effects in several organs, particularly the brain.

Two isoforms of MAO have been identified, designated 
types A and B, which have distinct substrate affinity and 
inhibitor sensitivity (34). MAO-A is the major form of this 
enzyme found in the periphery. In the brain, MAO-A is mostly 
found in outer mitochondrial membranes in noradrenergic 
neurons, while MAO-B has been observed in glial cells and 
5-HT/histaminergic neurons (35). The ratio of MAO-A to 
MAO-B in the human brain is 25/75%, even though MAO-A 
inhibitors have shown superior antidepressant effects (36). In 
fact, inhibition of MAO-A is thought to be the action most 
directly linked with the antidepressant activity of the MAO 
inhibitors (37). MAO-A preferentially metabolizes NE and 
5-HT, the monoamines most closely linked to depression, while 
MAO-B preferentially metabolizes trace amines, including 
phenethylamine (38). The degradation of biogenic amines by 
MAO-A has been considered the major physiological function 
of this enzyme.

MAO-A in the pathophysiology and therapeutics of MDD. The 
primary role of MAO-A is to regulate monoaminergic turn-
over and levels. Elevated MAO-A levels may be expected to 
metabolize NE and 5-HT more extensively (34), thus resulting 
in relative monoamine depletion.

This effect may be critical in the pathophysiology of 
MDD. MAO-A regulates the levels of NE by catalyzing its 
oxidative deamination (31). The increased sympathoadrenal 
system activity observed in MDD has been associated with 
enhanced excretion of NE, epinephrine and dopamine (39). 
Similarly, patients with MDD are reported to have increased 
plasma NE levels, increased heart rates and reduced heart-rate 
variability (40). Regarding the potential role of MAO-A in 
the pathophysiology of MDD, it was recently described that 
unmedicated subjects with MDD show greater depletion 
of previously synthesized stores of 5-HT, along with higher 
levels of 5-hydroxyindoleacetic acid (5-HIAA) (41). 5-HIAA is 
produced by intraneuronal deamination of 5-HT (via MAO-A).

In regard to the 5-HT regulation by MAO-A, in the tryp-
tophan depletion challenge, mood lowering effects were more 
prevalent in unmedicated euthymic subjects with a history of 
MDD as compared to healthy controls (42-45). Higher MAO-A 
levels may explain the increased vulnerability to tryptophan 
depletion in MDD patients in recovery through excessive 
metabolism of 5-HT by MAO-A, which would facilitate 
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loss of extracellular 5-HT. By contrast, selective serotonin 
reuptake inhibitors (SSRIs) decrease 5-HIAA production by 
blocking neuronal 5-HT reuptake, which elevates 5-HT levels 
substantially (46). Notably, SSRIs were also shown to reverse 
different dysfunctions associated with the pathophysiology of 
MDD and CVD, such as altered urinary cortisol excretion and 
heart rate variability, as well as enhanced platelet activation 
and increased inflammatory marker levels (47‑49).

Since MAO-A is involved in the removal of multiple mono-
amines, increased MAO-A binding in MDD may be involved 
in the potential mood-lowering effects following depletion of 
NE with α-methylparatyrosine administration (50,51), as well 
as having a potential association with increased risk of recur-
rence of MDD (52).

Increased MAO-A density in several brain areas has been 
considered an important monoamine-lowering process during 
depressive episodes in MDD (52,53). A previous PET study 
using carbon 11‑labeled harmine (a tracer with high affinity 
to MAO-A) showed an abnormal increase in MAO-A binding 
during depressive episodes (53). A subsequent PET study 
evaluated 28 healthy subjects, 16 subjects with MDD in a 
depressive episode and 18 subjects with MDD in recovery 
prior to and following 6 weeks of SSRI treatment, followed 
up for 6 months after MAO‑A binding quantification. The 
authors demonstrated a significant increase in MAO‑A density 
during a depressive episode compared with healthy controls, 
which remained elevated following treatment with SSRIs (52). 
Although brain MAO-A density was generally enhanced 
during recovery, patients who experienced depressive recur-
rence showed significantly higher MAO-A density in the 
prefrontal and anterior cingulate cortex as compared to those 
who did not (52). Based on these findings, it was proposed that 
higher MAO-A binding (and density) may be considered a trait 
marker in MDD. It was also found that the regional density 
of MAO‑A transporters has a selective influence on particular 
monoamines, with a direct association with specific clinical 
presentation (53). A recent study showed that the MAO-A total 
distribution volume was significantly elevated (by a mean of 
43%) in different brain regions during the early postpartum 
period, indicating that this monoamine-lowering process 
contributes to the mood change in postpartum blues (54).

Given that an abnormal increase in MAO-B density is 
less expected to occur in MDD, the present results appear 
to be specific to MAO‑A. For instance, a postmortem study 
described no significant difference of MAO‑B density in the 
amygdala of subjects with MDD (55).

Regarding genetic studies, MAO-A (located at Xp11.3) 
has been considered an important candidate gene in mood 
disorders. Besides being considered as a potential risk gene 
in depressed suicidal patients (56), it has been associated with 
specific psychological traits (57). Studies also suggest that 
MAO-A gene alleles associated with higher transcriptional 
efficiency predispose to dysfunctional behavior such as trait 
aggressiveness and impulsivity (58,59). Three common poly-
morphisms that critically affect transcriptional efficiency have 
been evaluated in association studies on the MAO-A gene in 
mood disorders: i) a promoter variable number tandem repeat 
polymorphism (uVNTR) (60,61); ii) a G/T polymorphism at 
position 941 of the cDNA sequence, which is a silent muta-
tion in exon 8 (62); and iii) a dinucleotide repeat in intron 2 

(MAOA-CA) (63). Significant associations between these 
three common polymorphisms have been demonstrated in 
meta-analyses evaluating case-control association studies in 
MDD (64,65). MAO-A knockout mice have increased brain 
NE and 5-HT levels (66). The consequent decrease in MAO-A 
levels improved resilience and adaptation to the effects of 
environ mental stressors, which is also associated with antide-
pressant-like effects (66).

It is important to note that the MAO-A metabolism 
increases oxidative stress levels (34), which have been directly 
involved in the pathophysiology of MDD (67). The dysregul-
ation of redox balances and mitochondrial damage induced by 
MAO activation may result in neuronal apoptosis and brain 
damage. For instance, serum-starvation-induced apoptosis 
increases MAO-A levels, which was prevented by using an 
MAO-A inhibitor in cortical neurons (68). Neurodegenerative 
toxicity and striatal lesions induced by malonate were signifi-
cantly and selectively attenuated by MAO-A inhibitors and 
in MAO-A KO, without a positive response to a MAO-B 
inhibitor (69).

Regarding the therapeutic potential of specific MAO‑A 
inhibitors for MDD, the clinical efficacy of diverse reversible 
inhibitors of MAO (including specific MAO‑A inhibitors or 
RIMAs) has been observed in treatment-resistant depression 
(70), mostly related to inhibition of MAO-A (38). However, it 
is important to emphasize that the majority of the currently 
available MAO inhibitors are non-selective, inhibiting  
MAO-A and MAO-B (38).

3. The role of MAO-A in the pathophysiology and thera-
peutics of CVD

Monoaminergic neurotransmitters have a critical functional 
role in the heart, including the regulation of cardiac inot-
ropy (13). Increased catecholamine metabolism and altered 
tissue distribution regulated by MAO have been directly 
associated with the aging process (71,72). MAO-A is present 
in the myocardium of diverse species from rodents to humans 
(73,74). The heart contains a large amount of MAO-A (75,76) 
and its role in the regulation of cardiac function critically 
involves NE concentrations (77,78).

It was recently shown in preclinical models that NE is 
capable of triggering CVD in a MAO-A-dependent manner 
(79). NE catabolism and ROS production are markedly 
upregulated in pressure-overloaded hearts and both effects are 
ameliorated by limiting MAO-A activity to suppress cardiac 
decompensation with pressure overload (79). Similarly, 
increased sympathetic activity in the central nervous system 
(CNS) with concomitant elevated levels of catecholamines 
has also been proposed as one potential mechanism by 
which depressive symptoms may increase CVD morbidity 
and mortality (80). MAO-A is also an important source of 
hydrogen peroxide (H2O2) in the heart (81). MAO-A plays a 
key role in reactive oxygen species-dependent cardiomyocyte 
apoptosis and postischemic cardiac damage (82). Elevated 
mitochondrial oxidative stress levels and/or decreased mito-
chondrial antioxidant defenses have been shown to aggravate 
atherosclerosis (83). MAO-A mediates reactive oxygen species 
(ROS)-induced activation of mitogenic signaling in endothe-
lial cells related to vascular wall remodeling (associated with 



MACHADO-VIEIRA  and  MALLINGER:  DEPRESSION AND CARDIOVASCULAR DISEASE918

atherosclerosis), which were inhibited by the MAO-A inhibi-
tors pargyline and Ro41-1049 (84).

The involvement of MAO-A and its impact on neurotrans-
mitter availability in congestive heart failure (CHF) has also 
been shown. In preclinical models, left ventricular dilation and 
pump failure attributable to pressure overload have been associ-
ated with increased NE catabolism by MAO-A, with enhanced 
production of free radicals and myocardial apoptosis. MAO-A 
activity worsens the disease progression (13). CHF is directly 
associated with an increased sympathetic tone and altered 
oxidative stress parameters (85). In such situations, MAO-A 
may be upregulated, generating greater amounts of H2O2, and 
thus exacerbating disease progression. The increased oxidative 
stress induced by MAO-A has also been directly associated 
with postischemia-reperfusion apoptosis (76). Notably, inhibi-
tion of MAO-A by clorgyline ameliorated the majority of these 
changes (79).

The cardioprotective effects of MAO inhibitors are asso-
ciated with the prevention of postischemic oxidative stress, 
neutrophil accumulation and mitochondrial-dependent cell 
death (76), thus inducing positive effects in myocardium 
reperfusion. The inhibition of MAO-A in vivo largely reduced 
myocardial ultrastructural damage following ischemia. Diverse 
MAO inhibitors (JB-516, JB-835, RO-50700, harmine, 
harmaline and iproniazid) have been shown to increase heart 
contractile force through effects induced by norepinephrine, 
dopamine, tryptamine, tyramine and serotonin in animals (86).

4. Increased MAO-A activity as a factor linking depression 
with comorbid cardiac disease

Here we describe a model integrating various pathophysi-
ological findings and targets directly associated with the 
effects of MAO-A with a potential key relevance to the shared 
pathophysiology of comorbid MDD and CVD. Enhanced 
sympathetic CNS activity mediated through MAO-A is 
here proposed as a potential common mechanism for the 
development of MDD and cardiac morbidity, potentially by 
concomitantly increasing oxidative stress levels, activating 
immuno‑inflammatory responses and enhancing glucocorti-
coid metabolism, as described below (Fig. 1).

NE activity. As mentioned previously, MAO-A critically 
controls brain and peripheral NE levels by regulating the 
oxidative deamination of NE (38). In preclinical models, the 
induction of a MAO‑A‑dependent NE overflow and elevated 
breakdown has been shown to be a key factor in the etiology 
of CVD; these dangerous downstream effects were stalled by 
using the selective MAO-A inhibitor clorgyline (79). Similarly, 
CVD has also been associated with alterations in autonomic 
balance. Elevated sympathetic tone, as measured by plasma 
NE, predicts mortality in CVDs, such as left ventricular 
dysfunction and chronic CHF (87). Specifically, elevated NE 
levels in patients with CHF have been positively correlated 
with severity of symptoms and mortality. Similarly, higher NE 
excretion was associated with lower left ventricular ejection 
fraction (88). NE levels also predict mortality after MI (89). 
Notably, depressive symptoms in patients with CVD were 
associated with elevated levels of NE excretion but not DA 
(90). Importantly, the oxidative deamination of NE by MAO-A 

increases ROS and oxidative stress levels by releasing reactive 
aldehydes and H2O2 (as described below).

At the same time, increased sympathetic activity in the 
CNS with concomitant elevated levels of catecholamines 
turnover has also been proposed as one potential mechanism 
by which depressive symptoms may increase morbidity and 
mortality (80). The increased sympathoadrenal system activity 
observed in MDD has been associated with enhanced excretion 
of NE, epinephrine and DA (39). Patients with MDD presented 
with increased heart rates and reduced heart-rate variability, 
reflecting altered cardiac autonomic tone (40).

Oxidative stress parameters. Increased oxidative stress 
parameters have been described in the pathophysiology of 
MDD in several studies (reviewed in ref. 67). For instance, 
individuals in a depressive episode have significantly lower 
total antioxidant potential and higher oxidative stress levels 
compared to healthy controls (91). Diverse studies have also 
shown an inverse association between severity of depressive 
symptoms and oxidative stress levels (92-94). Increased oxida-
tive damage and apoptosis in cortical neurons are associated 
with elevated MAO-A, and may be potentially prevented by 
using MAO-A inhibitors (68).

Similarly, CVD is directly related to increased oxidative 
stress levels (95). Consistent evidence from basic research 

Figure 1. Integrative biological model explaining the key role for MAO-A 
in comorbid depression and cardiovascular disease: involvement of oxida-
tive stress, inflammation and glucocorticoid activity. MAO‑A, monoamine 
oxidase-A; NE, norepinephrine.
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studies suggests that reactive oxygen species contribute to 
atherosclerosis and CVD (96). For instance, reactive oxygen 
species are also capable of stimulating matrix metallopro-
teinases, which contribute to atherosclerotic plaque instability 
and rupture, thus inducing acute coronary syndromes (97). 
MAO-A is a recognized source of ROS (76,79). These effects 
may involve MAO-A, since this enzyme is an important 
source of mitochondrial H2O2 in the heart, thus contributing to 
oxidative stress-induced cardiomyocyte apoptosis (76).

Immune-inflammatory activation. Growing evidence has 
shown a significant increase in immune-inflammatory 
markers in MDD (98), which have been directly involved 
in the increased production of ROS and oxidative stress 
levels (99,100). At the same time, ROS may also induce LDL 
oxidation and activation of vascular smooth muscle cell 
proliferation and migration, as well as increase the produc-
tion of proinflammatory cytokines (96). Pasic et al (101) 
described several findings on immune‑inflammatory changes 
in MDD and CVD, indicating that cytokines may provide 
a new avenue in understanding brain-body interactions in 
MDD and CVD.

MAO-A activates inflammatory cascades and platelet 
activity, with consequent endothelial dysfunction. Platelets 
adhere to intact endothelial cells and promote local vascular 
inflammation by recruiting leukocytes via direct interaction 
or by activating inflammatory mediators (102). Platelets share 
similar biochemical processes with neurons; platelet MAO 
activity was found to be related to central monoamine turn-
over, although platelets express mainly MAO-B. Platelets are 
also thought to play a predominant role in the initiation and 
progression of atherogenesis (103). Notably, MAO-A expression 
was shown to be significantly increased by pro‑inflammatory 
cytokines in human monocytes (104). MAO-A substrates, such 
as 5‑HT and NE, may act as vasoactive mediators at inflam-
matory sites (104). These data support a role for MAO-A in the 
inflammation‑inducing CVD dysfunction.

Similarly, patients with significant depressive sympto-
matology have altered endothelial function compared to 
non-depressed individuals; the use of monoaminergic 
antidepressants is associated with reversal of this dysfunc-
tion (105). These effects may be associated with increased 
platelet reactivity observed in subjects with MDD (106-108), 
as well as activation of inflammatory pathways in the disease 
(109). The association between depressive symptoms and 
increased platelet activity (106,110) involves the metabolism 
of catecholamines in platelets (106,108,111). Similarly, CVD 
has also been associated with increased platelet reactivity 
(112), inflammation and endothelial dysfunction (105), thus 
supporting a potential common etiological role for immune-
inflammatory dysfunction in MDD and CVD. For instance, 
cytokine interleukin-10 levels predicted an adverse clinical 
outcome in chronic heart failure patients with depressive 
symptoms in a 1-year follow-up study (113). The increased 
activation of inflammatory cytokines and endothelial dysfunc-
tion described in the pathophysiology of MDD and CVD 
has been shown to involve concomitant dysfunctions in the 
hypothalamic-pituitary-adrenal (HPA) axis activity (109,113), 
which has also been shown to be regulated by MAO-A (as 
described below).

HPA activity. Dysfunctional HPA activity, including increased 
glucocorticoid activity, has been described in the pathophysio-
logy of MDD (114). It has been proposed that enhanced cortisol 
agonistic effects during depressive episodes may contribute 
to an elevation in MAO-A levels (53). Severely depressed 
patients had significant increases in blood pressure, CSF and 
plasma NE, as well as elevated plasma cortisol (115). Notably, 
elevated platelet MAO activity associated with increased 
cortisol levels has been described in depression; platelet MAO 
activity has also been associated with severity of depressive 
symptoms (116). Notably, dexamethasone administration was 
shown to enhance MAO-A density in the brain by 300% (117), 
which supports a role for MAO-A in dysfunctional HPA axis 
activity described in MDD and CVD.

Similarly, dysregulation of the HPA axis and elevated 
cortisol levels may be a mediating factor between MDD and 
vulnerability to CVD. HPA axis dysregulation is also related 
to many CVD risk factors such as visceral obesity, hypercho-
lesterolemia, hypertriglyceridemia, increased blood pressure, 
elevated heart rate and steroid-induced diabetes (118). In 
patients with CVD, prediction of cardiac events based on 
cortisol levels was directly influenced by oxidative stress 
parameters. Related to MAO-A activity, it was shown that NE 
stimulates the HPA via α- and β-adrenergic receptors (119). 
Urinary cortisol concentrations showed a positive correlation 
with urinary MAO-A activity (120).

5. Conclusions and perspectives

MDD increases the risk of cardiac mortality and morbidity 
in patients with CVD, and similarly CVD worsens the 
course and outcome of MDD, but little is known about the 
potential mechanisms involved in these effects. The patho-
physiological findings of the association between depression 
and cardiac events are not consistent enough to be considered 
mediators, but clearly together modulate several aspects of 
these comorbid conditions. Reduced levels of MAO-A in 
the brain have been shown to induce a general increase in 
the resistance to the effects of environmental stressors (31), 
which has been critically implicated in the two conditions. 
Non-compliance to treatments may also represent an addi-
tional problem in this comorbidity. However, a more specific 
hypothesis is desirable.

Here, we describe an integrative model focusing on the 
effects of MAO-A in the comorbidity between MDD and CVD, 
based on a common mechanism. Enhanced sympathetic CNS 
activity and consequent increased breakdown of NE induced 
by excessive MAO-A activity is here proposed as a potential 
mechanism by which MDD increases cardiac morbidity. This 
dysregulation has been shown to increase production of ROS, 
also activating immuno‑inflammatory responses and exces-
sive glucocorticoids metabolism, which directly underlie the 
pathophysiology of MDD and CVD (Fig. 1). Since increased 
brain MAO-A appears to represent a trait marker in MDD, it 
is reasonable to suggest that this persistent increase may also 
contribute to similar changes in the periphery associated with 
the pathophysiology of CVD.

Further studies on the associations among family history, 
MAO-A polymorphisms and specific outcomes in these 
comorbid conditions are important. Future randomized 
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controlled trials using agents potentially able to treat MDD 
and CVD concomitantly and reverse common dysfunctional 
biological factors by inhibiting MAO-A activity (e.g., RIMAs) 
may be considered. It is also possible that a common genetic 
vulnerability associated with the MAO-A gene may be 
involved in comorbid MDD and CVD. In this context, MAO-A 
activity and the potential beneficial effects of MAO‑A inhibi-
tors related to oxidative stress and antioxidant status in the 
brain and heart deserve further studies.
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