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Abstract. Consecutive expression of the high‑risk human 
papillomavirus (HPV) oncoproteins, E6 and E7, is pivotal for 
malignant transformation and maintenance of the malignant 
phenotype. These oncogenes may be potential targets of 
gene silencing‑based molecular therapies for human cervical 
cancer. The aim of the present study was to evaluate the 
efficacy of chitosan‑based HPV16 E7 siRNA delivery and 
the chitosan/HPV16 E7 siRNA complex in the induction of 
apoptosis in CaSki cells constitutively expressing HPV16 E6 
and E7. Chitosan/siRNA nanoparticles were prepared by 
adding a chitosan solution drop‑wise to an equal volume of 
siRNA solution. Formation of the chitosan/siRNA complex 
was verified by gel retardation assays and the entry of siRNA 
into the cells was confirmed by fluorescence microscopy. 
Expression of HPV16 E7 was examined by western blot anal-
ysis and apoptotic cells were detected by TUNEL staining. 
Chitosan formed complexes with HPV16 E7 siRNA. The 
chitosan/siRNA nanoparticles were efficiently delivered into 
CaSki cells and were observed to induce apoptosis. In conclu-
sion, chitosan is suitable for use as a carrier for delivery of 
siRNA into cancer cells. The delivery of chitosan/HPV16 E7 
siRNA nanoparticles in vivo may serve as a promising therapy 
for cervical cancer.

Introduction

Cervical cancer is a malignant tumor and the second most 
malignant cancer in females. It is a major threat to female 
health worldwide. Globally, 500,000 new cases and >250,000 
mortalities occur each year. These figures account for ~5% of 
all cancer cases worldwide with ~80% of new cases reported 
in developing countries (1). In China, the annual incidence 

of new cervical cancer cases exceeds 130,000, accounting 
for 28.8% of new cases worldwide (2). An estimated 20,000 
individuals succumb to cervical cancer every year in China, 
and incidence is increasing in young adults (3).

The most important risk factor for cervical cancer is infec-
tion with human papilloma virus (HPV), which accounts for 
50‑70% of all cervical cancer cases worldwide. Oncoproteins 
encoded by two early HPV genes, E6 and E7, are important 
for cell cycle control. E6 and E7 are required for malignant 
transformation and maintenance of malignant phenotypes and 
are crucial for the development and progression of cervical 
cancer (4‑8). HPV16 E7 binds to key tumor suppressors and 
inhibits their activity. One of the most important targets of 
HPV16 E7 is the retinoblastoma protein (pRb) family which 
contains pRb, p107 and p130. In normal cells, pRb proteins 
are major regulators of the cell cycle, binding directly to the 
E2F transcription factor and negatively regulating its activity, 
thus inhibiting expression of E2F target genes important for 
cell cycle progression (9‑16). In HPV16 E7‑overexpressing 
cells, HPV16 E7 binds to pRb via its CR3 region. This binding 
induces pRb degradation through the ubiquitin‑proteasome 
system and releases E2F into the cytosol (17‑20). The free 
E2F translocates to the nucleus, activates the transcription of 
its target genes and promotes cell transformation. Therefore, 
suppression of HPV16 E7 expression is likely to inhibit cell 
growth and induce apoptosis and senescence, which may 
limit the growth of cancer cells.

RNA interference (RNAi) has become widely used as an 
experimental tool to analyze gene function and holds great 
promise in the field of gene therapy in cancer. However, several 
limitations restrict its use in basic research and clinical appli-
cation. First, siRNA is not stable and is easily degradated by 
enzymes. Second, the delivery of siRNA into cells is a great 
challenge. Although liposome and cationic polymers have been 
used as carriers for siRNA delivery, these reagents are toxic to 
cells and not suitable for in vivo transfection. Chitosan is derived 
from chitin, the most abundant biopolymer in nature following 
cellulose and is a biologically safe, non‑toxic, biodegradable and 
biocompatible polymer. It contains abundant ‑NH2 groups and 
is therefore positively charged at specific pH levels, enabling it 
to complex with negatively charged nanoparticles (21,22). In 
the present study, chitosan was utilized as a carrier for delivery 
of HPV16 E7 siRNA into CaSki cells constitutively expressing 
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HPV16 E6 and E7. The effect of chitosan/siRNA nanoparticles 
on the induction of apoptosis in these cells was examined. 
Results indicate a potential use of chitosan/siRNA complexes 
in the treatment of diseases, including cervical cancer.

Materials and methods

Materials. Chitosan was purchased from Jinan Haidebei Marine 
Bioengineering Co., Ltd. (Jinan, China). The degree of deacet-
ylation was 86%. The following siRNA oligos for HPV16 E7 
were used: sense, GCATGGAGATACACCTACA and anti-
sense, TGTAGGTGTATCTCCATGC (synthesized by 
Shanghai Generay Biotech Co., Ltd., Shanghai, China). The 
study was approved by the ethics committee of the Third 
Affiliated Hospital of Xinxiang Medical University, Xinxiang, 
Henan Province, China.

Preparation and characterization of chitosan/siRNA nano­
particles. Chitosan was dissolved in aqueous acetic acid 
(0.1 M sodium acetate/0.1 M acetic acid, pH 4.5) to prepare 
various concentrations of chitosan solution (25‑300 µg/ml). 
Chitosan/siRNA nanoparticles were prepared by adding a 
chitosan solution drop‑wise to an equal volume of siRNA solu-
tion (20 µg/ml) and incubating at room temperature for 30 min. 
The chitosan was complexed with siRNA at a weight ratio of 
1.25:1‑15:1. The size and ζ potential of nanoparticles were 
measured using the submicron particle analysis system 4700 
(Beckman Coulter Inc., Miami, FL, USA) and the Zetasizer 
Nano S (Malvern Instruments, Malvern, UK), respectively.

Measurement of siRNA loading efficiency. Chitosan and siRNA 
were mixed and the mixture was centrifuged and the absor-
bance of supernatant was measured at 260 nm to determine the 
concentration of free siRNA. The loading efficiency of siRNA 
was calculated by comparing the amount of siRNA that was not 
present in the supernatant to the amount of total siRNA.

Gel retardation assay. The binding of siRNA to chitosan was 
determined by electrophoresis using a 4% agarose gel (low 
melting point). Nanoparticles with various chitosan/siRNA 
weight ratios were loaded onto the gel and subjected to electro-
phoresis. siRNA was visualized by ultraviolet light.

Serum stability assay. Chitosan/siRNA nanoparticles (~5 µg 
siRNA, 200 µl) were incubated with an equal volume of 20% 
fetal bovine serum (FBS) in Dulbecco's modified Eagle's 
medium (DMEM) at 37˚C. At various time points (0, 0.5, 2, 4, 
7, 24, 48 and 72 h), 30 µl mixture was saved and stored at ‑20˚C.

Characterization of the biological activity of chitosan/siRNA 
nanoparticles. CaSki cells were seeded in 96‑well plates at a 
density of 3x104 cells/well and cultured in DMEM containing 
10% FBS (no antibiotics) for 24  h prior to transfection. 
Chitosan/siRNA particles were added directly into the culture 
medium and the cells were cultured for an additional 24‑48 h 
prior to examination by fluorescence microscopy.

Cell toxicity assay. Toxicity of chitosan was determined by the 
cell viability of chitosan/siRNA nanoparticles, as described 
previously (23).

TUNEL staining. CaSki cells were seeded in 96‑well plates at 
a density of 3x104 cells/well and cultured in DMEM containing 
10% FBS (no antibiotics) for 24  h prior to transfection. 
Chitosan/siRNA particles were added directly to the culture 
medium and the cells were cultured for an additional 24‑48 h. 
Cell death was detected using an in situ Cell Death Detection 
kit (Nanjing KeyGen Biotech, Co., Ltd., Nanjing, China).

Western blot analysis. CaSki cells were seeded in 6‑well plates 
at a density of 4x104 cells/well. Following plating (24 h), cells 
were fed with fresh complete media and the chitosan/siRNA 
nanoparticles were added to the media. Following an additional 
48 h, cells were harvested with RIPA buffer. Samples were 
subjected to SDS‑PAGE and immunoblotted with antibodies 
against HPV16 E7 and β‑actin (Santa Cruz Biotechnology, Inc., 
Santa Cruz, CA, USA).

Figure 1. Characterisation of nanoparticles. Size of nanoparticles increasesd 
with the increasing weight ratio of chitosan to siRNA (1.25:1, 2.5:1, 5:1, 10:1 
and 15:1).

Figure 2. Gel retardation assay demonstrating siRNA in nanoparticles with 
various weight ratios of chitosan to siRNA (lanes 1‑4 are 1.25:1, 2.5:1, 5:1, 
10:1 and 15:1, respectively).
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Statistical analysis. Data were analyzed using SPSS 11.0 (SPSS 
Inc., Chicago, IL, USA) and expressed as mean ± SE. P<0.05 
was considered to indicate a statistically significant difference.

Results

Size of chitosan/siRNA nanoparticles. The chitosan/siRNA 
particles formed by simple complexation had a diameter 
between 185 and 465 nm and the size increased with the 
increasing weight ratio of chitosan to siRNA (Fig. 1).

Surface charge. As revealed in Table I, the surface charge of 
chitosan/siRNA particles increased with increasing chitosan 
concentration (the amount of siRNA remained constant). 
Increased chitosan concentration increased the positive 
charge of the particles, preventing aggregation of the particles 
and enhancing their interaction with negatively charged cell 
membranes.

Interaction of siRNA with chitosan. Since chitosan and siRNA 
carry opposite charges, they are attracted to one another in 
solutions with specific pH values. Complete attachment of 
siRNA to chitosan was observed when chitosan and siRNA 
were mixed at a weight ratio of 100:1 (Fig. 2). The loading 
efficiency of siRNA was 72±1.5%.

Stability of siRNA in serum. Naked siRNA was not stable 
in serum and was susceptible to enzyme digestion. When 
complexed with chitosan, the rate of degradation was markedly 
reduced (Fig. 3), indicating that chitosan protects siRNA from 
nuclease attack.

Biological activity of chitosan/siRNA nanoparticles. To 
examine the transfection efficiency of chitosan/siRNA nanopar-
ticles, chitosan was complexed with fluorescence‑labeled 
HPV16 E7 siRNA and their accumulation in CaSki cells was 
monitored. As demonstrated in Fig. 4, chitosan/siRNA particles 

Table I. Alterations in ζ potential of nanoparticles with varied 
weight ratio of chitosan to siRNA.

Chitosan	 ζ potential
concentration (µg/ml)	 (mV)

25	‑ 11
50	‑ 0.8
100	 51
200	 54
300	 55

Amount of siRNA remained constant.

Figure 3. Degradation of naked siRNA and chitosan‑binding siRNA in 20% FBS‑containing media at various time points (lanes 1‑8 and lanes 9‑17 are 0, 0.5, 
1, 2, 4, 7, 24, 48 and 72 h, respectively). Naked siRNA is completely degradated within 30 min, whereas siRNA in chitosan/siRNA particles remains after 72‑h 
incubation. FBS, fetal bovine serum.

Figure 4. Images demonstrating the uptake of fluorescence‑labeled siRNA/chitosan complexes by the cells. (A) 24 h following incubation with fluore
scence‑labeled siRNA/chitosan nanoparticles, (B) 24 h following incubation with non‑labeled siRNA/chitosan nanoparticles, (C) 48 h following incubation 
with fluorescence‑labeled siRNA/chitosan nanoparticles.

  A   B   C
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were efficiently tranfected into cells following 24‑h incubation. 
Protein levels of HPV16 E7 in CaSki cells were analyzed by 
western blot analysis and identified to be significantly down-
regulated (Fig. 5; P<0.05), indicating that chitosan/HPV16 E7 
nanoparticles suppress expression of HPV16 E7.

Induction of apoptosis in CaSki cells by chitosan/HPV16 E7 
nanoparticles. To examine the effect of chitosan/HPV16 E7 
nanoparticles on cell apoptosis, apoptotic cells were detected 
using the TUNEL assay in cells treated with chitosan/HPV16 E7 
nanoparticles. A significantly higher number of apoptotic 
cells were detected in cells treated with chitosan/HPV16 E7 
nanoparticles compared with cells treated with chitosan/mock 
siRNA particles (Fig. 6; P<0.05).

Discussion

In the present study, chitosan/siRNA nanoparticles were 
prepared by simple complexation (24). The size and shape of 

nanoparticles is critical for efficient transfection of mamma-
lian cells and distribution of nanoparticles in living cells (25). 
Previous studies have reported that nanoparticles exhibit 
higher levels of intracellular uptake compared with micropar-
ticles (26‑28). This property is crucial for gene transfer, since 
the uptake of chitosan/DNA nanoparticles and their release 
from lysosomes are rate‑limiting steps in this process (29,30). 
Similar to DNA and oligodeoxyribonucleotides, siRNA is also 
taken up by cells (31). However, RNAi is not induced if siRNA 
fails to reach the cytoplasm (31). Using a carrier aids siRNA 
transfer into the intracellular compartment and protects it from 
enzyme degradation in lysosomes, thus efficiently inducing 
RNAi. In the present study, chitosan/siRNA nanoparticles 
were prepared with a size <500 nm in diameter which were 
easily taken up by cells. The diameter of the nanoparticles 
increases with the increasing weight ratio of chitosan to siRNA. 
Therefore, nanoparticles of suitable sizes were prepared by 
adjusting the weight ratio of chitosan to siRNA.

Binding of siRNA to chitosan was demonstrated by 
gel retardation assay. The retarded migration of siRNA in 
agarose gel revealed binding of siRNA to chitosan. However, 
this binding is not as tight as that of DNA to chitosan, since 
DNA, but not siRNA, is concentrated by low concentration 
chitosan (25 µg/ml), indicating that siRNA binds to chitosan 
in a different manner to that of DNA to chitosan. Previously, 
the size of chitosan/DNA nanoparticles following concentra-
tion was reported to be 1,000 times smaller than that without 
concentration (32,33) and the minimal size of DNA for concen-
tration was 800 bp (32,34‑36). In contrast to DNA, linearized 
siRNA is much shorter (21 bp). This property may account for 
the weak interaction of siRNA with chitosan. Since the size 
of nanoparticles remains unchanged following complexation, 
multiple, but not single siRNA may complex with chitosan.

The major cause of cervical cancer is infection with 
high‑risk HPV. The integration of viral DNA into human 
genomes leads to the constitutive expression of oncoproteins 
E6 and E7, altering the cell cycle, immortalizing cells and 
causing cancer. Therefore, suppression of E7 expression may 
reverse the transformation process and induce apoptosis or 
senescence. Chitosan/HPV16 E7 siRNA nanoparticles were 
efficiently transfected into the cells (Fig. 4) and were found to 
suppress HPV16 E7 expression (Fig. 5). In addition, TUNEL 
staining revealed that apoptosis was induced in the CaSki 
cells. These results are consistent with previous studies. 
Chang et al (37) demonstrated that siRNA‑mediated suppres-
sion of HPV E6 and E7 inhibited the growth of tumor cells 
from cervical cancer. Sima et al (38) reported that HPV16 E7 
shRNA inhibits E6 and E7 expression and induces apoptosis 
in cancer cells via activation of p53, p21 and Rb. More 
recently, Guo et al  (23) screened a phage display peptide 
library, identifying a heptapeptide which promotes degra-
dation of E7 and prevent formation of E7/pRb complexes. 
This peptide induced G1 phase arrest by restoration of pRb 
activity, reinstating its ability to inhibit E2F activity. In addi-
tion, downregulation of E7 was reported to increase levels 
of p53 and induce apoptosis. Results of the current and 
previous studies indicate that suppression of HPV16 E7 by 
chitosan/siRNA nanoparticles inhibits growth of tumor cells 
and induces their apoptosis, which may serve as a potential 
therapy for cervical cancer.

Figure 5. Western blot analysis demonstrating the effect of chitosan/siRNA 
on HPV16 E7 expression. Lane 1, chitosan alone; lane 2, chitosan/mock 
siRNA; lane 3, chitosan/HPV16 E7 siRNA. HPV, human papillomavirus.

Figure 6. Effect of chitosan/siRNA on the induction of apoptosis in CaSki 
cells. (A) TUNEL staining demonstrating apoptotic cells incubated with 
chitosan/mock siRNA and chitosan/E7 siRNA. (B) Quantification of the 
number of apoptotic cells in cells treated with chitosan, chitosan/mock 
siRNA and chitosan/E7 siRNA.

  A

  B
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