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Abstract. Atrial fibrillation (AF) is the most common form 
of cardiac arrhythmia observed in clinical practice and a 
major contributor to cardiovascular morbidity and mortality. 
Accumulating evidence indicates a substantial genetic basis 
for AF. However, AF is genetically heterogeneous and the 
hereditary components responsible for AF remain to be 
identified in the majority of patients. The cardiac gap junction 
protein α 5 (GJA5) is specifically expressed in atrial myocytes 
and is associated with the coordinated electrical activation 
of the atria, providing a rationale to screen GJA5 as a logical 
candidate gene for AF. A cohort of 310 unrelated patients with 
lone AF and their available relatives were included in this 
study. A group of 200 unrelated healthy individuals matched 
for age, gender and race were also included as controls. The 
entire coding region and splice sites of the GJA5 gene were 
initially sequenced in 310 unrelated AF patients. The rela-
tives of mutation carriers and 200 controls were subsequently 
genotyped for the presence of identified mutations. As a result, 
4 novel heterozygous GJA5 mutations, p.K107R, p.L223M, 
p.Q236H and p.I257L, were identified in 4 of 310 unrelated 
AF patients, respectively, with a prevalence of ~1.29%. 
Genetic analysis of the carriers' families showed that in each 
family the missense mutation was present in all the affected 
family members. Absent in the 400 reference alleles, these 
mutations altered the amino acids highly conserved among 
various species, with the exception of p.I257L. In conclusion, 

this study expands the spectrum of GJA5 mutations associated 
with AF and provides novel insights into the molecular basis 
of AF, suggesting potential implications for the improved, 
gene-specific rhythm control strategies.

Introduction

Atrial fibrillation (AF) is the most common type of cardiac 
arrhythmia encountered in clinical practice, responsible for 
~1/3 of hospitalizations for cardiac arrhythmias. This condi-
tion shows a marked increase in prevalence with advancing 
age, ranging from ~0.4% of the whole population to ~10% 
of the octogenarian population (1,2). According to the 
Framingham Heart Study (3), during the lifetime of subjects 
>40 years of age, there is a ~25% risk for the development of 
AF. The chaotic heart rhythm is not merely associated with a 
variety of symptoms, such as palpitations, dizziness, syncope 
or shortness of breath, but is also accountable for significantly 
increased morbidity and mortality (1). In comparison with 
individuals in sinus rhythm, patients with AF have a 6-fold 
increase in the risk of stroke, and >15% of all strokes are 
ascribed to AF (4). Notably, the risk of AF‑related thrombo
embolism also significantly increases with age, rising from 
1.5% at the age of 50-59 years to 23.5% at the age of 80-89 years 
(4). The incidence of death is estimated to have doubled among 
patients with AF compared with individuals with normal heart 
rhythm (5). AF also contributes to degraded quality of life, 
compromised exercise performance, impaired cognitive func-
tion or dementia, tachycardia-induced cardiomyopathy, and 
left ventricular dysfunction or even congestive heart failure, 
inflicting a large economic burden on the National Healthcare 
Systems worldwide (6). Despite the significant prevalence and 
therapeutic challenge, the molecular mechanisms involved in 
the pathogenesis of AF remain poorly understood.

Traditionally, AF has been considered as a complication 
derived from miscellaneous adverse cardiac or systemic 
conditions, including hypertension, coronary artery disease, 
rheumatic heart disease, valvular heart disease, pulmonary 
heart disease, cardiomyopathy, cardiac surgery, pericarditis, 
congestive heart failure, type 2 diabetes mellitus, obstruc-
tive sleep apnea, hyperthyroidism and electrolyte imbalance 
(1,6‑10). However, in 30‑45% of AF patients, no underlying 
causes are identified by routine procedures, where AF is termed 
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‘idiopathic’ or ‘lone’ (1), and ≥15% of AF patients have a posi-
tive family history, a condition defined as familial AF (11). 
Mounting evidence has substantiated the familial aggregation 
of AF and enhanced susceptibility to AF in the close relatives 
of patients with AF, suggesting an important genetic basis for 
AF (12-18). Genome-wide linkage analyses with polymorphic 
microsatellite markers mapped susceptibility loci for AF on 
human chromosomes 10q22, 6q14-16, 11p15.5, 5p13 and 5p15, 
of which AF-causing mutations in 2 genes, including KCNQ1 
on chromosome 11p15.5 and NUP155 on chromosome 5p13, 
were identified and functionally characterized (19-24). Genetic 
scan of candidate genes unveiled a long list of AF‑associated 
genes, including KCNE2, KCNE3, KCNE5, KCNH2, KCNJ2, 
KCNJ8, KCNA5, SCN5A, NPPA, GATA4, GATA5 and GATA6 
(25-41). Nevertheless, AF is a genetically heterogeneous 
disorder and the genetic determinants for AF in the majority 
of patients remain to be identified (11).

A previous study has underscored the essential roles of 
gap junction channels in heart electrophysiology, particularly 
in cardiac action potential propagation (42). Gap junctions are 
intercellular channels responsible for the exchange of ions and 
small molecules between adjacent cells. The functional gap 
junction channel is composed of two hemichannels, known 
as connexons, one provided by each cell. Connexons are 
hexamers of membrane-spanning proteins called connexins. 
At present, >20 connexin genes have been identified in mouse 
and human (43). In the human heart, myocardial gap junctions 
are constructed mainly by the connexin isoforms 40, 43 and 
45. Connexin40, also designated gap junction protein α 5 
(GJA5), is selectively expressed in the atrial myocytes, 
atrioventricular node, His-bundle and ventricular conduc-
tion system (Purkinje fibers), and is crucial in the electrical 
synchronization of the atrium and the rapid conduction of 
impulses in the His-Purkinje (44). In GJA5-deficient mice, 
spontaneous or inducible arrhythmias as well as conduction 
abnormalities have been observed (45). In the goat, alterations 
in expression levels and the distribution pattern of atrial GJA5 
may constitute a cell substrate underlying susceptibility and 
perpetuation of AF (46). In human, cardiac GJA5 remodeling 
may lead to abnormal electrical coupling, forming an elec-
trophysiological matrix with potential arrhythmogenic effect 
(47). By reducing GJA5 protein levels, several closely linked 
polymorphisms in the promoter region of the GJA5 gene have 
been strongly associated with enhanced atrial vulnerability 
and increased risk for lone AF (48-52). Furthermore, multiple 
somatic and germline mutations in GJA5 have been reported 
to underlie AF (53-55). These findings provide a rationale to 
scan GJA5 as a logical candidate gene for AF.

In this study, sequence analysis of the GJA5 gene was 
performed in a cohort of 310 unrelated patients with lone AF 
in contrast to a total of 200 ethnically matched, unrelated 
healthy individuals, in order to evaluate the prevalence and 
spectrum of GJA5 mutations associated with lone AF.

Materials and methods

Study subjects. A cohort of 310 unrelated patients with lone AF 
were included in this study from the Chinese Han population. 
The available relatives of the probands were also included. A 
total of 200 unrelated healthy individuals matched for age, 

gender and race were included as controls. Peripheral venous 
blood specimens were prepared and clinical data including 
medical records, electrocardiogram and echocardiography 
reports were collected. The study subjects were clinically 
classified using a consistently applied set of definitions (11). 
Briefly, diagnosis of AF was performed by a standard 12-lead 
electrocardiogram demonstrating no P-waves and irregular 
R-R intervals irrespective of clinical symptoms. Lone AF 
was defined as AF occurring in individuals <60 years of age 
without other cardiac or systemic diseases by physical exami-
nation, electrocardiogram, transthoracic echocardiogram 
and extensive laboratory tests. Relatives with AF occurring 
at any age in the setting of structural heart disease (hyper-
tensive, ischemic, myocardial or valvular) were classified as 
‘undetermined’ for having an inherited form of AF. The ‘unde-
termined’ classification was also used when documentation of 
AF on an electrocardiogram tracing was absent in relatives 
with symptoms consistent with AF (palpitations, dyspnea and 
light-headedness), or when a screening electrocardiogram 
and echocardiogram were not performed, regardless of the 
symptoms. Relatives were classified as ‘unaffected’ when they 
were asymptomatic and had a normal electrocardiogram. In 
addition, paroxysmal AF was defined as AF lasting >30 sec 
that terminated spontaneously. Persistent AF was defined as 
AF lasting >7 days and requiring either pharmacologic therapy 
or electrical cardioversion for termination. AF that was refrac-
tory to cardioversion or that was allowed to continue was 
classified as permanent (1). The study protocol was reviewed 
and approved by the local Institutional Ethics Committee and 
written informed consent was obtained from all the partici-
pants prior to investigation.

Genetic studies. Genomic DNA from the participants was 
extracted from blood lymphocytes with the Wizard® Genomic 
DNA Purification kit (Promega, Madison, WI, USA). The 
candidate gene GJA5 was screened in 310 unrelated patients 
with lone AF and genotyping of GJA5 in the relatives of 
mutation carriers and 200  unrelated control individuals 
was subsequently performed for the presence of mutations 
identified in index patients. The referential genomic DNA 
sequence of GJA5 was derived from GenBank (accession 
number: NG_009369). With the aid of on-line Primer3 
software (http://frodo.wi.mit.edu), the primer pairs used to 
amplify the complete coding region and splice junctions of 
GJA5 by polymerase chain reaction (PCR) were designed 
as previously described (54,55). PCR was performed using 
HotStar Taq DNA Polymerase (Qiagen, Hilden, Germany) 
on a Veriti® Thermal Cycler (Applied Biosystems, Foster, 
CA, USA) with standard conditions and concentrations 
of reagents. Amplified products were purified with the 
QIAquick® Gel Extraction kit (Qiagen). Both strands of 
each amplicon were sequenced with a BigDye® Terminator 
v3.1 Cycle Sequencing kit (Applied Biosystems) under an 
ABI PRISM 3130 XL DNA Analyzer (Applied Biosystems). 
Primer sequences were those previously designed for specific 
region amplifications. DNA sequences were viewed and 
analyzed with the DNA Sequencing Analysis Software v5.1 
(Applied Biosystems). The sequence variant was validated 
by resequencing of an independent PCR-generated amplicon 
from the same subject and met the quality control threshold 
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with a call rate of >99%. Additionally, an identified variant 
was searched in the single nucleotide polymorphism (SNP) 
database from the National Center for Biotechnology 
Information (NCBI, http://www.ncbi.nlm.nih.gov/SNP) to 
confirm the novelty.

Alignment of multiple GJA5 protein sequences across species. 
The multiple GJA5 protein sequences across various species 
were aligned using the online program MUSCLE, version 3.6 
(http://www.ncbi.nlm.nih.gov/).

Statistical analysis. Data were expressed as the means ± stan-
dard deviation (SD). Continuous variables were tested for 
normality of distribution and the Student's unpaired t-test was 
used for comparison of numeric variables between patient 
and control groups. Comparison of the categorical variables 
between the 2 groups was performed using Pearson's χ2 or 
Fisher's exact tests when appropriate. A two-sided P‑value 
of <0.05 was considered to indicate statistically significant 
difference.

Results

Characteristics of the study subjects. A cohort of 310 unrelated 
patients with lone AF were included in this study and clini-
cally evaluated in contrast to a total of 200 matched, unrelated 

healthy individuals. None of the subjects had documented 
traditional risk factors for AF. There were no significant 
differences between lone AF and control groups in baseline 
characteristics including age, gender, body mass index, blood 
pressure, fasting blood glucose, serum lipid, left atrial dimen-
sion, left ventricular ejection fraction, heart rate at rest, as well 
as life style (data not shown). The basic clinical characteristics 
of the 310 patients with lone AF are summarized in Table I.

Table I. Clinical characteristics of the 310 unrelated patients 
with lone atrial fibrillation.

	 No.	 Percentage
Characteristics	 or quantity	 or range

Male:female	 142:168	 71:84
Age of onset (years)	 45.2	 18-59
Paroxysmal AF on presentation	 245	 79
Progression to permanent AF	 54	 17.4
History of cardioversion	 31	 14
History of pacemaker	 18	 5.8
Resting heart rate (bpm)	 72.5	 50-158
Systolic blood pressure (mmHg)	 128.4	 90-138
Diastolic blood pressure (mmHg)	 82.6	 60-88
Body mass index (kg/m2)	 23.0	 19-26
Left atrial dimension (mm)	 35	 22-40
Left ventricular ejection fraction	 0.6	 0.5-0.7
Fasting blood glucose (mmol/l)	 4.4	 3.6-5.8
Total cholesterol (mmol/l)	 3.5	 3.0-5.8
Triglycerides (mmol/l)	 1.3	 0.5-1.7
Medications
  Aspirin	 86	 27.7
  Warfarin	 115	 37.1
  β-blocker	 102	 32.9
  Calcium channel blocker	 35	 11.3
  Digoxin	 110	 35.5

Figure 1. Sequence electropherograms of GJA5 in the probands and con-
trols. The arrow indicates the heterozygous nucleotides of (A) A/G, (B) C/A, 
(C) G/T and (D) A/C, in the probands from families 1, 2, 3 and 4, respectively 
(mutant) or the homozygous nucleotides of (A) A, (B) C, (C) G and (D) A, in 
the corresponding controls (wild‑type). The rectangle denotes the nucleotides 
comprising a codon of GJA5.
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GJA5 mutations. A total of 310 unrelated patients with lone 
AF were genetically evaluated. Direct sequencing of the entire 
coding region and exon‑intron boundaries of the GJA5 gene 
was performed after PCR amplification of genomic DNA from 
the 310 AF patients. Four heterozygous missense mutations 
in GJA5 were identified in 4 of 310 unrelated index patients, 
respectively. The total population prevalence of GJA5 muta-
tions based on probands was ~1.29%. Specifically, a substitution 
of guanine for adenine in the second nucleotide of codon 107 
(c.320A>G), predicting the transition of lysine into arginine 
at amino acid position 107 (p.K107R) was detected in the 
proband from family 1. A replacement of cytosine by adenine 
in the first nucleotide of codon 223 (c.667C>A), resulting in 
the transversion of leucine into histidine (H) at amino acid 223 
(p.L223H) was observed in the proband from family  2. 
A change of guanine into thymine in the last nucleotide of 
codon 236 (c.708G>T), corresponding to the displacement of 
glutamine by H at amino acid 236 (p.Q236H) was identified in 
the proband from family 3. An adenine‑to‑cytosine conversion 
in the first nucleotide of codon 257 (c.769A>C), equivalent to 
an isoleucine‑to‑leucine shift at amino acid 257 (p.I257L) 
was identified in the proband from family 4. The sequence 
chromatograms showing the identified heterozygous GJA5 
mutations of c.320A>G, c.667C>A, c.708G>T and c.769A>C 
in comparison to corresponding control sequences are shown 
in Fig. 1.

The missense mutations were not found in either the 
400 control chromosomes or reported in the SNP database. 
Genetic scanning of the families demonstrated that in each 
family, the gene variant was present in all the affected living 
family members, while it was absent in unaffected family 
members examined with the exception of individuals III-2 in 
family 2 and III-9 in family 3, suggesting that the long‑term 
follow‑up of asymptomatic subjects harboring the variations 
is needed to confirm its clinical significance. Analysis of the 
pedigrees showed that each mutation co-segregated with AF 
transmitted in an autosomal dominant pattern in the family 

with an incomplete penetrance. The pedigree structures of 
the 4 families are shown in Fig. 2. The phenotypic characte
ristics and results of genetic screening of the affected family 
members are presented in Table II.

Multiple alignments of GJA5 protein sequences across 
species. A cross‑species alignment of GJA5 protein sequences 
demonstrated that the altered amino acids were highly and 
evolutionarily conserved with the exception of p.I257 (Fig. 3).

Discussion

In the present study, four novel heterozygous GJA5 mutations, 
p.K107R, p.L223M, p.Q236H and p.I257L, were identified 
in four  unrelated families with AF, respectively, with an 
estimated mutational prevalence of 1.29%. In each family, 
the missense mutation was present in all the affected family 
members examined, while it was absent in the unaffected 
family members, with the exception of individuals III-2 in 
family 2 and III-9 in family 3. These mutations were absent 
in 400  normal chromosomes from an ethnically-matched 
control population. A cross-species alignment of GJA5 protein 
sequences demonstrated that the altered amino acids were 
highly and evolutionarily conserved among species, with the 
exception of p.I257. Therefore, it is likely that mutated GJA5 
caused or conferred susceptibility to AF in these families.

Two carriers of GJA5 mutations, including individual III-2 
in family 2 who carried the p.L223M mutation and individual 
III-9 in family 3 who harbored the p.Q236H mutation, did 
not have AF during a 24-h electrocardiographic monitoring. 
This observation may be explained by the following reasons. 
Firstly, AF occurs as rarely as a few times in a lifetime for 
some patients with AF (56); considering the performed elec-
trocardiographic monitoring for only 24 h, a longer duration 
of monitoring may be required to record paroxysmal AF in 
these patients. Secondly, AF occurs more commonly in older 
patients; thus, these carriers may not be old enough to develop 

Figure 2. Pedigree structures of families with atrial fibrillation (AF). Families are designated as 1, 2, 3 and 4, respectively. Family members are identified by 
generations and numbers. Squares, male family members; circles, female members; symbols with a slash, the deceased members; closed symbols, affected 
members; open symbols, unaffected members; stippled symbols, members with phenotype undetermined; arrows, probands; ‘+’, carriers of the heterozygous 
mutations; and ‘-’, non-carriers.
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the disease. Thirdly, familial AF caused by the mutation 
p.L223M or p.Q236H may have a low or incomplete penetra-
tion. Additionally, p.L223M or p.Q236H may be only a genetic 
risk factor predisposing to AF, rather than a direct cause of 
AF, and environmental risk factors may be required for the 
onset of AF.

Multiple GJA5 mutations or polymorphisms have been 
previously involved in AF (48-55). Similar to the present 
findings, Yang  et  al  (54,55) have previously performed a 
sequence analysis of the GJA5 gene in a total of 344 index 

patients with lone AF, and identified four novel heterozygous 
missense mutations (p.Q49X, p.V85I, p.L221I and p.L229M), 
with a mutational prevalence of ~1.16%. Gollob et al  (53)
performed the first scan of GJA5 in patients with lone AF 
and identified four novel heterozygous missense mutations in 
4 of 15 AF patients, of which 3 mutations (p.G38D, p.P88S 
and p.M163V) were found in the cardiac‑tissue specimens 
but not in the peripheral lymphocytes; one mutation (p.A96S) 
was detected in both cardiac tissue and lymphocytes, with 
a germline mutational prevalence of ~6.67%. The p.A96S 

Figure 3. Multiple alignments of GJA5 protein sequences across species. The altered amino acids of p.K107, p.L223 and p.Q236 are highly and evolutionarily 
conserved among species.

Table II. Phenotypic characteristics and status of GJA5 mutations of the affected pedigree members.

	 Subject information	 Phenotype	 Electrocardiogram	 Echocardiogram	 Genotype
	-----------------------------------------------------------------------------------------------------------	 -----------------------------	 -------------------------------------------	 -------------------------	 ------------------
Identity	 Gender	 Age at time of	 Age at diagnosis of	 AF	 P-wave	 QRS interval	 LAD	 LVEF	 GJA5
		  study (years)	 AF (years)	 (Classification)	 (ms)	 (ms)	 (mm)	 (%)	 mutations

Family 1									         K107R
  II-3	 M	 56	 50	 Paroxysmal	 100	 98	 30	 70	 +/-
  II-8	 F	 48	 42	 Persistent	 106	 92	 30	 65	 +/-
Family 2									         L233M
  I-1	 M	 65	 50	 Permanent	   98	 94	 38	 62	 +/-
  II-2	 F	 41	 38	 Paroxysmal	   92	 90	 36	 56	 +/-
  II-4	 F	 36	 36	 Paroxysmal	 110	 84	 32	 66	 +/-
Family 3									         Q236H
  I-1	 M	  70a	 55	 Paroxysmal	 N/A	 90	 N/A	 N/A	 N/A
  II-1	 M	  64a	 53	 Paroxysmal	 N/A	 92	 N/A	 N/A	 N/A
  II-5	 M	 60	 58	 Paroxysmal	 114	 114..	 38	 64	 +/-
  II-10	 F	 54	 54	 Paroxysmal	   92	 88	 32	 60	 +/-
Family 4									         I257L
  I-2	 F	 64	 45	 Paroxysmal	 102	 90	 36	 65	 +/-
  II-3	 M	 42	 40	 Paroxysmal	 112	 92	 33	 67	 +/-

aAge at death. AF, atrial fibrillation; LAD, left atrial dimension; LVEF, left ventricular ejection fraction; M, male; F, female; +, presence of 
mutation; -, absence of mutation; N/A, not available or not applicable.
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variant was absent in the patient's 3 siblings and wife, while 
it was present in the patient's 2 sons without history of AF 
and in 1 of 120 controls. Functional analysis of mutant GJA5 
proteins demonstrated impaired intracellular transport or 
reduced intercellular electrical coupling (53). By sequencing 
the 5' untranslated exon and the proximal promoter region of 
the GJA5 gene (GenBank accession no. AF246295) in patients 
with familial atrial standstill, Groenewegen et al (48) found 
two closely linked polymorphisms, of which one was a G to A 
transition at 44 nucleotides upstream of the transcription start 
site (-44G>A), and the other was a substitution of G for A in 
exon 1 at 71 nucleotides downstream of the transcription start 
site (+71A>G). Luciferase reporter gene assays of the minor 
GJA5 haplotype (-44A, +71G) in GJA5-expressing rat arterial 
smooth muscular cells showed a >2‑fold decrease in promoter 
activity compared with the more common haplotype (-44G, 
+71A). The reduced GJA5 expression may lead to a reduction 
of the total amount of GJA5 protein in vivo, providing an 
atrial electrophysiological substrate favoring arrhythmia (48). 
Furthermore, the GJA5 polymorphisms have been strongly 
associated with increased spatial dispersion of refractoriness 
as a marker for enhanced atrial vulnerability and carriers of 
the -44AA genotype had a significantly higher risk of AF 
compared with those carrying the -44GG genotype (49). In a 
larger case-control study, the rare haplotype frequency of GJA5 
(-44A, +71G) was statistically higher in the AF compared with 
the control group, and also functional studies using luciferase 
as the reporter have demonstrated that GJA5 (-44A, +71G) 
had significantly lower promoter activity compared with 
GJA5 (-44G, +71A) in atrial myocytes from mice (50). A 
novel common GJA5 gene promoter variant has recently been 
associated with reduced GJA5 expression in human atria and 
increased vulnerability to AF (51). These results highlight the 
pivotal role of GJA5 for atrial electrophysiology and indicate 
that dysfunctional GJA5 may be an important molecular 
mechanism involved in the pathogenesis of AF.

The association of abnormal GJA5 with enhanced suscepti-
bility to arrhythmias has been substantiated in animal models. 
Targeted gene deletion of GJA5 in mice produced multiple 
abnormalities including increased sinoatrial node recovery 
time, decreased conduction velocity of atria, atrioventricular 
node and bundle branch, and impaired sinoatrial propagation 
with atrial ectopic pacemakers, which developed an arrhyth-
mogenic substrate prone to AF (57,58). In a canine sterile 
pericarditis model, the gap junction conduction-enhancing 
antiarrhythmic peptide, Gap-134, improved conduction and 
reduced AF (59). Similarly, in a dog model of AF due to 
myocardial ischemia, administration of ZP123, a gap junction 
conductance-improving modifier, prevented ischemia-induced 
conduction slowing and reduced AF duration (60). Notably, in 
experimental swine, gene therapy with adenovirus expressing 
GJA5 improved cardiac conduction and reduced AF, demon-
strating the viability of gene therapy for the prevention of 
atrial arrhythmias (61).

It is well known that AF is a complex arrhythmia ascribed 
to multiple possible mechanisms. Despite the presence of 
an inherited defect, a favorable substrate for AF, within the 
myocardial tissue of affected patients from birth, the onset of 
genetically‑based AF often requires a trigger for initiation, 
presumably by exacerbating the already anomalous cardiac 

cellular electrophysiology in the existence of mutant protein. 
One of the most common triggers is the increased vagal tone 
mediated by muscarinic receptors, causing uneven shortening 
of refractoriness in the atria and, thus, electrophysiological 
heterogeneity (62). The stimulation of muscarinic receptors 
has been shown to impair the cell-cell coupling mediated by 
gap junctions (63). Together with the data mentioned above, 
this experimental result suggests a potential pathogenic link 
between increased cardiac parasympathetic nerve activity, 
impaired myocardial intercellular electrical coupling, and the 
occurrence of AF.

Notably, GJA5 is an important determinant for impulse 
propagation in the atrium as well as the specialized conduc-
tion system and abnormal expression of GJA5 predisposes 
to AF. However, functional changes in GJA5 alone may not 
be sufficient for significantly prolonged P-wave duration, PQ 
interval, QRS duration and QT duration in the surface elec-
trocardiogram, as observed in these AF families and other 
AF patients (48-55). Additionally, full deficiency for GJA5 has 
been associated with altered electrocardiographic parameters 
in GJA5 knockout mice, in contrast to haploinsufficiency 
for GJA5 (57). These findings suggest that additional factors 
combined with reduced coupling lead to AF.

In conclusion, the present investigation links novel GJA5 
mutations to AF, which provides novel insight into the 
molecular mechanisms associated with the arrhythmogenesis 
and ultimately may result in improved, patient-specific rhythm 
control strategies.
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