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Abstract. We recently demonstrated that fenofibrate induces 
the activities of citrate synthase and NADH oxidase in cardiac 
mitochondria. To further determine the molecular mecha-
nisms underlying fenofibrate action, 8-week-old mice were 
administered fenofibrate (100 mg/kg/day) for 7 and 14 days, 
and the expression of genes involved in cardiac mitochon-
drial function, such as nuclear respiratory factor 1 transcript 
variant 2 (NRF-1-L) and 6 (NRF-1-S), mitochondrial outer 
membrane protein 40 (Tom40), lipoic acid synthetase (Lias), 
cytochrome b, medium-chain acyl-coenzyme A dehydroge-
nase (MCAD) and peroxisome proliferator-activated receptor 
γ coactivator 1α (PGC-1α) was determined. Expression of 
PGC-1α, a key regulator of the entire fatty acid oxidation 
system, was significantly downregulated after 14 days of 
fenofibrate administration. Moreover, ventricular triglycerides 
were also accumulated following 14 days of fenofibrate admin-
istration. Thus, fenofibrate functions to improve myocardial 
lipid accumulation and to prevent PGC-1α induction, which is 
crucial for understanding the molecular mechanisms under-
lying fenofibrate action on the heart.

Introduction

Fatty acids are the preferred energy substrates for the postnatal 
and adult heart to generate ATP. To meet heightened energy 
demands, myocardial lipids undergo a lipolysis process to 
release free fatty acids (FFAs) into the fatty acid β-oxidation 
and the tricarboxylic acid (TCA) cycle, which is tightly coupled 
to the oxidative phosphorylation in mitochondria; therefore, 
cardiac mitochondria undoubtedly have a significant role in 
lipid metabolism (1,2).

Cardiac mitochondria have important roles in lipid 
metabolism through coordinated changes in the expression of 
genes involved in mitochondrial function. These genes include 
nuclear respiratory factor 1 transcript variant 2 (NRF-1-L) and 
6 (NRF-1-S), which are the key activators of nuclear genes that 
encode cytochrome c and all five respiratory complexes (3); 
mitochondrial outer membrane protein 40 (Tom40), which 
is an import channel of the mitochondrial outer membrane 
and is active in the sorting of imported proteins (4); lipoic 
acid synthetase (Lias), which is responsible for synthesis of 
lipoic acid, a potent mitochondrial antioxidant and enzyme 
cofactor in multi-enzyme complexes such as the pyruvate 
dehydrogenase complex (5); medium-chain acyl-coenzyme A 
dehydrogenase (MCAD), which is a key enzyme involved 
in mitochondrial fatty acid β-oxidation (6); and peroxisome 
proliferator-activated receptor γ coactivator 1α (PGC-1α), 
which is a key regulator of the entire fatty acid oxidation 
system (7). All these genes consist of a regulatory network to 
modulate cardiac lipid metabolism.

Peroxisome proliferator-activated receptor α (PPARα) also 
regulates cardiac lipid metabolism. Cardiac-specific overex-
pression of PPARα (MHC-PPARα) mice and PPARα null mice 
exhibit upregulation and downregulation of genes involved in 
fatty acid β-oxidation, respectively (8-10). PPARα also regu-
lates myocardial cytosolic lipid droplet protein (MLDP), which 
functions to increase the rate of lipolysis (11). Thus, PPARα 
predominantly has a role in cardiac lipid metabolism (12). 

Being a member of the nuclear hormone receptor super-
family, PPARα achieves its effects on gene regulation through 
a ligand-dependent mechanism. Upon binding to its ligands, 
PPARα can release transcriptional corepressors and recruit 
transcriptional coactivators to transactivate (13). Fenofibrate 
is one of the PPARα ligands and has been used to treat 
dyslipidemia since 1998 by reduction of serum triglycerides 
(TG) and low density lipoprotein cholesterol (LDLC) (14). 
Subsequent research revealed that fenofibrate attenuates 
cardiac dysfunction (15), prevents the development of micro-
vascular complications in diabetes (16) and exerts antidiabetic 
effects (17), but its exact roles in cardiac mitochondria and 
lipid metabolism remain unclear.

In this study, we performed ventricular triglyceride 
analysis, and determined the mRNA level of genes involved in 
cardiac mitochondrial function. Our results indicate that feno-
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fibrate functions to improve myocardial lipid accumulation 
and prevent the induction of PGC-1α, a key regulator of the 
entire fatty acid oxidation system. Our analyses identified the 
PPARα ligand fenofibrate as a potential regulator of cardiac 
mitochondrial function and lipid metabolism.

Materials and methods

Animals. Eight-week-old mice were randomly divided into 
three groups: Group 1, vehicle control; Group 2, fenofibrate 
treatment for 7 days; and Group 3, fenofibrate treatment for 
14 days. Each group consisted of 6-8 mice. Fenofibrate was 
dissolved in a 0.5% (w/v) suspension of sodium carboxy-
methylcellulose and administered at a dose of 100 mg/kg/
day. Group 1 only received the 0.5% sodium carboxymethyl-
cellulose suspension via oral gavage. The mice were housed in 
the animal facility at the Zhengzhou University Health Center 
and fed standard chow. All animal procedures were approved 
by the Committee on the Ethics of Animal Experiments of 
the University of Zhengzhou (permit number: SYXK yu 
2007-0009). All animals were allowed free access to food and 
water throughout the treatment period.

Chemicals and reagents. Fenofibrate was purchased from 
Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). TRIzol 
reagent was purchased from Invitrogen (Carlsbad, CA, 
USA). The Omniscript RT kit and SYBR Green PCR kit 
were purchased from Qiagen (Hilden, Germany). Real-time 
polymerase chain reaction (PCR) primers were synthesized 
by Invitrogen Shanghai Incorporation (Shanghai, China). 
The triglyceride quantification kit was purchased from 
Sigma-Aldrich Chemical Co.

Quantitative real-time PCR. RNA was extracted from the 
ventricles of fenofibrate-treated (100 mg/kg/day, for 7 and 
14 days) or control mice using TRIzol reagent (Invitrogen). 
The first-strand cDNAs were synthesized from 2 µg of total 
RNA in a 20-µl reaction using the Omniscript RT kit (Qiagen) 
and oligo-dT as the primer. The cDNAs were then used as the 
template for real-time PCR reactions containing the SYBR 

Green PCR kit (Qiagen) on an MX3000P real-time PCR 
machine (Stratagene). The primer sequences are shown in 
Table I. A comparative quantification was used, and the rela-
tive expression of mRNAs was normalized to the ribosomal 
protein S16 levels. 

Myocardial triglyceride levels. Lipids were extracted from the 
ventricular tissue of mice treated or not treated with fenofi-
brate (100 mg/kg/day) for 7 and 14 days using a modified Bligh 
and Dyer technique. In brief, every ventricle was homogenized 
in 3.8 ml of an ice-cold chloroform/methanol/water (2:1:0.8) 
solution, and then was centrifuged at 12,000 x g. After 
centrifugation, the top layer was aspirated away and the lower 
layer (organic phase) was transferred to another tube followed 
by evaporation to dryness. The triglyceride was resuspended 
in 0.1 ml isopropanol and quantified using a triglyceride quan-
tification kit (Sigma-Aldrich).

Statistics. The data are reported as the means ± SEM. A 
Student's unpaired t-test was used to compare the two groups. 
In all cases, differences were considered to be statistically 
significant when P<0.05.

Results

Effect of fenofibrate treatment on NRF-1-L and NRF-1-S gene 
expression. Nuclear receptor PPARα is a ligand-inducible 
transcription factor and is highly expressed in the heart (18). 
In the absence of the ligand, PPARα recruits corepressors to 
repress transcription with its obligate heterodimeric partner, 
the retinoid X receptor (RXR). Once engaged by the ligand, 
PPARα-RXR heterodimers clear corepressors and recruit 
transcriptional coactivators to initiate target gene transcrip-
tion (19-21). Fenofibrate is one of the PPARα ligands and 
reduces serum triglycerides (TG) and low density lipoprotein 
cholesterol (LDLC) (14). Fenofibrate also attenuates cardiac 
dysfunction and exerts antidiabetic effects (15,17). Given 
the important roles of mitochondria on cardiac function and 
metabolism, we reasoned that the actions of fenofibrate 
on cardiac mitochondria would uncover these metabolic 

Table I. Primer sequences.

Gene  Forward primer Reverse primer

Ribosomal protein S16 ATCTCAAAGGCCCTGGTAGC ACAAAGGTAAACCCCGATCC
Mitochondrial outer membrane protein GTGCCTCCTTTGGGTATCAG GTCTGCAGAGGAAGGACAGG
(Tom40) 
Lipoic acid synthetase (Lias) ATACGGCAAGTGGTCCTTTG GCCATCAGACCCTTCAGAAC
Cytochrome b CTAATCCACTAAACACCCCAC TGAGAA GTATGAGATGGAGGC
Medium-chain acyl-coenzyme A ACCCTCGTGTAACTAAGCTC AATGCTGCTATGTCACAGTC
dehydrogenase (MCAD) 
Nuclear respiratory factor 1 transcript  AACTCCATCTGGGCCATTAG GACGACGCAAGCATCAGAG
variant 2 (NRF-1-L) 
Nuclear respiratory factor 1 transcript TACTCTGCTGTGGCTGATGG ATGCTCACAGGGATCTGGAC
variant 6 (NRF-1-S) 
Peroxisome proliferator-activated receptor AAGAGCGCCGTGTGATTTAC AGCAGGGTCAAAATCGTCTG
γ coactivator 1α (PGC-1α)
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properties. Therefore, we investigated the effect of fenofibrate 
on the expression of genes involved in mitochondrial function. 

We performed quantitative real-time PCR (QPCR) 
analysis on the left ventricles of 8-week-old mice treated with 
fenofibrate (100 mg/kg/day) for 7 or 14 days or control mice. 
Transcript levels for NRF-1-L and NRF-1-S, the key activa-
tors of nuclear genes that encode cytochrome c and all five 
respiratory complexes (3), were downregulated at baseline 
(22 and 27%, respectively) in ventricles following treatment 
with fenofibrate for 7 days (Fig. 1). However, this downregu-
lation was not continued upon administration of fenofibrate 
for 14 days, and expression levels of NRF-1-L and NRF-1-S 
were decreased by 16% and increased by 15%, respectively, 
compared with the controls (Fig. 1). The results suggest that 
the time course of changes in mRNA levels of NRF-1-L and 
NRF-1-S occur upon administration of fenofibrate.

Effect of fenofibrate treatment on changes in the Tom40 
and Lias gene expression. QPCR analysis was performed on 
left ventricles of 8-week-old mice treated or not treated with 
fenofibrate (100 mg/kg/day) for 7 and 14 days. The mRNA 
level of Lias, which is responsible for synthesis of lipoic acid, 
a potent mitochondrial antioxidant and enzyme cofactor in the 

multi-enzyme complexes such as the pyruvate dehydrogenase 
complex (5), was determined. Our results showed that feno-
fibrate treatment caused no significant changes in Lias gene 
expression at baseline (Fig. 2). However, the transcript level 
for Tom40, an import channel of the mitochondrial outer 
membrane that is active in sorting imported proteins (4), also 
showed no significant changes following a 7-day treatment with 
fenofibrate. However, after 14 days of treatment, its expression 
level was increased by 15% compared with the control (Fig. 2), 
indicating that induction of Tom40 was modest at baseline.

Fenofibrate upregulates the expression of the cytochrome b 
and MCAD genes. The expression of cytochrome b and 
medium-chain acyl-coenzyme A dehydrogenase (MCAD) 
involved in fatty acid oxidation were also analyzed by 
real-time PCR (6). Both cytochrome b and MCAD mRNA 
levels were steadily increased in response to fenofibrate from 
7 to 14 days. Following 14 days of treatment, expression of the 
two genes was significantly upregulated at baseline (31 and 
32%, respectively) (Fig. 3), suggesting there is a time course of 
induction in mRNA levels of cytochrome b and MCAD upon 
administration of fenofibrate.

Fenofibrate downregulates the expression of the PGC-1α 
gene. Real-time PCR analysis of PGC-1α, which is a key 
regulator of the entire fatty acid oxidation system (7), showed 
insignificant changes at baseline following the 7-day admin-
istration of fenofibrate (Fig. 4), but upon administration for 
14 days, the PGC-1α mRNA level was significantly reduced by 
31% compared with control (Fig. 4), indicating that fenofibrate 
exerts specific effects on mitochondrial function-related genes. 

Fenofibrate causes myocardial lipid accumulation. PGC-1α 
is expressed at relatively high levels in the heart and serves as 
an important regulator of cardiac energy metabolism (22,23). 
In the heart, PGC-1α expression sharply increases at birth 
consistent with an energy shift from glucose metabolism to 
fat oxidation (24). Consistent with these, in the ventricle of 
mice treated with fenofibrate for 14 days, downregulation of 
PGC-1α was also accompanied by accumulation of myocar-
dial lipid (Fig. 5), suggesting that fenofibrate administration 
results in myocardial lipid accumulation.

Figure 1. Fenofibrate treatment alters mRNA levels of NRF-1-L and NRF-1-S. 
Mice (8-week-old) were treated or not treated with fenofibrate (100 mg/kg/
day) for one or two weeks. RNA was extracted from the ventricles of control 
or fenofibrate-treated mice and the transcript levels for NRF-1-L, NRF-1-S 
and S16 were determined. Data are the means ± SEM with 6-7 mice per 
group. *P<0.05 vs. control. NRF-1-L, nuclear respiratory factor 1 transcript 
variant 2; NRF-1-S, nuclear respiratory factor 1 transcript variant 6.

Figure 2. Effect of fenofibrate treatment on gene expression of Lias and Tom40. 
Mice (8-week-old) were treated or not treated with fenofibrate (100 mg/kg/
day) for one or two weeks. RNA was extracted from the ventricles of control or 
fenofibrate-treated mice and the transcript levels for Lias, Tom40 and S16 were 
determined. Data are the means ± SEM with 6-7 mice per group. Lias, lipoic 
acid synthetase; Tom40, mitochondrial outer membrane protein 40.

Figure 3. Fenofibrate upregulates the expression of cytochrome b and 
MCAD genes. Mice (8-week-old) were treated or not treated with fenofi-
brate (100 mg/kg/day) for one or two weeks. RNA was extracted from the 
ventricles of control or fenofibrate-treated mice and the transcript levels for 
cytochrome b, MCAD and S16 were determined. Data are the means ± SEM 
with 6-7 mice per group. *P<0.05 vs. control. MCAD, medium-chain acyl-
coenzyme A dehydrogenase.
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Discussion

Fenofibrate is a ligand of PPARα and is used to lower serum 
triglycerides (25,26). In this study, the combined use of 
ventricular triglyceride and gene expression assays showed 
that 7 days of fenofibrate treatment modestly induced mRNA 
levels of cytochrome b and MCAD, and inhibited NRF-1-L 
and NRF-1-S gene expression, but had no significant effect 
on myocardial lipid and mRNA levels of Tom40, Lias and 
PGC-1α. However, 14 days of fenofibrate treatment not only 
significantly induced cytochrome b and MCAD expression, 
but also significantly inhibited the expression of PGC-1α. 
Moreover, downregulation of PGC-1α was also accompanied 
by accumulation of myocardial lipids, thus fenofibrate has a 
time-course effect on cardiac lipids and expression of genes 
involved in cardiac mitochondrial function. Undoubtedly, 
fenofibrate has a significant role in cardiac mitochondrial 
function and lipid metabolism.

Previous studies reported that fenofibrate also has cardio-
protective effects on the heart. Fenofibrate not only prevents 
the development of hypertension and hypertensive heart 
disease (27), but also prevents the progression of cardiac 
hypertrophy either in the pressure-overloaded rat or in the 
spontaneously hypertensive rat (28,29). Moreover, fenofibrate 
was shown to protect the heart from isoproterenol-induced 
acute myocardial ischemic injury (30). All of these studies 

suggest the cardioprotective actions of fenofibrate, but the 
exact mechanisms remain unclear. Here, we demonstrated 
that fenofibrate prevents PGC-1α induction, thus decreases 
fatty acid utilization to meet myocardial hypoxia during 
pathological cardiac disease (31), which may partly explain the 
cardioprotective effects of fenofibrate.

Consistent with our findings, Palomer et al showed that 
PGC-1α downregulation results in an increase in the glucose 
oxidation rate (32). In the heart, PGC-1α expression increases 
sharply at birth consistent with the energy shift from glucose 
metabolism to fat oxidation (24), indicating that PGC-1α acts 
as an upstream regulator of cardiac lipid metabolism.

As with PGC-1α, nuclear respiratory factor 1 transcript 
variant 2 (NRF-1-L) and 6 (NRF-1-S), mitochondrial outer 
membrane protein 40 (Tom40), lipoic acid synthetase (Lias), 
cytochrome b and medium-chain acyl-coenzyme A dehydro-
genase (MCAD) are all involved in cardiac mitochondrial 
function. However, 14 days of fenofibrate treatment had no 
significant effect on Tom40 and Lias transcript levels, and 
only modest changes were observed in NRF-1-L and NRF-1-S 
mRNA levels. Conversely, the expression levels of cyto-
chrome b and MCAD were significantly increased in response 
to fenofibrate, suggesting that fenofibrate affects cardiac mito-
chondrial function through regulation of specific genes.

Other studies have directly implicated fenofibrate in the 
control of genes related to cardiac mitochondrial function. 
For example, fenofibrate increases cardiac mitochondrial 
thioesterase I (MTE-I) mRNA, and reduced acyl-CoA oxidase 
(ACO) activity in diet-induced obese (DIO) mice (33,34). All 
the altered expression of these genes involved in cardiac mito-
chondrial function is coupled to a change in glucose utilization 
and fatty acid oxidation (35). Indeed, reduced ACO activity is 
linked to increased glucose oxidation and decreased fatty acid 
oxidation (34), and our studies also showed that downregula-
tion of PGC-1α by fenofibrate is coupled to myocardial lipid 
accumulation. Consistent with our results, another PPARα 
ligand, K-111, was found to result in reduced cardiac fatty acid 
utilization in hyperlipidaemic animals (36,37). As we know, 
decreased oxidation of fatty acids results in decreased free 
radical production, and the decreased free radical production 
in the electron transport pathway is a potential contributor to 
cardiac function, also by which fenofibrate affects the cardio-
protective roles of the heart. 

In conclusion, we demonstrated that 14 days of fenofibrate 
treatment not only significantly induces cytochrome b and 
MCAD expression, but also significantly inhibits the expres-
sion of PGC-1α. Moreover, downregulation of PGC-1α is also 
accompanied by accumulation of myocardial lipids, so fenofi-
brate has a significant role in cardiac mitochondrial function 
and lipid metabolism. However, future research is required to 
determine whether the exact mechanism of fenofibrate on the 
heart is mediated by a cardiac marker gene through PPARα, 
coactivators or corepressors.
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