Screening for variants in $\mathbf{2 0}$ genes in $\mathbf{1 3 0}$ unrelated patients with cone-rod dystrophy

LI HUANG, SHIQIANG LI, XUESHAN XIAO, XIAOYUN JIA, PANFENG WANG, XIANGMING GUO and QINGJIONG ZHANG
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China

Received November 22, 2012; Accepted March 7, 2013

DOI: $10.3892 / \mathrm{mmr}$. 2013.1415

Abstract

Cone-rod dystrophy (CORD) is a hereditary retinal disorder with primary cone impairment and subsequent rod involvement. To date, mutations responsible for CORD have been reported in 24 genes. However, the systemic evaluation of variants in these genes in a cohort of patients is rare, particularly in East Asia. In this study, 58 coding exons from 20 CORD genes, including 35 exons with previously identified mutations in 17 genes and all 23 coding exons for the other 3 genes (GUCY2D, PRPH2 and KCNV2), were analyzed by cycle sequencing on 130 unrelated probands with CORD. Four heterozygous mutations, 1 novel and 3 known, were detected in $4 / 130$ patients, including c. $259 \mathrm{G}>\mathrm{A}$ (p.Asp87Asn) in UNC119, $\mathrm{c} .2512 \mathrm{C}>\mathrm{T}$ (p.Arg838Cys) and c.2513G $>\mathrm{A}$ (p.Arg838His) in GUCY2D and c.946T>G (p.Trp316Gly) in PRPH2. The result implies a comparatively low rate of mutations in these exons in Chinese patients. These data suggest that in Chinese patients, CORD may be caused by mutations in exons that have not yet been screened or in genes that have yet to be identified. Further analysis of these patients may provide clarification.

Introduction

Cone-rod dystrophy (CORD) is a heterogeneous inherited retinal disease characterized by reduced visual acuity, photophobia and color vision defects. Fundus observation usually identifies temporal pallor of the optic disc, attenuation of retinal arterioles and macular atrophy. Recordings on an electroretinogram (ERG) usually reveal the predominant functional impairment of cones over rods during the early stages (1). The prevalence of CORD is approximately 1 in 40,000 individuals (2).

Correspondence to: Professor Qingjiong Zhang, Eye Research Institute, State Key Laboratory of Opthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlie Road, Guangzhou, Guangdong 510060, P.R. China
E-mail: zhangqji@mail.sysu.edu.cn
Key words: cone-rod dystrophy, mutation, Chinese, mutation frequency, GUCY2D, PRPH2, UNC119

The disease may be transmitted as an autosomal dominant, autosomal recessive or X-linked trait. At least 24 genes have been identified to be responsible for CORD (RetNet: https:// sph.uth.tmc.edu/Retnet/). The genes for autosomal dominant CORD are AIPLI (3), CRX (4), GUCAlA (5), GUCY2D (6), PITPNM3 (7), PROM1 (8), PRPH2 (9), RIMS1 (10), SEMA4A (11) and UNC119 (12). The genes for autosomal recessive CORD are ABCA4 (13), ADAM9 (14), CACNA2D4 (15), CDHR1 (16), CERKL (17), CNGB3 (18), CNNM4 (19), KCNV2 (20), PDE6C (21), RAX2 (22), RPGRIP1 (23) and RDH5 (24). The genes for X-linked CORD are CACNAIF (25) and $R P G R$ (26). Although studies on individual genes have been reported, the systemic analysis of these genes in a cohort of patients is rare, with the exception of a few studies on the genes for autosomal dominant CORD (27) or the genes for autosomal recessive CORD $(17,28)$. Extensive analysis may provide insight into the mutation frequency and spectrum of the majority of CORD-related genes (29). In this study, we comprehensively screened 58 exons in 20 genes for mutations in 130 unrelated Chinese patients with CORD, mostly on the coding regions with reported mutations.

Materials and methods

Data from 130 unrelated patients with CORD were collected at the Pediatric and Genetic Eye Clinic, Eye Hospital of Zhongshan Ophthalmic Center, Guangzhou, China. Of the 130 patients, 111 were isolated cases, 8 had an autosomal dominant trait and 11 had an autosomal recessive trait. This study was performed in accordance with the guidelines set out in the Declaration of Helsinki and was approved by the Institutional Review Board of the Zhongshan Ophthalmic Center. Informed consent was obtained from all participants or their guardians prior to the collection of clinical data and genomic samples. Genomic DNA was extracted from the leukocytes of venous blood using previously reported methods (30).

Of the 24 genes responsible for CORD, 4 genes, $C R X$, GUCA1A, CACNA1F and RDH5, were not analyzed in this study, as they already have been analyzed in independent studies [(31) and unpublished data]. When this study was initiated in April 2011, all coding exons with a previously reported mutation in the 20 genes (Table I) were selected as targets for

Table I. The genes and targeted exons analyzed in this study.

Genes	OMIM	cDNA	Trait	Total coding exons ${ }^{\text {a }}$	Exons for sequencing $^{\text {b }}$
GUCY2D	600179	NM_000180.3	AD	18	$1-18^{\text {c }}$
PRPH2	179605	NM_000322.4	AD	3	$1-3$
RIMS1	606629	NM_014989.4	AD	34	6,34
AIPL1	604392	NM_014336.3	AD	6	5,6
PITPNM3	608921	NM_031220.3	AD	20	9,14
UNC119	604011	NM_005148.3	AD	5	1,2
SEMA4A	607292	NM_022367.3	AD	14	9
PROM1	604365	NM_006017.2	AD	26	11,13
ADAM9	602713	NM_003816.2	AR	22	$6,9,12$
CNGB3	605080	NM_019098.4	AR	18	$6,8,11$
KCNV2	607604	NM_133497.3	AR	2	1,2
PDE6C	600827	NM_006204.3	AR	22	1
CDHR1	609502	NM_033100.2	AR	17	6
CACNA2D4	608171	NM_172364.4	AR	38	25,30
RPGRIP1	605446	NM_020366.3	AR	24	13,16
RAX2	610362	NM_032753.3	AR	2	2
ABCA4	601691	NM_000350.2	AR	50	6
CERKL	608381	NM_201548.4	AR	10	$1,2,6,8$
CNNM4	607805	NM_020184.3	AR	7	$1,4,7$
RPGR	312610	NM_000328.2	X-LINKED	19	$4,6,7$
Total				357	58

${ }^{\text {a }}$ All coding exons were referred to NCBI (http://www.ncbi.nlm.nih.gov/). ${ }^{\text {b }}$ Sequenced exons were referred to HGMD (http://www.hgmd.org/). ${ }^{\text {a }}$ The majority of CORD-associated mutations in $G U C Y 2 D$ were reported in exon 12 . AD , autosomal dominant; AR , autosomal recessive.

Figure 1. Pedigrees and sequence chromatography. (Left column) Four sequence changes detected in the probands with cone-rod dystrophy (CORD). (Right column) Corresponding normal sequences. For the pedigrees, black-filled symbols represent the individuals in each family affected by CORD. Arrow indicates the proband in each family.
Table II. Mutations detected in 130 unrelated cone-rod dystrophy (CORD) patients and 192 healthy controls.

Family	Gene	Changes		Description			Computational prediction				Cases	Controls	Refs
		DNA	Protein	State	Cons	Blosum62 ${ }^{\text {a }}$	PolyPhen-2	SIFT	Pmut	PANTHER ${ }^{\text {b }}$			
	GUCY2D	c. $2512 \mathrm{C}>\mathrm{T}$	p.Arg838Cys	Hetero	Yes	8	PD	D	PA	-8.7	1/130	ND	(38)
	GUCY2D	c. $2513 \mathrm{G}>\mathrm{A}$	p.Arg838His	Hetero	Yes	5	PD	D	PA	-5.5	1/130	ND	(39)
3	PRPH2	c. $946 \mathrm{~T}>\mathrm{G}$	p.Trp316Gly	Hetero	Yes	13	Benign	D	PA	NA	1/130	ND	(40)
4	UNC119	c. $259 \mathrm{G}>\mathrm{A}$	p.Asp87Asn	Hetero	Yes	5	PD	Tolerated	Neutral	-3.2	1/130	0/192	This study

further analysis, with the exception of $A B C A 4$, in which a large number of variations have previously been identified both in patients and controls (32). Furthermore, in 3 genes, $G U C Y 2 D$, PRPH2 and KCNV2, all exons were analyzed, as mutations in GUCY2D and PRPH2 are frequently observed in patients with CORD $(27,33)$, while mutations in both exons of $K C N V 2$ have been reported (20). In this study, a total of 58 exons in 20 genes were analyzed (Table I). For the 58 coding exons, DNA fragments encompassing individual exons were amplified by PCR using corresponding primer pairs (available upon request). The sequences of amplicons were determined by Sanger sequencing using an ABI BigDye Terminator Cycle Sequencing kit v3.1 on an ABI 3130 Genetic analyzer (Applied Biosystems, Foster City, CA, USA). The results from the patients were aligned with the reference sequences from the NCBI database using SeqManII (DNAstar, Madison, WI, USA) to determine the variations. Each variant was bidirectionally sequenced and any novel variant was further evaluated using 192 normal controls (384 chromosomes). The mutation descriptions are in accordance with the recommendations from the Human Genomic Variation Society (http://www. hgvs.org/mutnomen/).

Four online computational algorithms (34-37), PANTHER (http://www.pantherdb.org/),PMut(http://mmb2.pcb.ub.es:8080/ PMut/), SIFT (http://sift.jcvi.org/) and PolyPhen-2 (http:// genetics.bwh.harvard.edu/pph2/), respectively, were used to predict the functional impact of the detected missense mutations.

Results

Upon the sequencing analysis of 58 exons in 20 genes, 4 mutations, 1 novel and 3 known ($38-40$), in 3 genes were discovered in $4 / 130$ unrelated probands $(4 / 130=3.08 \%)$ (Table II). All 4 mutations were heterozygous and detected in genes known to cause autosomal dominant CORD: $\mathrm{c} .259 \mathrm{G}>\mathrm{A}$ (p.Asp87Asn) in UNC119, c.2512C $>$ T (p.Arg838Cys) and $\mathrm{c} .2513 \mathrm{G}>\mathrm{A}$ (p.Arg838His) in $G U C Y 2 D$ and c.946T $>\mathrm{G}$ (p.Trp316Gly) in PRPH2 (Fig. 1). In addition to the 4 mutations, a number of possible non-pathogenic variants were also detected in KCNV2, CERKL, PITPNM3, RPGRIP1, AIPL1, RPGR, ABCA4, RIMS1, CNGB3, PDE6C, CDHR1, RAX2, CNNM4, GUCY2D and PRPH2 (Table III).

The clinical data of the 4 patients with a mutation in GUCY2D, PRPH2 or UNC119 are summarized in Table IV. Affected members had poor vision, photophobia or nystagmus as initial symptoms. The onset age varied from the first few months after birth to 16 years of age. Fundus examination revealed attenuated vessels, macular atrophy and temporal pallor of the optic disc. ERG recordings revealed severely reduced or extinguished cone responses accompanied by normal to mildly reduced rod responses in 3 patients with these mutations.

Discussion

In this study, 4 mutations in 58 exons from 20 genes were detected in $4 / 130$ patients with CORD, which suggests that the frequency of mutations in these regions is rare in Chinese patients. All coding exons of GUCY2D and PRPH2 were
Table III. Polymorphisms detected in 130 unrelated patients.

Gene	Exon	Variations		Status	Bioinformation analysis			Frequency in cases/controls ${ }^{\text {a }}$	Refs ${ }^{\text {c }}$
		Nucleotide	Amino acid		Conservation	PolyPhen-2	Splice site		
KCNV2	1	c. $612 \mathrm{G}>\mathrm{A}$	p.(=)	Hetero/Homo	Yes	NA	No change	11/4	This study
	1	c. $645 \mathrm{G}>\mathrm{C}$	p.Lys215Asp	Hetero/Homo	Yes	PD	No change	8/6	This study
	1	c. $920 \mathrm{~T}>\mathrm{G}$	p.Met307Arg	Hetero	No	Benign	No change	5/8	This study
	1	c. $759 \mathrm{~A}>\mathrm{G}$	p.(=)	Hetero	Yes	NA	No change	2/14	rs 10967709
	1	c.795C>G	p.(=)	Hetero/Homo	No	NA	No change	91/170	rs 12237048
	2	c. $1513 \mathrm{G}>\mathrm{T}$	p.Ala505Ser	Hetero	Yes	Benign	No change	1/1	This study
	2	c. $1638+6 \mathrm{~T}>\mathrm{C}$	-	Hetero	NA	NA	Change	8/NA	rs41306094
	2	c. $1386 \mathrm{C}>\mathrm{T}$	p.(=)	Hetero	Yes	NA	No change	8/NA	rs41312842
	2	c. $1597 \mathrm{C}>\mathrm{G}$	p.Val533Leu	Hetero	No	Benign	No change	8/NA	rs 12352254
CERKL	2	c. $242 \mathrm{~A}>\mathrm{C}$	p.Asp81Ala	Hetero/Homo	No	Benign	No change	43/NA	rs61750041
	2	c. $239-12 \mathrm{~T}>\mathrm{A}$	-	Hetero/Homo	NA	NA	No change	27/NA	rs6433923
	2	c. $313 \mathrm{C}>\mathrm{T}$	p.Arg 105 Trp	Hetero	Yes	PD	No change	2/NA	rs149078111
PITPNM3	9	c. $901-10 \mathrm{G}>\mathrm{C}$	-	Hetero/Homo	NA	NA	Change	34/44	rs77580616
	9	c. $1016 \mathrm{C}>\mathrm{G}$	p.Pro339Arg	Hetero	Yes	Benign	No change	1/1	This study
RPGRIP1	16	c. $2592 \mathrm{~T}>\mathrm{C}$	p.(=)	Hetero	Yes	NA	No change	1/NA	This study
AIPL1	5	c. $726 \mathrm{G}>\mathrm{A}$	p.(=)	Hetero	Yes	NA	No change	9/NA	This study
	5	c. $784+18 \mathrm{G}>\mathrm{A}$	-	Hetero	NA	NA	No change	6/NA	rs7222126
RPGR	7	c. $732 \mathrm{G}>\mathrm{A}$	p.(=)	Hetero	No	NA	No change	1/NA	This study
	7	c. $762 \mathrm{~T}>\mathrm{C}$	p.(=)	Hetero	No	NA	No change	1/NA	This study
ABCA4	6	c. $635 \mathrm{G}>\mathrm{A}$	p.Arg212His	Hetero	Yes	PD	Change	10/7	This study
	6	c. $673 \mathrm{G}>\mathrm{A}$	p.Val225Met	Hetero	Yes	PD	Change	2/1	This study
	6	c. $634 \mathrm{C}>\mathrm{T}$	p.Arg212Cys	Hetero	Yes	PD	No change	1/1	This study
RIMS1	6	c. $942 \mathrm{G}>\mathrm{A}$	p.(=)	Hetero	No	NA	No change	2/NA	This study
	6	c. $1209 \mathrm{G}>\mathrm{A}$	p.(=)	Hetero	No	NA	No change	28/NA	This study
	6	c. $1311 \mathrm{G}>\mathrm{A}$	p.(=)	Hetero	No	NA	No change	1/NA	This study
CNGB3	8	c. $919 \mathrm{~A}>\mathrm{G}$	p.Val307Ile	Hetero	No	Benign	Change	14/NA	rs13265557
	8	c. $912 \mathrm{C}>\mathrm{T}$	p.(=)	Hetero	No	NA	No change	1/NA	rs117806701
PDE6C	1	c. $252 \mathrm{G}>\mathrm{A}$	p.(=)	Hetero	Yes	NA	No change	26/NA	rs1131978
	1	c. $471 \mathrm{~T}>\mathrm{G}$	p.Asp157Glu	Hetero/Homo	Yes	PD	No change	5/NA	rs76999928
CDHR1	6	c. $477 \mathrm{~A}>\mathrm{G}$	$\mathrm{p} .(=)$	Hetero/Homo	Yes	NA	No change	22/NA	rs4933975
RAX2	2	c. $282 \mathrm{C}>\mathrm{T}$	p.(=)	Hetero	No	NA	No change	3/NA	This study
	2	c. 217-8C>T	-	Hetero	NA	NA	No change	3/NA	rs79588413

Table III. Continued.

Gene	Exon	Variations		Status	Bioinformation analysis			Frequency in cases/controls ${ }^{\text {a }}$	References ${ }^{\text {c }}$
		Nucleotide	Amino acid		Conservation	PolyPhen-2	Splice site		
CNNM4	1	c. $47 \mathrm{G}>\mathrm{A}^{\mathrm{b}}$	p.Arg 16His	Hetero	Yes	Unknown	No change	0/0	This study
GUCY2D	1	c. $154 \mathrm{G}>\mathrm{T}$	p.Ala52Ser	Hetero/Homo	No	Benign	No change	80/NA	rs61749665
	1	c. $61 \mathrm{~T}>\mathrm{C}$	p.Trp21Arg	Herero	No	PD	No change	2/NA	rs9905402
	1	c. $164 \mathrm{C}>\mathrm{T}$	p.Thr55Met	Hetero	Yes	PD	No change	2/NA	rs201414567
	1	c. $340 \mathrm{G}>\mathrm{A}$	p.Val114Met	Hetero	No	PD	No change	1/0	This study
	1	c. $343 \mathrm{~T}>\mathrm{C}$	p.Ser115Pro	Hetero/Homo	No	PD	No change	2/3	This study
	1	c. 459 delC	p.Trp154GlyfsX12	Hetero	NA	NA	NA	1/0	This study
	2	c. $741 \mathrm{C}>\mathrm{T}$	p.(=)	Hetero	Yes	NA	No change	22/NA	rs3829789
	9	c. $2101 \mathrm{C}>\mathrm{T}$	p.Pro701Ser	Hetero/Homo	No	Benign	No change	38/NA	rs34598902
	11	c. $2282 \mathrm{G}>\mathrm{A}$	p.Arg761Gln	Hetero	No	Benign	No change	1/0	This study
PRPH2	1	c. $318 \mathrm{~T}>\mathrm{C}$	$\mathrm{p} .(=)$	Hetero/Homo	No	NA	No change	106/NA	This study
	3	c. $910 \mathrm{C}>\mathrm{G}$	p.Gln304Glu	Hetero/Homo	No	Benign	No change	116/NA	This study
	3	c. $1013 \mathrm{~A}>\mathrm{G}$	p.Asp338Gly	Hetero/Homo	No	Benign	No change	116/NA	rs434102
	3	c. $1041+13 \mathrm{C}>\mathrm{T}$	-	Hetero	NA	NA	No change	40/NA	This study

Hetero, heterogeneous; Homo, homogeneous; NA, not available; PD, probably damaging, ${ }^{\text {a Based }}$ on the analysis of 130 patients and 192 healthy individuals. ${ }^{\mathrm{b}}$ Mutation $\mathrm{c} .47 \mathrm{G}>\mathrm{A}$ in $C N N M 4$ was absent in the 192 normal controls but detected in his healthy father. ${ }^{\text {c The }}$ variations with a rs ID in this column were described in the dbSNP database.
Table IV. Clinical information of the cone-rod dystrophy (CORD) patients with mutations.

Family	Gene	Mutations	Gender	Age		Inheritance	First symptom	BCVA		Fundus changes	ERG responses	
				Exam	Onset			OD	OS	OU	Rod	Cone
1	GUCY2D	c. $2512 \mathrm{C}>\mathrm{T}$	M	36	16	Dominant	PV	0.10	0.10	APM, TDP	Normal	Extinguished
2	GUCY2D	c. $2513 \mathrm{G}>\mathrm{A}$	M	5	EC	Isolated	PV, PP, NYS	0.06	0.06	AV	Mildly reduced	Extinguished
3	PRPH2	c. $946 \mathrm{~T}>\mathrm{G}$	M	0.3	FMB	Isolated	NYS	LP	LP	NA	Mildly reduced	Severely Reduced
4	UNC119	c. $259 \mathrm{G}>\mathrm{A}$	M	3.5	3.25	Isolated	PP	NA	NA	APM, AV	NA	NA

M, male; NA, not available; BCVA, best corrected visual acuity; EC, early childhood; FMB, first few months after birth; PV, poor vision; NYS, nystagmus; PP, photophobia; LP, light perception; AV, attenuated vessels; APM, atrophy and pigmentation deposits of the central macula; TDP, temporal disc pallor.
analyzed in this study. The mutation frequency for $G U C Y 2 D$ was 1.54% (2/130), 0.77% for PRPH2 and 0.77% for UNC119.

The mutation spectrum and frequency for certain CORDrelated genes have previously been reported $(17,21,28,31,41)$. The systematic screening of 10 genes (AIPL1, CRX, GUCA1A, GUCY2D, PITPNM3, PROM1, PRPH2, RIMS1, SEMA4A and UNC119) responsible for autosomal dominant CORD identified mutations in 25/52 (48.1\%) families. The mutation frequency of individual genes in this cohort is as follows: GUCY2D (23.0\%), PRPH2 (11.0\%), GUCA1A (8.0\%), CRX (4.0\%) and PROM1 (2.0\%) (27). For individual gene analysis in different populations, the frequency of CORD-associated GUCY2D mutations has been detected in 11.0% of Japanese patients (42) and in 40.0% of European and American patients (33). Mutations in several other genes have been detected in a small proportion of patients with CORD, such as CNGB3 mutations in 5.0% of patients from the Netherlands (43), AIPL1 mutations in 3.6% of patients from the USA (3) and SEMA4A mutations in 8.0% of patients from Pakistan (11). However, the mutation spectrum and frequency for the majority of CORD-related genes have not been well evaluated. For a few genes, mutations have only been reported in 1 or 2 CORD families, such as the $\mathrm{c} .2459 \mathrm{G}>\mathrm{A}$ mutation of RIMS1 in a British family (44), the c.1878G $>\mathrm{C}$ mutation of PITPNM3 in 2 Swedish families (7) and the c.524dup1 mutation of CDHR1 in a family from the Faroe Islands (16). It is unclear as to whether this is due to the rare variants in these genes or a lack of subsequent studies. Comprehensive evaluation of these genes in various ethnic populations based on a large number of cases would provide a better overview of the mutation spectrum and frequency, which would be beneficial for use in personalized gene diagnosis and genetic counseling.

Using a similar strategy to this study, our previous study on Leber's congenital amaurosis (LCA) detected mutations in approximately half of the 87 families tested, based on Sanger sequencing of exons with reported mutations in 15 LCA-related genes (29); this correlated with other reports based on the individual analysis of one or several genes. However, in the present study, only 4 mutations were identified in 4/130 families with CORD, which is lower than previously reported. It is possible that the mutation spectrum and frequency of these genes may differ in Chinese patients than in those with different ethnic backgrounds, with frequent mutations in exons not covered in this study. It is also possible that the genetic causes of CORD in Chinese patients have not yet been identified. To answer these questions, additional comprehensive evaluation of these patients with other methods, such as exome sequencing, is required.

Acknowledgements

The authors are grateful to the patients for their participation. This study was supported by the National Natural Science Foundation of China (81170881), National 973 plan (2010CB529904) and the Fundamental Research Funds of State Key Laboratory of Ophthalmology.

References

1. Hamel CP: Cone rod dystrophies. Orphanet J Rare Dis 2: 7, 2007.
2. Hamel CP, Griffoin JM, Bazalgette C, et al: Molecular genetics of pigmentary retinopathies: identification of mutations in CHM, RDS, RHO, RPE65, USH2A and XLRS1 genes. J Fr Ophtalmol 23: 985-995, 2000 (In French).
3. Sohocki MM, Perrault I, Leroy BP, et al: Prevalence of AIPL1 mutations in inherited retinal degenerative disease. Mol Genet Metab 70: 142-150, 2000.
4. Freund CL, Gregory-Evans CY, Furukawa T, et al Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91: 543-553, 1997.
5. Payne AM, Downes SM, Bessant DA, et al: A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7: 273-277, 1998
6. Kelsell RE, Evans K, Gregory CY, Moore AT, Bird AC and Hunt DM: Localisation of a gene for dominant cone-rod dystrophy (CORD6) to chromosome 17p. Hum Mol Genet 6: 597-600, 1997.
7. Köhn L, Kadzhaev K, Burstedt MS, et al: Mutation in the PYK2-binding domain of PITPNM3 causes autosomal dominant cone dystrophy (CORD5) in two Swedish families. Eur J Hum Genet 15: 664-671, 2007.
8. Yang Z, Chen Y, Lillo C, et al: Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest 118: 2908-2916, 2008.
9. Fishman GA, Stone EM, Alexander KR, Gilbert LD, Derlacki DJ and Butler NS: Serine-27-phenylalanine mutation within the peripherin/RDS gene in a family with cone dystrophy. Ophthalmology 104: 299-306, 1997.
10. Johnson S, Halford S, Morris AG, et al: Genomic organisation and alternative splicing of human RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7). Genomics 81: 304-314, 2003.
11. Abid A, Ismail M, Mehdi SQ and Khaliq S: Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J Med Genet 43: 378-381, 2006.
12. Kobayashi A, Higashide T, Hamasaki D, et al: HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. Invest Ophthalmol Vis Sci 41: 3268-3277, 2000.
13. Cremers FP, van de Pol DJ, van Driel M, et al: Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt's disease gene ABCR. Hum Mol Genet 7: 355-362, 1998.
14. Parry DA, Toomes C, Bida L, et al: Loss of the metalloprotease ADAM9 leads to cone-rod dystrophy in humans and retinal degeneration in mice. Am J Hum Genet 84: 683-691, 2009.
15. Wycisk KA, Budde B, Feil S, et al: Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation. Invest Ophthalmol Vis Sci 47: 3523-3530, 2006.
16. Ostergaard E, Batbayli M, Duno M, Vilhelmsen K and Rosenberg T: Mutations in PCDH21 cause autosomal recessive cone-rod dystrophy. J Med Genet 47: 665-669, 2010.
17. Littink KW,KoenekoopRK, van den Born LI, et al: Homozygosity mapping in patients with cone-rod dystrophy: novel mutations and clinical characterizations. Invest Ophthalmol Vis Sci 51: 5943-5951, 2010.
18. Michaelides M, Aligianis IA, Ainsworth JR, et al: Progressive cone dystrophy associated with mutation in CNGB3. Invest Ophthalmol Vis Sci 45: 1975-1982, 2004.
19. Polok B, Escher P, Ambresin A, et al: Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am J Hum Genet 84: 259-265, 2009.
20. Wu H, Cowing JA, Michaelides M, et al: Mutations in the gene KCNV2 encoding a voltage-gated potassium channel subunit cause 'cone dystrophy with supernormal rod electroretinogram' in humans. Am J Hum Genet 79: 574-579, 2006.
21. Thiadens AA, den Hollander AI, Roosing S, et al: Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am J Hum Genet 85: 240-247, 2009.
22. Wang QL, Chen S, Esumi N, et al: QRX, a novel homeobox gene, modulates photoreceptor gene expression. Hum Mol Genet 13: 1025-1040, 2004.
23. Hameed A, Abid A, Aziz A, Ismail M, Mehdi SQ and Khaliq S: Evidence of RPGRIP1 gene mutations associated with recessive cone-rod dystrophy. J Med Genet 40: 616-619, 2003.
24. Wada Y, Abe T, Sato H and Tamai M: A novel Gly35Ser mutation in the RDH5 gene in a Japanese family with fundus albipunctatus associated with cone dystrophy. Arch Ophthalmol 119: 1059-1063, 2001
25. Jalkanen R, Mäntyjärvi M, Tobias R, et al: X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Med Genet 43: 699-704, 2006.
26. Demirci FY, Rigatti BW, Wen G, et al: X-linked cone-rod dystrophy (locus COD1): identification of mutations in RPGR exon ORF15. Am J Hum Genet 70: 1049-1053, 2002.
27. Kohl S, Kitiratschky V, Papke M, Schaich S, Sauer A and Wissinger B: Genes and mutations in autosomal dominant cone and cone-rod dystrophy. Adv Exp Med Biol 723: 337-343, 2012.
28. den Hollander AI, Black A, Bennett J and Cremers FP: Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 120: 3042-3053, 2010.
29. Li L, Xiao X, Li S, et al: Detection of variants in 15 genes in 87 unrelated Chinese patients with Leber congenital amaurosis. PLoS One 6: e19458, 2011.
30. Wang Q, Wang P, Li S, et al: Mitochondrial DNA haplogroup distribution in Chaoshanese with and without myopia. Mol Vis 16: 303-309, 2010.
31. Huang L, Xiao X, Li S, et al: CRX variants in cone-rod dystrophy and mutation overview. Biochem Biophys Res Commun 426 : 498-503, 2012.
32. Webster AR, Héon E, Lotery AJ, et al: An analysis of allelic variation in the ABCA4 gene. Invest Ophthalmol Vis Sci 42 : 1179-1189, 2001
33. Kitiratschky VB, Wilke R, Renner AB, et al: Mutation analysis identifies GUCY2D as the major gene responsible for autosomal dominant progressive cone degeneration. Invest Ophthalmol Vis Sci 49: 5015-5023, 2008.
34. Mi H, Lazareva-Ulitsky B, Loo R, et al: The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33: D284-288, 2005.
35. Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X and Orozco M: PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 21: 3176-3178, 2005.
36. Ng PC and Henikoff S: SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31: 3812-3814, 2003.
37. Ramensky V, Bork P and Sunyaev S: Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30: 3894-3900, 2002.
38. Kelsell RE, Gregory-Evans K, Payne AM, et al: Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7: 1179-1184, 1998.
39. Payne AM, Morris AG, Downes SM, et al: Clustering and frequency of mutations in the retinal guanylate cyclase (GUCY2D) gene in patients with dominant cone-rod dystrophies. J Med Genet 38: 611-614, 2001.
40. Jin ZB, Mandai M, Yokota T, et al: Identifying pathogenic genetic background of simplex or multiplex retinitis pigmentosa patients: a large scale mutation screening study. J Med Genet 45: 465-472, 2008.
41. Thiadens AA, Phan TM, Zekveld-Vroon RC, et al: Clinical course, genetic etiology, and visual outcome in cone and cone-rod dystrophy. Ophthalmology 119: 819-826, 2012.
42. Ito S, Nakamura M, Nuno Y, Ohnishi Y, Nishida T and Miyake Y: Novel complex GUCY2D mutation in Japanese family with cone-rod dystrophy. Invest Ophthalmol Vis Sci 45: 1480-1485, 2004.
43. Thiadens AA, Roosing S, Collin RW, et al: Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy. Ophthalmology 117: 825-830, 2010.
44. Kelsell RE, Gregory-Evans K, Gregory-Evans CY, et al: Localization of a gene (CORD7) for a dominant cone-rod dystrophy to chromosome 6q. Am J Hum Genet 63: 274-279, 1998
