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Abstract. Cone-rod dystrophy (CORD) is a hereditary retinal
disorder with primary cone impairment and subsequent
rod involvement. To date, mutations responsible for CORD
have been reported in 24 genes. However, the systemic
evaluation of variants in these genes in a cohort of patients is
rare, particularly in East Asia. In this study, 58 coding exons
from 20 CORD genes, including 35 exons with previously
identified mutations in 17 genes and all 23 coding exons for the
other 3 genes (GUCY2D, PRPH2 and KCNV?2), were analyzed
by cycle sequencing on 130 unrelated probands with CORD.
Four heterozygous mutations, 1 novel and 3 known, were detected
in 4/130 patients, including ¢.259G>A (p.Asp87Asn) in UNC119,
¢.2512C>T (p.Arg838Cys) and ¢.2513G>A (p.Arg838His) in
GUCY2D and c.946T>G (p.Trp316Gly) in PRPH?2. The result
implies a comparatively low rate of mutations in these exons in
Chinese patients. These data suggest that in Chinese patients,
CORD may be caused by mutations in exons that have not yet
been screened or in genes that have yet to be identified. Further
analysis of these patients may provide clarification.

Introduction

Cone-rod dystrophy (CORD) is a heterogeneous inherited
retinal disease characterized by reduced visual acuity,
photophobia and color vision defects. Fundus observation
usually identifies temporal pallor of the optic disc, attenua-
tion of retinal arterioles and macular atrophy. Recordings on
an electroretinogram (ERG) usually reveal the predominant
functional impairment of cones over rods during the early
stages (1). The prevalence of CORD is approximately 1 in
40,000 individuals (2).
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The disease may be transmitted as an autosomal dominant,
autosomal recessive or X-linked trait. At least 24 genes have
been identified to be responsible for CORD (RetNet: https://
sph.uth.tmc.edu/Retnet/). The genes for autosomal dominant
CORD are AIPLI (3), CRX (4), GUCAIA (5), GUCY2D (6),
PITPNM3 (7), PROMI1 (8), PRPH2 (9), RIMSI (10),
SEMA4A (11) and UNC119 (12). The genes for autosomal reces-
sive CORD are ABCA4 (13), ADAMY (14), CACNA2D4 (15),
CDHRI (16), CERKL (17), CNGB3 (18), CNNM4 (19),
KCNV2 (20), PDE6C (21), RAX2 (22), RPGRIPI (23) and
RDHS5 (24). The genes for X-linked CORD are CACNAIF (25)
and RPGR (26). Although studies on individual genes have
been reported, the systemic analysis of these genes in a cohort
of patients is rare, with the exception of a few studies on the
genes for autosomal dominant CORD (27) or the genes for
autosomal recessive CORD (17,28). Extensive analysis may
provide insight into the mutation frequency and spectrum of
the majority of CORD-related genes (29). In this study, we
comprehensively screened 58 exons in 20 genes for mutations
in 130 unrelated Chinese patients with CORD, mostly on the
coding regions with reported mutations.

Materials and methods

Data from 130 unrelated patients with CORD were collected
at the Pediatric and Genetic Eye Clinic, Eye Hospital of
Zhongshan Ophthalmic Center, Guangzhou, China. Of the
130 patients, 111 were isolated cases, 8 had an autosomal
dominant trait and 11 had an autosomal recessive trait. This
study was performed in accordance with the guidelines set
out in the Declaration of Helsinki and was approved by the
Institutional Review Board of the Zhongshan Ophthalmic
Center. Informed consent was obtained from all participants
or their guardians prior to the collection of clinical data
and genomic samples. Genomic DNA was extracted from
the leukocytes of venous blood using previously reported
methods (30).

Of the 24 genes responsible for CORD, 4 genes, CRX,
GUCAIA, CACNAIF and RDHS5, were not analyzed in this
study, as they already have been analyzed in independent
studies [(31) and unpublished data]. When this study was initi-
ated in April 2011, all coding exons with a previously reported
mutation in the 20 genes (Table I) were selected as targets for
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Table I. The genes and targeted exons analyzed in this study.

Genes OMIM cDNA Trait Total coding exons® Exons for sequencing®
GUCY2D 600179 NM_000180.3 AD 18 1-18°
PRPH?2 179605 NM_000322 .4 AD 3 1-3
RIMS1 606629 NM_014989.4 AD 34 6,34
AIPLI 604392 NM_014336.3 AD 6 5,6
PITPNM3 608921 NM_031220.3 AD 20 9,14
UNC119 604011 NM_005148.3 AD 5 1,2
SEMA4A 607292 NM_022367.3 AD 14 9
PROM1 604365 NM_006017.2 AD 26 11,13
ADAM9 602713 NM_003816.2 AR 22 6,9,12
CNGB3 605080 NM_019098 4 AR 18 6,8,11
KCNV2 607604 NM_133497.3 AR 2 1,2
PDE6C 600827 NM_006204.3 AR 22 1
CDHRI 609502 NM_033100.2 AR 17 6
CACNA2D4 608171 NM_172364.4 AR 38 25,30
RPGRIPI 605446 NM_020366.3 AR 24 13,16
RAX2 610362 NM_032753.3 AR 2 2
ABCA4 601691 NM_000350.2 AR 50 6
CERKL 608381 NM_201548 4 AR 10 1,2,6,8
CNNM4 607805 NM_020184.3 AR 7 1,4,7
RPGR 312610 NM_000328.2 X-LINKED 19 4,6,7
Total 357 58

*All coding exons were referred to NCBI (http:/www.ncbi.nlm.nih.gov/). *Sequenced exons were referred to HGMD (http://www.hgmd.org/).
“The majority of CORD-associated mutations in GUCY2D were reported in exon 12. AD, autosomal dominant; AR, autosomal recessive.
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Figure 1. Pedigrees and sequence chromatography. (Left column) Four sequence changes detected in the probands with cone-rod dystrophy (CORD).
(Right column) Corresponding normal sequences. For the pedigrees, black-filled symbols represent the individuals in each family affected by CORD.
Arrow indicates the proband in each family.



Table II. Mutations detected in 130 unrelated cone-rod dystrophy (CORD) patients and 192 healthy controls.
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PD

Yes

Hetero

p-Asp87Asn

UNCI19

ND, not determined as it is a known pathogenic mutation; Cons, conservation; Hetero, heterogeneous; PD, probably damaging; D, damaging; PA, pathological. *The value is the difference between the

original and substitution value. *The output of PANTHER is known as the subPSEC score, ranging from O to -10, smaller subPSEC scores indicate a higher probability of a deleterious functional effect.

further analysis, with the exception of ABCA4, in which a large
number of variations have previously been identified both in
patients and controls (32). Furthermore, in 3 genes, GUCY2D,
PRPH?2 and KCNV2, all exons were analyzed, as mutations
in GUCY2D and PRPH?2 are frequently observed in patients
with CORD (27,33), while mutations in both exons of KCNV2
have been reported (20). In this study, a total of 58 exons in
20 genes were analyzed (Table I). For the 58 coding exons,
DNA fragments encompassing individual exons were ampli-
fied by PCR using corresponding primer pairs (available upon
request). The sequences of amplicons were determined by
Sanger sequencing using an ABI BigDye Terminator Cycle
Sequencing kit v3.1 on an ABI 3130 Genetic analyzer (Applied
Biosystems, Foster City, CA, USA). The results from the
patients were aligned with the reference sequences from the
NCBI database using SeqManlII (DNAstar, Madison, WI,
USA) to determine the variations. Each variant was bidirec-
tionally sequenced and any novel variant was further evaluated
using 192 normal controls (384 chromosomes). The mutation
descriptions are in accordance with the recommendations
from the Human Genomic Variation Society (http:/www.
hgvs.org/mutnomen/).

Four online computational algorithms (34-37), PANTHER
(http://www.pantherdb.org/),PMut(http://mmb2.pcb.ub.es:8080/
PMut/), SIFT (http://sift.jcvi.org/) and PolyPhen-2 (http://
genetics.bwh.harvard.edu/pph2/), respectively, were used
to predict the functional impact of the detected missense
mutations.

Results

Upon the sequencing analysis of 58 exons in 20 genes,
4 mutations, 1 novel and 3 known (38-40), in 3 genes were
discovered in 4/130 unrelated probands (4/130=3.08%)
(Table II). All 4 mutations were heterozygous and detected in
genes known to cause autosomal dominant CORD: ¢.259G>A
(p.-Asp87Asn) in UNCI19, c.2512C>T (p.Arg838Cys)
and c.2513G>A (p.Arg838His) in GUCY2D and
c.946T>G (p.Trp316Gly) in PRPH?2 (Fig. 1). In addition to the
4 mutations, a number of possible non-pathogenic variants
were also detected in KCNV2, CERKL, PITPNM3, RPGRIPI,
AIPLI, RPGR, ABCA4, RIMSI1, CNGB3, PDE6C, CDHRI,
RAX2, CNNM4, GUCY2D and PRPH?2 (Table III).

The clinical data of the 4 patients with a mutation in
GUCY2D, PRPH?2 or UNCI119 are summarized in Table IV.
Affected members had poor vision, photophobia or nystagmus
as initial symptoms. The onset age varied from the first few
months after birth to 16 years of age. Fundus examination
revealed attenuated vessels, macular atrophy and temporal
pallor of the optic disc. ERG recordings revealed severely
reduced or extinguished cone responses accompanied by
normal to mildly reduced rod responses in 3 patients with
these mutations.

Discussion

In this study, 4 mutations in 58 exons from 20 genes were
detected in 4/130 patients with CORD, which suggests that
the frequency of mutations in these regions is rare in Chinese
patients. All coding exons of GUCY2D and PRPH?2 were
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Table IV. Clinical information of the cone-rod dystrophy (CORD) patients with mutations.

ERG responses

Fundus changes

BCVA

Age

Cone

Rod

ou

(ON)

OD

First symptom

Inheritance

Exam Onset

Mutations Gender

Gene

Family
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Extinguished

Normal

Mildly reduced

APM, TDP

0.10
0.06
LP

0.10
0.06
LP

PV
PV,PP,NYS

Dominant

16
EC

FMB

36

M
M

c.2512C>T

GUCY2D

Extinguished
Severely Reduced

AV

Isolated
Isolated
Isolated

c2513G>A
c.946T>G
c259G>A

GUCY2D

Mildly reduced

NA
APM, AV

03 NYS

PRPH?

NA

NA

NA

NA

PP

325

35

UNCI119

M, male; NA, not available; BCVA, best corrected visual acuity; EC, early childhood; FMB, first few months after birth; PV, poor vision; NYS, nystagmus; PP, photophobia; LP, light perception;

AV, attenuated vessels; APM, atrophy and pigmentation deposits of the central macula; TDP, temporal disc pallor.

analyzed in this study. The mutation frequency for GUCY2D
was 1.54% (2/130), 0.77% for PRPH?2 and 0.77% for UNCI119.

The mutation spectrum and frequency for certain CORD-
related genes have previously been reported (17,21,28,31,41).
The systematic screening of 10 genes (AIPLI, CRX, GUCAIA,
GUCY2D, PITPNM3, PROMI, PRPH2, RIMSI, SEMA4A
and UNCI19) responsible for autosomal dominant CORD
identified mutations in 25/52 (48.1%) families. The mutation
frequency of individual genes in this cohort is as follows:
GUCY2D (23.0%), PRPH2 (11.0%), GUCAIA (8.0%),
CRX (4.0%) and PROMI (2.0%) (27). For individual
gene analysis in different populations, the frequency of
CORD-associated GUCY2D mutations has been detected in
11.0% of Japanese patients (42) and in 40.0% of European and
American patients (33). Mutations in several other genes have
been detected in a small proportion of patients with CORD,
such as CNGB3 mutations in 5.0% of patients from the
Netherlands (43), AIPLI mutations in 3.6% of patients from
the USA (3) and SEMA4A mutations in 8.0% of patients from
Pakistan (11). However, the mutation spectrum and frequency
for the majority of CORD-related genes have not been well
evaluated. For a few genes, mutations have only been reported
in 1 or 2 CORD families, such as the ¢.2459G>A mutation of
RIMSI in a British family (44), the ¢.1878G>C mutation of
PITPNM3 in 2 Swedish families (7) and the c.524dupl muta-
tion of CDHRI in a family from the Faroe Islands (16). It is
unclear as to whether this is due to the rare variants in these
genes or a lack of subsequent studies. Comprehensive evalu-
ation of these genes in various ethnic populations based on a
large number of cases would provide a better overview of the
mutation spectrum and frequency, which would be beneficial
for use in personalized gene diagnosis and genetic counseling.

Using a similar strategy to this study, our previous study
on Leber's congenital amaurosis (LCA) detected mutations in
approximately half of the 87 families tested, based on Sanger
sequencing of exons with reported mutations in 15 LCA-related
genes (29); this correlated with other reports based on the indi-
vidual analysis of one or several genes. However, in the present
study, only 4 mutations were identified in 4/130 families with
CORD, which is lower than previously reported. It is possible
that the mutation spectrum and frequency of these genes may
differ in Chinese patients than in those with different ethnic
backgrounds, with frequent mutations in exons not covered in
this study. It is also possible that the genetic causes of CORD
in Chinese patients have not yet been identified. To answer
these questions, additional comprehensive evaluation of these
patients with other methods, such as exome sequencing, is
required.
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