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Abstract. Hypoxic ischemic encephalopathy is a serious condi-
tion due to inadequate oxygen supply to the brain. Regeneration 
of neural cells is a critical process for repairing the damaged 
brain. Nogo has been identified as an inhibitor of neurite 
outgrowth that is specific to the brain. In the present study, the 
Nogo-A receptor (NgR) antagonist NEP1-40 was used to study 
the effects of inhibition of NgR on the regeneration of neural 
cells and the related Wnt signaling pathway in newborn rats. 
The investigation focused on the transcription factors regulated 
in the Wnt signaling pathway during the repair process, together 
with the proliferation of neural cells. The results indicated that 
c-Jun and c-Myc were the main transcription factors involved 
in the Wnt signaling pathway, while neural cell proliferation in 
the subventricular zone was increased during this process.

Introduction

Hypoxic ischemic encephalopathy (HIE) is a serious condi-
tion due to the inadequate oxygen supply to the brain, and is 
associated with oxygen deprivation in the neonate. For HIE 
neonates, regeneration of neural cells is a critical process for 
repairing the damaged brain (1). Several inhibitors are capable 
of reducing the ability of central nervous system (CNS) repair, 
among which Nogo A is important (2). Nogo has been identified 
as an inhibitor of neurite outgrowth that is specific to the CNS. 
It belongs to the family of reticulon-encoding genes, associated 
with the endoplasmic reticulum (3). Nogo is a potent neurite 
outgrowth inhibitor that may also block the regeneration of 

the CNS in higher vertebrates (4). Nogo-66 receptor (NgR), 
together with oligodendrocyte myelin glycoprotein and myelin-
associated glycoprotein, mediate axonal growth inhibition and 
may play a role in regulating axonal regeneration and plasticity 
in the adult CNS (5). However, NgR may inhibit the regenera-
tion of neurons and related nervous cells in HIE neonates and 
thus hinder the repair of injured CNS. NgR mediates axonal 
growth inhibition and may play a role in regulating axonal 
regeneration and plasticity in the adult CNS (6).

The Wnt signaling pathway controls cell-cell communica-
tion in the embryo and in adults, including cell proliferation and 
differentiation during development and healing (7). A previous 
study indicated that the Wnt signaling pathway is involved in 
regeneration of neural cells mediated by Nogo; however, the 
mechanism involved remains unknown (8). Inhibition of NgR 
is considered as one potentially useful method for treatment 
of HIE neonates. To study the effects of inhibition of NgR on 
the regeneration of injured CNS and the related transcription 
factors (TFs) involved, Nogo-A receptor antagonist NEP1-40 
was used in the present study. The investigation focused on 
the TFs in the Wnt signaling pathway that are regulated by 
inhibition of NgR during CNS regeneration, together with the 
proliferation of neural cells. 

Materials and methods

Generation of animal model and drug treatments. Newborn 
male Wistar rats (7 days old, weighing 16.0±3.0 g) were 
provided by the Animal Research Center, University of 
Yangzhou, China. The newborn hypoxic ischemic encephalop-
athy rat animal model was generated as described previously 
and rats were named hypoxic ischemic brain damage (HIBD) 
rats (9). The 40 HIBD rats were divided into a HIBD group 
and a HIBD + NEP1-40 group (n=20 in each group). The 
HIBD + NEP1-40 group rats were treated with NEP1-40 for 
7 days as previously described (9). Rats were sacrificed by 
inhalation of CO2 for 3 min. This study was approved by the 
Medical Ethics Committee of the Clinical Medical College of 
Yangzhou, University of Yangzhou (Yangzhou, China).

Quantitative PCR (qPCR). Total RNA from rat brains was 
isolated using TRIzol (Invitrogen Life Technologies, Carlsbad, 
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CA, USA) according to the manufacturer's instructions. The 
Rat WNT Signaling Pathway PCR array (SABiosciences, 
Qiagen, Inc., Frederick, CA, USA), which contained Apc, 
Apc2, Ccnd1, Ccnd2, Ccnd3, Ctnnb1, Ep300, Fgf4, Fzd3, 
c-Jun, Lrp5, c-Myc, Ppp2ca, Ppp2r1a, Wisp1 and Wnt3a was 
used to detect the expression of genes related to the Wnt 
signaling pathway. After reverse transcription using a cDNA 
Synthesis kit (Invitrogen Life Technologies), all the products 
were used as the templates for the qPCR using the ABI Prism 
SDS 7000 (Applied Biosystems, Inc., Foster City, CA, USA). 
qPCR conditions were as follows: i) 50˚C 2 min, 1 cycle; 
ii) 95˚C 10 min, 1 cycle; iii) 95˚C 15 sec, followed by 60˚C 
30 sec and 72˚C 30 sec, 40 cycles; iv) 72˚C 10 min, 1 cycle. 

Western blot analysis. Total protein extracted from rat brains 
(12 µg) was boiled at 100˚C with 4X loading buffer for 5 min, 
and then subjected to 10% SDS-PAGE (Invitrogen Life 
Technologies). After electrophoresis, the gel was transferred 
onto a nitrocellulose (NE) membrane at 70 V for 2 h at 4˚C. 
After blocking in 5% nonfat milk for 1 h, the membrane was 
incubated with Apc (1:800, rabbit polyclonal IgG; Millipore, 
Billerica, MA, USA), Ep300 (1:1,000, rabbit polyclonal IgG; 
Sigma-Aldrich, St. Louis, MO, USA), c-Jun (1:1,000, rabbit 
polyclonal IgG; Millipore), c- Myc (1:1,000, rabbit polyclonal 
IgG; Millipore) and Wnt3a (1:1,000, rabbit polyclonal IgG; 
Millipore) primary antibodies overnight at 4˚C in 3% BSA 
according to the results from qPCR. After washing with 1X 
tris phosphate-buffered saline (TPBS; pH 7.4), the membrane 
was incubated with secondary antibody (goat anti-rabbit IgG, 
Cell Signaling Technology, Inc., Boston, MA, USA) for 1 h at 
room temperature, washed again with 1X TPBS (pH 7.4), and 
images were captured with film exposure (Kodak, Rochester, 
NY, USA) for analysis. β-actin was used as a negative control. 
The value of each protein was first compared with β-actin, 
then the relative value was compared between the HIBD and 
HIBD + NEP1-40 groups.

Immunofluorescence (IF) for cell proliferation. Brain extracts 
were detected by IF for the expression of Ki67. Cryostat 
rat brain coronal sections (12 µm) were prepared (Leica, 
Solms, Germany) and stained with Ki67 antibody (Abcam, 

Cambridge, MA, USA; 1:1,000) to assess the proliferation of 
neural cells in the subventricular zone (SVZ). Images were 
captured using a confocal microscope, shown in the dark (A1R 
MP+ Multiphoton Confocal; Nikon, Tokyo, Japan; x100). 

8-Isoprostane detection. The brains were homogenized in 
TBS buffer with protease inhibitors (1:1,000, Invitrogen Life 
Technologies) and centrifuged at 12,000 g/min for 40 min 
at 4˚C. Supernatant was transferred into another tube. The 

Figure 1. Gene expression in the HIBD and HIBD + NEP1-40 groups. Values 
in the HIBD group were set as 1 in all groups and the relative value was 
calculated by comparing the HIBD + NEP1-40 group with the HIBD group. 
a: >1.35-fold; b: <0.75-fold. *P<0.05; **P<0.01 in comparison between HIBD 
and HIBD + NEP1-40 groups. HIBD, hypoxic ischemic brain damage.

Figure 2. Results of western blot analysis. Left: HIBD + NEP1-40 group; 
right: HIBD group. HIBD, hypoxic ischemic brain damage.

Figure 3. Protein expression in the HIBD and HIBD + NEP1-40 groups. 
Values in the HIBD group were set as 1 in all groups and the relative value 
was calculated by comparing the HIBD + NEP1-40 group with the HIBD 
group. (a: >1.35-fold; *P<0.05; **P<0.01 in comparison between HIBD and 
HIBD + NEP1-40 groups). HIBD, hypoxic ischemic brain damage.

Figure 4. 8-Isoprostane detection in the HIBD and HIBD + NEP1-40 groups. 
The value in the HIBD group was set as 1 in all groups and the relative value 
was calculated by comparing the HIBD + NEP1-40 with the HIBD group. No 
significant changes were detected. HIBD, hypoxic ischemic brain damage.
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levels of 8-isoprostane, a special marker for reactive oxygen 
species (ROS), were determined using an 8-Isoprostane EIA 
kit (Cayman Chemical Company, Ann Arbor, MI, USA) 
according to the manufacturer's instructions.

Statistical analysis. All data were expressed as the means ± SD. 
The results were evaluated by Student's t-tests. Statistically 
significant differences between groups were defined as P<0.05 
and P<0.01. Calculations were performed using SPSS 13.0 
(SPSS, Inc., Chicago, IL, USA).

Results

Effects of NEP1-40 on gene expression. The gene expression 
of Apc, Ep300, c-Jun, c-Myc and Wnt3a was significantly 
increased (>1.35-fold) while Ccnd2 and Wisp1 (<0.75-fold) 

were decreased in the HIBD + NEP1-40 group after treat-
ment with NEP1-40 for 7 days. For other genes, no significant 
changes (>1.5- or <0.75-fold) were detected. The value in 
the HIBD group was set as 1, while the relative value was 
calculated by comparing the HIBD + NEP1-40 group with the 
HIBD group. All data are shown in Fig. 1.

Effects of NEP1-40 on protein expression. As shown in Fig. 2, 
the expression of c-Jun and c-Myc at the protein level were 
upregulated (>1.5-fold) after treatment with the Nogo-A 
receptor antagonist NEP1-40 for 7 days, which correlated with 
the changes observed for gene expression. However, no marked 
changes in Apc, EP300, Wnt3a, Ccnd2 and Wisp1 expression 
(>1.35- or <0.75-fold) were detected, in contrast with the gene 
expression results. The value in the HIBD group was set as 
1, while the relative value was calculated by comparing the 
HIBD + NEP1-40 group with the HIBD group. All data were 
analyzed in Fig. 3.

Analysis of 8-isoprostane detection. 8-Isoprostane is an ideal 
biomarker for detecting oxidative stress in animal tissues and 
organs. No significant changes in 8-isoprostane were detected 
between the HIBD + NEP1-40 group and the HIBD group 
(Fig. 4). This study indicated that the Nogo-A receptor antago-
nist NEP1-40 did not affect oxidative stress in the CNS during 
HIE.

Analysis of the regeneration of neural cells. As indicated by 
arrows showing Ki67 in Fig. 5 (bar, 200 µm), increased regen-
eration of neural cells was detected in the HIBD + NEP1-40 
group (Fig. 5A) compared with the HIBD group (Fig. 5B) in 
the SVZ, the site of neural cellular proliferation in the adult 
brain, which may be useful for repair of damage to the CNS. 
Promotion of neural cellular proliferation is a potential method 
for HIE treatment. The value in the HIBD group was set as 

Figure 5. Detection of Ki67 expression in the SVZ in the HIBD and HIBD + NEP1-40 groups (magnification, x200; bar, 200 µm). (A) HIBD + NEP1-40 group; 
(B) HIBD group. HIBD, hypoxic ischemic brain damage; SVZ, subventricular zone. Ki67 positive cells are indicated by arrows.

Figure 6. Analysis of Ki67 expression. The value in the HIBD group was 
set as 1 in all groups and the relative value was calculated by comparing 
the HIBD + NEP1-40 group with the HIBD group. *P<0.05 in comparison 
between HIBD and HIBD + NEP1-40 groups. HIBD, hypoxic ischemic brain 
damage.

  A   B
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1, while the relative value was calculated by comparing the 
HIBD + NEP1-40 group with the HIBD group. All data were 
analyzed in Fig. 6.

Discussion

Numerous proteins are involved in HIE, including Nogo, 
which is involved in neuroendocrine secretion or in 
membrane trafficking in neuroendocrine cells (10). Nogo-A 
has two known inhibitory domains including amino-Nogo, at 
the N-terminus, and Nogo-66 (4). Blocking Nogo-A during 
neuronal damage may help to protect or restore the damaged 
neurons. NgR is a high-affinity binding receptor for a region 
of Nogo, a myelin-associated protein that inhibits axon 
outgrowth, which requires membrane-spanning co-receptors 
to transduce growth inhibitory signals (11). NgR is impli-
cated in neuronal plasticity and regeneration (12). However, 
the mechanism involved remains unknown, among which the 
Wnt signaling pathway is valuable to study. Wnt signaling 
pathways play a variety of roles in embryonic development, 
cell differentiation and cell polarity generation (13), particu-
larly for shifting ventral genes into dorsal regions of the 
neural tube (14). In this study, c-Jun and c-Myc were found 
to be upregulated. c-Jun plays an important role in cellular 
proliferation and apoptosis of the endometrium throughout 
the menstrual cycle (15). Cyclical changes of the c-Jun 
protein levels are significant in the proliferation and apop-
tosis of glandular epithelial cells (16). c-Myc activates the 
expression of a number of genes through binding to enhancer 
box sequences and recruiting histone acetyltransferases 
(HATs) (17), activated upon various mitogenic signals, 
including the Wnt signaling pathway (18).

8-Isoprostane is an ideal biomarker of oxidative stress and 
increased concentrations are detected during this progress, 
indicating that an imbalance between the systemic mani-
festation and clearance of reactive oxygen species results 
in body or organ damage. (19). Our research indicated that 
no significant change in 8-isoprostane levels was detected 
between the HIBD + NEP1-40 group and the HIBD group. 
This result suggested that oxidative stress was not related 
to or involved in the inhibition of Nogo-A during neuronal 
damage and neuronal repair. Ki67 is a cellular marker for 
proliferation. Ki67 is strictly associated with cell proliferation 
and is present during all active phases of the cell cycle (G1, 
S, G2 and mitosis), but is absent from resting cells (G0) (20). 
Increased Ki67 expression means that increased regeneration 
of neural cells was detected in the HIBD + NEP1-40 group in 
the SVZ, the area of neural cellular proliferation in the adult 
brain. Promotion of neural cellular proliferation is a potential 
method for HIE treatment, which requires further study. Given 
that this antagonist may be a good potential drug target for 
the treatment of HIE, the importance of this in vivo study is 
currently under intense investigation.

This study focused on the effects of the Nogo-A receptor 
antagonist, NEP1-40, on regulation of the Wnt signaling 
pathway and neural cell proliferation in newborn HIE rats. It 
was indicated by inhibition of NgR that c-Jun and c-Myc were 

the main TFs in the Wnt signaling pathway, while neural cell 
proliferation in the SVZ was increased during this process.
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