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Abstract. microRNA (miRNA)-133b has been revealed to 
be downregulated in head and neck/oral, bladder, human 
non‑small cell lung, colorectal and esophageal squamous 
cell cancer. The present study examined the expression of 
miR‑133b in renal cell carcinoma (RCC) cell lines and the 
effects of miRNA‑133b on RCC cell proliferation, migra-
tion and invasion. Quantitative polymerase chain reaction 
was used to detect the expression of miR-133b in RCC cell 
lines. Following transfection of miR‑133b, the expression 
of miR‑133b was examined and a cell viability assay, cell 
migration assay, cell invasion assay, western blot analysis 
and luciferase assay were conducted in RCC cell lines. The 
present study revealed that miRNA‑133b was downregulated 
and inhibited cell proliferation, migration and invasion 
in 786-O and A498  cells. In addition, to the best of our 
knowledge, the present study provided the first evidence that 
miRNA‑133b may directly target matrix metallopeptidase 9 
(MMP-9) in RCC. The present study also provided evidence 
that miRNA‑133b suppresses cell proliferation, migration 
and invasion by targeting MMP-9 in RCC cell lines. These 
results suggested that miRNA‑133b may be used for the 
development of novel molecular markers and therapeutic 
approaches to inhibit the metastasis of RCC.

Introduction

Renal cell carcinoma (RCC) is the most common neoplasm 
of the kidney in adults, accounting for ~3% of adult malig-
nancies (1), with a mortality rate of >40% (2). Approximately 
60,920 novel cases of RCC were diagnosed in the United 
States in  2011, with an estimated 13,120  mortalities  (3). 
Worldwide, the incidence of RCC is >200,000 novel cases 
per year, with >100,000 mortalities annually (4). The most 
common type of RCC is clear cell RCC (ccRCC), repre-
senting >75-80% of all RCC cases (5). Almost 25-30% of 
patients with RCC exhibit evidence of metastases at initial 
presentation  (6). The resection of the diseased kidney is 
a standard therapeutic approach for RCC. Although the 
overall survival rate is >60% over 5 years, ~30% of patients 
who have a diagnosis of localized RCC develop metastatic 
recurrence (7,8). Patients with metastatic RCC face a poor 
prognosis and have limited therapeutic options. The median 
survival rate in a recent cohort was only 1.5 years with <10% 
of patients surviving to 5 years (4). Thus, novel treatments 
are required to improve the prognosis for patients with RCC.

RNA can be divided into two categories, protein coding 
RNA and non-coding RNA (ncRNA). It is important to 
examine the functions of ncRNAs and their association with 
human diseases, including cancer (9). microRNAs (miRNAs) 
are a class of naturally occurring, endogenous small ncRNAs, 
in the size range of 19-25 nt (10). They regulate gene expres-
sion at the post-transcriptional level by binding through partial 
sequence homology to the 3' untranslated region (3'UTR) of 
mammalian target mRNAs and causing translational inhibition 
and/or mRNA degradation (11). It has been hypothesized that 
miRNAs regulate the expression of approximately one third 
of human genes (12). A growing body of evidence indicates 
that miRNAs are aberrantly expressed in numerous types of 
human cancer and they may function as oncogenes and tumor 
suppressors. Upregulated miRNAs in cancer may function 
as oncogenes by negatively regulating tumor suppressors. By 
contrast, downregulated miRNAs may normally function as 
tumor suppressor genes and inhibit cancer by regulating onco-
genes (13,14). Since miRNAs are involved in critical cellular 
processes, previous studies have demonstrated that they are 
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also involved in the pathogenesis of various diseases, including 
those of the kidney (15).

miR-133 is an miRNA family containing miR-133a and 
miR-133b (16). miR-133a has also been commonly identified 
to be downregulated in various types of human malignancy, 
including RCC, bladder cancer, pancreatic ductal adenocar-
cinoma, osophageal squamous cell carcinoma of the tongue, 
hepatocellular and lung carcinomas. However, the functions 
of miR-133b have yet to be investigated in RCC. The present 
study demonstrated that miR-133b was able to inhibit RCC cell 
proliferation, migration and invasion by the downregulation 
of matrix metallopeptidase 9 (MMP-9). These results aid our 
understanding of the mechanisms underlying metastasis and 
may lead to the identification of novel targets that may be used 
for the development of molecular markers and therapeutic 
approaches to inhibit the metastasis of RCC.

Materials and methods

Cells and culture conditions. The 786-O and A498 human 
clear cell RCC (ccRCC)‑derived cell lines were obtained from 
the Shanghai Institute of Cell Biology, Chinese Academy 
of Sciences (Shanghai, China). The cells were incubated in 
RPMI-1640 (Hyclone, South Logan, UT, USA) or Dulbecco's 
modified Eagle's medium (DMEM; Gibco-BRL, Carlsbad, 
CA, USA) supplemented with 10% heat‑inactivated fetal calf 
serum, 100 U/ml penicillin and 100 mg/l streptomycin at 37˚C 
in a humidified atmosphere containing 5% CO2.

RNA extraction and quantitative polymerase chain reac-
tion (qPCR). Total RNA was extracted from cells and the 
normal kidney samples using TRIzol reagent (Invitrogen Life 
Technologies, Carlsbad, CA, USA) according to the manu-
facturer's instructions. The primers used were as follows: 
GAPDH, 5'-GAAATCCCATCACCATCTTCCAGG-3'; 
miR‑133b, 5'-TTGGTCCCCTTCAACCAGCTGT-3'. qPCR 
for miR-133b was performed with TaqMan microRNA assay 
kits (Applied Biosystems, Foster City, CA, USA) according 
to the manufacturer's instructions. qPCR was performed on 
an AB7300 thermal cycler (Applied Biosystems) using an 
miR-133b primer set and the double strand binding dye SYBR 
Green (Applied Biosystems). GAPDH was used as an internal 
control. Every sample was replicated three times. The data 
were analyzed by comparing Ct values.

Transfection of the miR-133b mimic, and NC and lucif-
erase reporter plasmids. The mature miR-133b mimic, 
scrambled control  (NC) and luciferase reporter plasmids 
were designed and synthesized by GenePharma (Shanghai, 
China). The sequence of the miR‑133b mimic was 
5'-UUUGGUCCCCUUCAACCAGCUA-3'. The sequence of 
the NC mimic was 5'-UUCUCCGAACGUGUCACGUTT-3'. 
The insertion fragment was confirmed by DNA sequencing. 
Cell transfection and cotransfection were performed using 
Lipofectamine 2000 (Invitrogen Life Technologies) according 
to the manufacturer's instructions.

Cell viability assay. Cell proliferation was determined by the 
MTT assay. The cells transfected with the miR-133b mimic or 
the NC were seeded in 96-well plates at a density of 3,000 cells 

per well. Cell proliferation was documented every 24 h for 
five days following the manufacturer's instructions. Briefly, 
MTT solution was added into each well and incubated at 
37˚C for 4 h. The plates were spun (200 x g, 10 min) and 
the purple colored precipitates of formazan were dissolved 
in 200 µl dimethylsulfoxide. The absorbance was measured 
at 490 nm using an automatic multi-well spectrophotom-
eter (Bio-Rad, Richmond, CA, USA). There were 6-wells 
replicated for every time point in each group. The suppres-
sion rate was calculated using the formula: Suppression 
rate = (1-ODmiR‑133b/ODmiR-NC) x 100, where OD is the optical 
density. All the experiments were performed in triplicate.

Cell migration and invasion assay. Cell motility was 
measured using 8 µm-pore polycarbonate membrane Boyden 
chambers inserted into a transwell apparatus (Costar, 
Cambridge, MA, USA). The transfected cells (miR-133b 
mimics and NC) growing in the log phase were treated with 
trypsin/EDTA solution, washed once with serum‑containing 
RPMI‑1640 medium, centrifuged (200 x g, 10 min), and 
re-suspended as single‑cell solutions. A total of 1x105 cells 
in 0.2  ml serum-free RPMI‑1640 medium were seeded 
onto transwell apparatus. RPMI-1640 (600 µl) containing 
20% fetal bovine serum was added to the lower chamber. 
The invasion assay was performed by the same procedure; 
however, the filters of the transwell chambers were coated 
with 30 µg Matrigel (BD Biosciences, San Jose, CA, USA). 
Following incubation for 12-24 h at 37˚C in a 5% CO2 incu-
bator, cells on the top surface of the insert were removed by 
wiping with a cotton swab. The cells that migrated to the 
bottom surface of the insert were fixed in 100% methanol 
for 2 min, stained in 0.5% crystal violet for 2 min, rinsed in 
phosphate‑buffered saline and then subjected to microscopic 
inspection (magnification, x200; BX51WI-DPMC; Olympus, 
Tokyo, Japan). The values for invasion and migration were 
obtained by counting five fields per membrane and represent 
the average of three independent experiments.

Western blot analysis. The primary antibodies used in the 
present study, including epidermal growth factor receptor 
(EGFR), MMP-9 and β-actin, were products of Bioworld 
Technology (Louis Park, MN, USA). The total protein of 
cells was prepared using radioimmunoprecipitation assay 
lysis buffer. The protein concentration in the resulting lysate 
was determined using the bicinchoninic acid protein assay. 
Equal quantities of protein were loaded onto a SDS-PAGE 
and transferred onto a polyvinylidene difluoride membranes 
(Beyotime Institute of Biotechnology, Shanghai, China). 
Following inhibition with 5% degreased milk in Tris‑buffered 
saline with 0.1% Tween‑20 (TBST), the membranes were 
incubated overnight with the appropriate primary antibody. 
Next, they were washed and incubated with the corre-
sponding horseradish peroxidase‑conjugated secondary 
antibody at 1:1,000 dilution in TBST. The blot was devel-
oped with enhanced chemiluminescence solution (Pierce 
Biotechnology, Inc., Rockford, IL, USA) and images were 
captured by a FluorChem imaging system (Alpha Innotech, 
San Leandro, CA, USA). The intensity of each spot was read 
and analyzed using AlphaEaseFC software (Alpha Innotech, 
San Leandro, CA, USA). β-actin served as a loading control.
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Luciferase assay. TargetScan 5.2 (http://www.targetscan.org/) 
and PicTar (http://pictar.mdc-berlin.de/) were used to assess 
the complementarity of miR-133b to the MMP‑9 3'-UTR. 
Otherwise, luciferase reporter assays were performed to 
evaluate whether MMP‑9 is a bona fide target of miR-133b. 
The cells were plated in a 12-well plate at ~90% confluence and 
transfected with 0.5 µg of reporter plasmid, 40 nmol miR-133b 
mimic or their negative control by Lipofectamine 2000. Each 
sample was also cotransfected with 0.05 µg pRL-CMV plasmid 
expressing Renilla luciferase (Promega Corporation, Madison, 
WI, USA) as an internal control for transfection efficiency. 
Following transfection (48 h), cells were harvested with passive 
lysis buffer, a component of the Dual-Luciferase Reporter Assay 
system (Tecan, Theale, UK), according to the manufacturer's 
instructions. An appropriate volume of cell lysate was added to 
a well of the F96 microwell plates, followed by 25 µl LARII. 
Firefly luciferase and Renilla luciferase activity was measured 
with a luminometer (Tecan, Theale, UK). Firefly luciferase 
activity was normalized to Renilla luciferase activity for each 
transfected well. Each assay was replicated three times.

Statistical analysis. Data are presented as the mean ± standard 
deviation, and compared using Student's t-test in Stata 10.0 

(College Station, TX, USA). Double-tailed P<0.05 was consid-
ered to indicate a statistically significant difference.

Results

Expression levels of miR-133b prior to and following the 
transfection of miR-133b into RCC cell lines. Firstly, the 
endogenous levels of miR-133b in 786-O and A498 cells 
were examined. As shown in Fig. 1A, miR-133b was signifi-
cantly downregulated in 786-O and A498 RCC cell lines, in 
comparison with normal kidney RNA (P<0.05). Following 
transfection of miR-133b, the levels of miR-133b were detected 
every 24 h. As shown in Fig. 1B, the expression level was 
markedly increased until ~120 h in 786-O and A498 cells. The 
level of miR-133b following the transfection of miR-133b also 
gradually decreased (shown in Fig. 1B).

miR-133b suppresses cell proliferation in RCC cell lines. To 
measure the effect of miR-133b on cell proliferation, an MTT 
assay was used. As expected, the upregulation of miR-133b 
significantly inhibited cell proliferation (Fig. 2). MTT assays 
revealed that following 144 h of treatment, the suppression 
rate of miR-133b reached 23.42±3.2% in 786-O cells and 

Figure 1. (A) miR-133b was significantly downregulated in 786-O and A498 cells in comparison with normal kidney RNA (*P<0.05). (B) Expression of 
miR-133b following transfection of miR-133b in 786-O and A498 cells. Following transfection of miR‑133b, the expression level was markedly increased until 
~120 h in 786-O and A498 cells. miR-133b, microRNA-133b. 
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Figure 3. miR-133b inhibited cell migration and invasion. Following 12 h of incubation, cell migration was significantly decreased in miR-133b groups 
compared with in the control group. Following 24 h of incubation, miR-133b transfected cells demonstrated significantly decreased invasiveness compared 
with the control cells (*P<0.05). miR-133b, microRNA-133b; NC, scrambled control. 

Figure 2. (A) Viability of 786-O cells following transfection of miR‑133b. Cell proliferation was determined by the MTT assay. The results indicated that 
upregulation of miR‑133b significantly suppressed cell proliferation. (B) Viability of A498 cells following transfection of miR-133b. The cell proliferation was 
determined by the MTT assay. The results indicated that upregulation of miR-133b significantly suppressed cell proliferation. miR-133b, microRNA-133b.

  A   B
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35.71±4.5% in A498 cells. The results indicated that miR-
133b may be important in 786-O and A498 cells.

miR-133b inhibits cell migration and invasion in RCC cell 
lines. To measure the effect of miR-133b on tumor cell 
migration, the transwell apparatus assay was used (Fig. 3). 
The transfected cells (miR-133b mimics and NC mimics) 
growing in the log phase were collected and cultured on tran-
swell apparatus. Following 12 h of incubation, cell migration 
was significantly decreased in miR-133b groups compared 
with the control group (P<0.05). Using transwell apparatus 
pre-coated with Matrigel, the effects of miR-133b on cell 
invasiveness were examined. Following 24  h of incuba-
tion, miR-133b transfected cells demonstrated significantly 
decreased invasiveness compared with the control cells 
(P<0.05). These results indicated that miR-133b inhibits cell 
migration and invasion in RCC cell lines.

miR-133b suppresses the expression of MMP-9 in RCC 
cell lines. In bioinformatics studies, MMP-9 was identified 
as a putative target of miR-133b. Western blot analysis was 
performed to examine whether the MMP-9 protein level was 
decreased following ectopic overexpression of miR-133b. 
As shown in Fig. 4, MMP-9 was significantly decreased in 
786-O and A498 cell lines 72 h after transfection of miR-
133b. Thus, miR-133b reduces the protein level of MMP-9 
in RCC cells.

EGFR and MMP-9 are direct targets of miR-133b. To 
determine whether miR-133b targets the 3'UTR of MMP-9, 
TargetScan  5.2 and PICTAR were used to assess the 
complementarity of miR‑133b to the MMP-9 3'UTR. It was 
demonstrated that MMP-9 mRNA contained a miR-133b 
seven-nucleotide seed match at position 43-49 of the MMP-9 
3'UTR (shown in Fig. 5A).

Luciferase reporter assays were performed to evaluate 
whether the site was able to directly mediate expression inhibi-
tion. As shown in Fig. 5B, the overexpression of miR-133b was 
able to suppress MMP-9 3'UTR-luciferase activity by 39% in 
786‑O cells and 51% in A498 cells (P<0.05). Thus, MMP-9 
may be a direct target of miR-133b in vitro.

Discussion

miR-133 is an miRNA family containing miR-133a and 
miR‑133b. miR-133a is a multicopy gene with two copies 
distributed on chromosome 18 and chromosome 20, which 
neighbor miR-1, another muscle enriched miRNA, while miR-
133b is located on chromosome 6 and marginally different 
in base sequence from that of miR-133a (16). miR‑133a has 
been revealed to be downregulated in several types of human 
cancer, including RCC (17), esophageal squamous cell carci-
noma (18), bladder cancer (19), ileal carcinoid cancer (20) and 
rhabdomyosarcoma (21). miR-133b is expressed in T cells and 
has been revealed to be downregulated in head and neck/oral, 
bladder, human non-small cell lung, colorectal and esophageal 
squamous cell cancer (22).

Identification of miR-133b target genes is critical for 
understanding its role in tumorigenesis and is important 
for defining novel therapeutic targets. miR-133a has been 
identified to regulate oncogenic transcripts in human cells, 
including fascin actin‑bundling protein 1 (FSCN1), LIM and 
SH3 protein 1, glutathione S-transferase pi gene and trans-
gelin 2 (23,24), however, miR‑133b targets FSCN1, Bcl-2-like 
protein 2, c-MET and EGFR  (16,22). Therefore, upregu-
lating miR-133a/b or providing analogous pharmaceutical 
compounds exogenously, may be effective cancer therapies for 
tumors resulting from the activation or overexpression of these 
oncogenes. The present study demonstrated that miR-133b was 
downregulated in RCC cell lines and reduced cell migration 

Figure 4. MMP-9 was significantly decreased in 786-O and A498 cells following transfection of miR-133b. miR-133b, microRNA-133b; NC, scrambled 
control; MMP-9, matrix metallopeptidase 9.
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and invasion by downregulating the expression of MMP-9. 
Our findings suggested that miR‑133b was able to be used for 
the development of novel molecular markers and therapeutic 
approaches to inhibit the metastasis of RCC.

Proteolytic degradation of the extracellular matrix 
(ECM) is a fundamental aspect of cancer development and 
a key event in the regulation of tumor proliferation and 
metastasis. MMPs are a family of zinc-dependent endopepti-
dases that are collectively capable of degrading the majority 
of the components of the basement membrane and ECM, 
facilitating cell migration (25). They are crucial in certain 
non-malignant and malignant pathologies, including rheu-
matoid arthritis, aortic aneurysms, myocardial infarctions, 
septic shock, liver disease, tumor invasion and neoplastic 
metastasis  (26). Therefore, elevated levels of MMPs have 
been detected in the serum and urine of patients with 
numerous different types of cancer, including cancer of the 
bladder, breast, lung, colon, head and neck as well as mela-
noma (27). In view of their importance in tumor invasion 
and metastasis, inhibitors of MMP activity have been inves-
tigated as a method of preventing/decreasing tumor spread. 
Several pharmaceutical companies are currently developing 
low molecular weight MMP inhibitors for clinical use (25). 
Clinical trials involving batimastat, a potent broad based 

inhibitor of MMPs 1, 2, 3 and 9 and marimastat (28), and 
a second‑generation water‑soluble synthetic MMP inhibitor, 
have been evaluated in patients with pancreatic, pulmonary, 
ovarian and mammary carcinomas.

There are 24 soluble and membrane-anchored members 
of the MMP family, which can be divided into four families 
based on structure and substrate specificity: Collagenases, 
gelatinases, stromelysins and membrane-associated MMPs. 
Among the previously reported human MMPs, MMP-2 and 
MMP-9 are key enzymes that degrade type IV collagen (29). 
MMP-9, a 92 kDa type IV collagenase, is regulated through 
formation of proenzyme complexes with endogenous TIMP-1. 
The spatial expression of MMP-9 in the kidney is complex 
and species specific  (30). MMP-9 is mainly expressed in 
collecting duct cells and to a lesser extent in proximal 
tubule and podocytes of mice (31), in the proximal and distal 
tubules of monkeys (32), and in glomerular mesangial cells 
of humans  (33). The regulated expression of MMP-9 has 
been implicated in renal development, macrophage differen-
tiation, atherosclerosis, inflammation, rheumatoid arthritis 
and tumor invasion  (34,35). The mechanisms of MMP-9 
gene activation in human cancer cells are not well defined. 
The production of MMP-9 may be induced by a number of 
factors, including the inflammatory cytokine tumor necrosis 

Figure 5. (A) TargetScan showed that MMP-9 mRNA contained a miR-133b seven-nucleotide seed match at position 43-49 of the MMP-9 3'UTR. (B) MMP-9 
may be a direct target of miR-133b in vitro. Luciferase activity was significantly decreased when cotransfected with miR-133b and the reporter plasmid in 
786-O and A498 cells. Overexpression of miR-133b was able to suppress MMP-9 3'UTR-luciferase activity by 39% in 786-O cells and 51% in A498 cells. 
miR-133b, microRNA-133b; MMP-9, matrix metallopeptidase 9; 3'UTR, 3' untranslated region.

  A

  B



MOLECULAR MEDICINE REPORTS  9:  2491-2498,  2014 2497

factor (36,37). In RCC, Kugler et al revealed that MMP-9 
had a strong correlation between increased gene expression 
and tumor stage and aggressiveness (38). Lein et al measured 
MMP-9 using an ELISA technique in 36  patients with 
RCC and revealed that plasma MMP-9 concentrations were 
significantly higher in patients with RCC compared with in 
healthy controls with a sensitivity of only 36% in detecting 
RCC. In addition, no correlation with tumor type, grade or 
stage was identified (39). Kallakury demonstrated that the 
increased expression of MMP-9 in RCC correlated with poor 
prognostic variables, including shortened patient survival 
time (25). It suggested that MMP-9 may serve as a marker 
for transformation and invasion in RCC, or serve as a target 
for cancer therapy in order to inhibit the metastasis of RCC. 
The results of the present study suggested that miR-133b 
suppressed the migration and invasion of RCC cells through 
the downregulation of MMP-9. It may be investigated as a 
predictive value for early detection of tumor metastasis and 
for targeted therapeutic drugs to inhibit RCC invasiveness.

In conclusion, to the best of our knowledge, this is the 
first study to demonstrate that miR-133b was downregulated 
in RCC cell lines, and inhibited RCC cell migration and 
invasion by the downregulation of MMP-9 expression. These 
findings have therapeutic implications and may be exploited 
for the further treatment of RCC.

Future studies are required to address whether the poten-
tial of miR-133b may be fully realized in cancer treatment. If 
so, it may be beneficial for the treatment of RCC.
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