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Abstract. Genetic alterations alone cannot account for the 
complexity of ovarian cancer. The potential reversibility of 
epigenetic mechanisms makes them attractive candidates 
for the prevention and/or treatment of ovarian carcinoma. 
Detection of the epigenetic signature of each cancer cell may be 
useful in the identification of candidate biomarkers for disease 
detection, classification and monitoring and may also facilitate 
personalized cancer treatment. In ovarian cancer, in addition 
to other non‑gynaecological cancers, two opposite epigenetic 
phenomena occur. The first involves an overall global decrease 
in DNA methylation of heterochromatin leading to demethyl-
ation of several oncogenes, while the second involves specific 
CpG island hypermethylation associated with the promoters 
of tumor suppressor genes. Early studies focused on the meth-
ylation patterns of single genes associated with tumorigenesis. 
However, newer genome-wide methods have identified a group 
of genes whose regulation is altered by DNA methylation 
during ovarian cancer progression.
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1. Introduction

Ovarian cancer is the leading cause of gynecologic cancer 
death, while constituting only 3% of all female cancers (1). 
Although the exact cause of ovarian malignancies remains 
unknown, the fact that >50% of deaths occur in postmeno-
pausal women aged 55-74 years, suggests a hormonal risk. Due 
to the lack of specific symptoms in early stage, 70% of cases 
are not diagnosed until the cancer has reached an advanced 
stage, FIGO Stages IIB to IV (spread of tumor within the pelvis 
or elsewhere in the abdomen) (2). Early detection of ovarian 
cancer reportedly increases the five-year survival rate by up to 
92%; however, the actual overall five-year survival rate is only 
15-45% (3). Despite advances in cancer research and treatment, 
these survival statistics have remained largely unchanged 
for many years. The lack of early detection markers and the 
development of drug resistance following chemotherapy, are 
the main obstacles to effective treatment strategies. A better 
understanding of the molecular pathogenesis of ovarian cancer 
is needed in order to develop new drug therapies or diagnostic 
biomarkers and elucidate the role of environmental exposures 
to the individual's predisposition to the disease.

Ovarian epithelial carcinoma (OEC) is the most common 
ovarian malignancy, with substantial histopathological hetero-
geneity. According to the 2003 World Health Organization 
classification scheme, the most common histologic subtype 
is serous ovarian carcinoma (~60%), while other subtypes 
include endometrioid (10‑20%), clear cell (10%), transitional 
(6%), mucinous (<5%), and undifferentiated (<1%) subtypes (4). 
The underlying genetic basis of ovarian cancer contributes to 
this heterogeneity. The majority of OECs (90%) are sporadic, 
with the remaining OECs being inherited. Inherited ovarian 
cancers account for 5‑10% of all ovarian cancers and are char-
acterized by the development of highly aggressive neoplasms 
at an earlier age of onset than their sporadic counterparts (4). 
Mutations of BRCA1 and BRCA2 tumor suppressor genes 
are responsible for most hereditary ovarian cancers. The two 
genes are essential for DNA repair and play integral roles in 
genomic stability and integrity (5).

A number of studies (6-8) have reported the use of the 
candidate gene approach in the search for common risk vari-
ants associated with ovarian cancer. Identification of common 
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genetic susceptibility alleles may lead to a greater under-
standing of disease etiology, potentially leading to genetic 
screening approach that could be used to identify the propor-
tion of the population that would benefit from screening. Genes 
have been selected from relevant biological pathways, steroid 
hormone metabolism, DNA repair, apoptosis and cell cycle 
control, as well as known oncogenes and tumor suppressor 
genes. However, the genes that participate in the development 
of ovarian cancer represent only a small portion of the ovarian 
cancer-associated genes, as many of them are merely associ-
ated with ovarian cancer development but do not contribute to 
its initiation and progression. Moreover, molecular pathways in 
different ovarian tumors may vary significantly. Thus, genetic 
alterations alone cannot account for the complexity of ovarian 
cancer. Since genetic factors are almost impossible to reverse, 
the potential reversibility of epigenetic mechanisms makes 
them attractive candidates for the prevention and/or treatment 
of ovarian carcinoma (9-11).

Epigenetic mechanisms are heritable changes in gene 
expression without altering the primary DNA sequence (12). 
Epigenetics involves the interplay between DNA methylation, 
histone modifications and expression of non-coding RNAs in 
the regulation of gene transcription (13). Increasing evidence 
has shown that epigenetic alterations including DNA methyla-
tion play a significant role in cancer, from the silencing of tumor 
suppressors to the activation of oncogenes and the promotion 
of metastasis (14). DNA methylation is a key element in tissue 
differentiation during early embryonic development. The 
diversion of a normal cell cycle to those of a less differentiated 
status comprises one of the initial steps of tumorigenesis (15). 
Aberrant DNA methylation is now recognized as one of the 
most common molecular abnormalities in cancer frequently 
associated with drug resistance (14).

DNA methylation comprises the best known epigen-
etic mechanism associated with gene expression. DNA 
methylation occurs on the cytosine residues of CG (also 
designated as CpG) dinucleotides. Enzymes known as DNA 
methyltransferases (DNMTs) catalyse the addition of a 
methyl group to the cytosine ring to form methyl cytosine, 
employing S-adenosylmethionine as a methyl donor  (16). 
In humans and other mammals, DNA modification occurs 
predominantly on cytosines that precede a guanosine in the 
DNA sequence (16). These dinucleotides can be clustered in 
small stretches of DNA, termed CpG islands, which are often 
associated with promoter regions. Most CpG sites outside 
the CpG islands are methylated, suggesting a role in the 
global maintenance of the genome, while most CpG islands 
in gene promoters are unmethylated, which allows active 
gene transcription (16,17). Generally, when a given stretch of 
cytosines in a CpG island located in the promoter region of 
a gene is methylated, that gene is silenced by methylation, 
and such a CpG island would be termed ‘hypermethylated’. 
Conversely, when a given stretch of cytosines in a CpG island 
located in the promoter region of a gene is not methylated, 
that gene is not silenced by methylation, and the CpG island 
in this case would be ‘hypomethylated’ (18). Methylation of 
promoters inhibits their recognition by transcription factors 
and RNA polymerase, as methylated cytosines preferentially 
bind to a protein known as methyl cytosine binding protein, 
or MeCP. When a promoter region normally recognized by an 

activating transcription factor, is methylated, its transcription 
is inhibited (19).

The DNA methylation profile of a tumor cell is a reflection 
of its somatic lineage, environmental exposure and genetic 
predisposition. The DNA methylation profile is therefore 
distinct for each histological subtype, suggesting different 
tumorigenic mechanisms. The detection of the epigenetic 
signature of each cancer cell may be useful in the identification 
of candidate biomarkers for disease detection, classification 
and monitoring and facilitate personalized cancer treatment.

2. DNA methylation in ovarian cancer

In ovarian cancer, in addition to other non‑gynaecological 
cancers, two opposite epigenetic phenomena occur: i) An 
overall global decrease in DNA methylation of heterochromatin 
leading to demethylation of several oncogenes, ii) specific CpG 
island hypermethylation associated with the promoters of tumor 
suppressor genes (9,20-22) (Fig. 1). The aberrant methylation of 
CpG islands in gene promoters has been correlated with a loss of 
gene expression, and it appears that DNA methylation provides 
an alternative pathway to gene deletion or mutation for the loss 
of tumor suppressor gene (TSG) function (23). The epigenetic 
silencing of TSG induces such mechanisms as uncontrolled cell 
division, the ability to infiltrate surrounding tissues, metastasis, 
avoiding apoptosis or sustaining angiogenesis, all of which 
are responsible for promoting tumor development. In ovarian 
cancer, a large number of TSGs have been found to undergo 
hypermethylation (24-26).

One of the most studied genes in ovarian cancer is breast 
cancer early onset gene 1 (BRCA1) gene, due to its role in 
inherited and sporadic forms of the disease (27,28). BRCA1 is 
important in maintaining genomic stability (29), and interacts 
with numerous proteins, forming complexes that are involved 
in recognizing and subsequently repairing DNA. Evidence 
suggests that in cases of sporadic ovarian cancer promoter 
hypermethylation, non‑somatic mutation is the cause for 
BRCA1 inactivation (30). Aberrant methylation of the gene 
promoter may also serve as an alternative explanation for the 
loss of heterozygosity associated with BRCA1 deficiency in 
ovarian carcinomas (31). Complete or partial inactivation of 
the BRCA1 gene through hypermethylation of its promoter 
has been reported in 15% of sporadic ovarian tumors (27,32). 
Hypermethylation leads to the silencing of this gene in ovarian 
tumors and levels of methylation correlated with decreased 
BRCA1 expression (33,34). Compared to stage I and healthy 
subjects, there were higher BRCA1 promoter methylation 
frequencies in stage II and III ovarian cancers  (34). In a 
series comparing the methylation status of BRCA1 among 
tumor samples obtained from patients with benign ovarian 
tumors, borderline tumors as well as carcinomas, promoter 
methylation was detected in 31% of carcinomas but in none 
of the benign or borderline tumors (35). Hypermethylation 
of BRCA1 was detected at a significantly higher frequency 
in serous carcinomas than in tumors of the other histological 
types (36). Of note, methylation of BRCA1, while frequent 
in sporadic ovarian cancer, it has not been reported in the 
hereditary type of the disease, nor in samples from women 
with a germ-line BRCA1 mutation (37,38). BRCA2 does not 
exhibit a similar methylation profile in ovarian cancer (39). 
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Findings of previous studies have shown that methylated 
CpGs at the BRCA2 promoter were either absent or at very 
low levels in tumor DNA compared to normal tissues (33).

A number of other classical TSGs have been found to 
undergo hypermethylation in cases of ovarian cancer. Tumor 
suppressor genes involved in DNA mismatch repair (MMR) 
have a distinct carcinogenic mechanism in ovarian tumors. 
DNA MMR is an endogenous molecular mechanism that 
reverses replication errors that escape correcting by replicative 
DNA polymerases. In MMR-defective cells, both base-to-base 
mismatches and insertion/deletion loops, are left uncor-
rected (40). This results in increased spontaneous somatic 
mutations. This effect is particularly obvious in non‑expressed 
sequences comprising multiple simple repeats (microsatellites), 
and the characteristic microsatellite instability (MSI) is diag-
nostic for MMR-defective tumors (41,42). Approximately 10% 
of ovarian cancers are related to this molecular pathway (43). 
Defective MMR is often a consequence of germ-line muta-
tions in the hMLH1, hMSH2, MGMT or, occasionally, MSH6 
or PMS2 genes. Hypermethylation of the MLH1 gene accom-
panied by loss of the gene expression has been reported in 
10-30% of ovarian malignancies, while in cases with acquired 
resistance to platinum-based chemotherapy, hMLH1 promoter 
methylation has been identified in 56% of cases  (44,45). 
The methylation frequency of hMSH2 promoters has been 
reported to be as high as 57% in ovarian cancers. Methylation 
of hMSH2 correlated with histological grade and lymphatic 
metastasis. Additionally, the methylation rates of hMSH2 were 
significantly higher in endometrioid adenocarcinoma tissues 
compared to other pathological types of the disease (44).

RAS association domain family protein 1a (RASSF1A) 
which is an inhibitor of the anaphase-promoting complex, 
together with OPCML, are among the most frequently methyl-
ated genes in ovarian cancer (46,47). Genes involved in cell 
cycle pathways such as p16 and p15 have also been affected 
by altered methylation of their promoters (48). E-cadherin is a 
transmembrane glycoprotein that mediates calcium-dependent 
interactions between adjacent epithelial cells. It has been found 
that the risk of E-cadherin hypermethylation was 1.347-fold 
among patients with ovarian cancer than that among patients 
with benign ovarian lesions (48). Other genes involved in cell 

adherence, such as H-cadherin and CDH1, have shown similar 
results (49). HSulf-1, which encodes an arylsulfatase that acts 
on cell surface heparin sulfate proteoglycans and inhibits 
growth factor signalling, was found to be methylated in >50% 
of ovarian tumors and cell lines (50).

Methylation profiles of several genes belonging in the 
family of the Homeobox (HOX) genes have also been inves-
tigated in cases of ovarian carcinomas. Homeobox genes 
constitute a family of transcription factors that function during 
embryonic development to control pattern formation, differ-
entiation, and proliferation (51). HOX genes are expressed in 
normal adult reproductive tissue where they are involved in 
regulating differentiation. Findings of previous studies suggest 
that the abnormal expression of particular HOX genes is asso-
ciated with ovarian cancers (52). Methylation of the HOXA9 
gene has been observed in 95% of patients with high grade 
serous ovarian carcinoma (53). It has been suggested that the 
methylation status of HOXA9 and HOXAD11 genes may serve 
as potential diagnostic and prognostic biomarkers (53,54).

The majority of studies assessing the methylation status 
of TSGs have focused on single genes with varying reported 
frequencies in different tissues. Hypermethylation in ovarian 
cancer, however, has been found to be associated with the inac-
tivation of almost every pathway involved in ovarian cancer 
development, including DNA repair, cell cycle regulation, apop-
tosis, cell adherence and detoxification pathways (32,38,55-58).

In addition to the hypermethylation of promoter-associated 
CpG islands, global hypomethylation and specific hypometh-
ylation of protein expressed genes that subsequently become 
overexpressed plays a significant role in ovarian cancer. 
Hypomethylation in the centromere and subtelomeric regions 
is involved in the induction of genomic instability (GI), leading 
to chromosomal translocations and gene disruption through the 
reactivation of transposable elements (21). Decreased methyla-
tion of LINE-1 elements is correlated with high grade, advanced 
stage and poor prognosis in ovarian cancer patients (59). Satellite 
DNA hypomethylation is an independent marker of poor prog-
nosis. Hypomethylation is increased from non-neoplastic tissue 
toward ovarian cancer as well as advanced grade and stage (60).

In addition to repetitive elements and DNA satellites, a 
number of protein-coding genes are overexpressed in ovarian 

Figure 1. Schematic representation of the methylation events associated with ovarian tumorigenesis.
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cancer, in association with promoter hypomethylation. 
Several oncogenes have been reported to have an increased 
epigenetically induced expression. Oncogenes such as CLDN4 
(encoding an integral component of tight junctions), MAL 
(mal, T-cell differentiation protein) and BORIS (brother of 
the regulator of imprinted sites) belong to a number of onco-
genes that contribute to drug resistance and are associated 
with overall prognosis of the disease (61-63). Upregulation, 
together with hypomethylation of the ABCG2 multidrug trans-
porter and TUBB3 genes, which is a determinant of taxane 
resistance, have been observed in cases of advanced ovarian 
carcinoma with drug-acquired chemoresistance (64,65). Other 
cancer-associated genes including MCJ (66,67) and SNGG 
(synucelin-γ), encoding an activator of the MAPK and Elk-1 
signaling cascades (63,68), are upregulated in ovarian cancer 
in association with DNA hypomethylation.

3. Diagnosis

Since aberrant methylation is one of the earliest molecular 
alterations during tumorigenesis, it has been suggested as a 
promising strategy for the early detection of ovarian cancer. 
However, methylation of single genes may have limited value 
in clinical applications. At present, no single epigenetic 
biomarker is able to accurately detect early ovarian cancer in 
either tissue or body fluids. Analysis of the methylation status 
of multiple genes simultaneously in a blood-based assay may 
provide a more sensitive and specific method for the molecular 
classification and prognosis of ovarian cancer.

A genome-wide DNAm profiling of a large ovarian cancer 
case control cohort demonstrated that active ovarian cancer 
has a significant impact on the DNAm pattern in peripheral 
blood (69). A microarray-based analysis on ovarian tumors 
identified 112 methylated loci prognostic for progression-free 
survival in advanced ovarian cancer patients (70). The data 
suggested that a higher degree of CpG island methylation is 
associated with early disease recurrence following chemo-
therapy (71). Promoter hypermethylation of at least one of 
six genes (BRCA1, RASSF1A, APC, p14ARF, p16INK4A and 
DAPK) was observed in 41/50 ovarian cancer serum speci-
mens. Thus, hypermethylation of certain genes may present 
an early event in ovarian tumorigenesis that can be detected 
in the serum DNA from patients with ovary-confined (stage 
IA or  B) tumors and in cytologically negative peritoneal 
fluid (56). A recent study that used multiplex methylation-
specific PCR to analyze the methylation status of cell-free 
serum DNA of seven candidate genes (APC, RASSF1A, CDH1, 
RUNX3, TFPI2, SFRP5 and OPCML), achieved a sensitivity 
and specificity of 85.3 and 90.5%, respectively, in stage I 
OEC. The detection rates were markedly higher compared 
with a single CA125, which produced a sensitivity of 56.1% at 
64.15% specificity (72). Another study demonstrated notable 
detection sensitivities and specificities using a 10-gene panel 
in plasma (73).

The role of DNA methylation biomarkers in ovarian cancer 
is promising. However, progression towards clinical practice 
is hampered by the lack of detection techniques combining 
high accuracy with low cost. The main obstacles that are to be 
overcome are the standardization of analysis techniques and 
establishment of reliable reference values.

4. Treatment

Chemoresistance. The current chemotherapy strategy in 
treating ovarian cancer patients involves a combination of a plat-
inum- and a taxane-based therapy. While most ovarian cancer 
patients respond completely to chemotherapy, the majority of 
the initial responders eventually develop chemoresistance (74). 
In addition to mutations, DNA methylation-induced silencing 
of various drug response genes and pathways also facilitates 
the development of ovarian tumor cell drug resistance (75). It 
was shown that the silencing of SFRP5, which is a Wnt antago-
nist, by DNA hypermethylation was associated with platinum 
resistance of ovarian cancer (76). Similarly, hypermethylation 
of several genes such as hMLH1, the arginine biosynthesis-
related gene ASS1, and ESR2 (encoding the ER-b) are involved 
in platinum resistance (77-79). Platinum resistance has also 
been correlated with stage-progressive hypermethylation of 
the Methylation Controlled DNAJ (MCJ) gene which resulted 
in loss of gene expression and correlated with a poor response 
to chemotherapy (67). DAPK, which is a gene involved in 
apoptosis, has also been shown to be silenced in drug‑resistant 
cancer due to methylation (80).

In addition to the loss of expression due to DNA methyla-
tion, it was shown that hypomethylation along with an increase 
in expression of the myelin and lymphocyte protein (MAL) gene 
is associated with platinum resistance (62). Hypomethylation 
and upregulation of the ABCG2 multidrug transporter gene 
was also shown to occur during chemoresistance in two 
ovarian carcinoma cell lines (81). Based on the association of 
DNA methylation of specific genes with platinum sensitivity, 
it was shown that the hypomethylation-mediated activation of 
the cell growth-promoting pathways, PI3K/Akt, TGF-β and 
cell cycle progression, may contribute to cisplatin resistance in 
ovarian cancer cells (82).

At present, only two biomarkers of protein origin (CA125 
and HE4) are considered as indicators of response to chemo-
therapy. Epigenetic markers may supplement these proteins 
possibly by increasing their sensitivity and specificity. DNA 
methylation biomarkers in particular, have several advantages 
over other biomarkers such as proteins, gene expression and 
DNA mutations, since they are stable, can easily be distin-
guished, and can be detected in specific DNA regions (CpG 
islands) (83). In the future, the overall DNA methylation profile 
of the resected ovarian tumor may may be used for the develop-
ment of individually tailored treatment regimens (84).

Epigenetic therapy. Unlike cancer-associated gene mutations, 
DNA methylation and other epigenetic modifications are 
potentially reversible. This makes epigenetic agents attractive 
candidates for disease prevention and resensitization to chemo-
therapeutic agents. Demethylation of tumor suppressor genes 
may have a positive effect in cancer progression, whereas the 
decrease of methylation of oncogenes which reactivate these 
genes, may have an adverse effect. There are two types of 
DNA methylation inhibitors: nucleoside and non‑nucleoside 
analogues. Nucleoside analogues inhibit methylation when 
they are integrated into DNA and block the release of DNMTs 
by forming a covalent complex with these enzymes (85). They 
have been found to have clinical activities especially on hema-
topoietic malignancies (86-88). These inhibitors have been 
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used to induce the re-expression of silenced TSGs caused by 
hypermethylation. Although aberrant promoter methylation 
is corrected by DNA methylation inhibitors, when the drug 
is stopped, the aberrant methylation and gene silencing is 
re‑established (16). Non‑nucleoside analogues are thus small 
molecular inhibitors that bind to the catalytic region of 
DNMTs and suppress translation.

Azacytidine and decitabine are the first two DNMT 
inhibitors approved for the therapy of myelodysplastic 
syndromes (13,31). Decitabine, a potent methylation inhibitor, 
has been shown to cause demethylation in numerous ovarian 
cell lines, reversing the silencing of several TSGs (89,90). 
Decitabine has also been reported to decrease cisplatin 
resistance in both ovarian cancer cells and a mouse xenograft 
through demethylation of the hMLH1 promoter  (91). Two 
clinical trials have provided evidence that azacytidine and 
decitabine are capable of reversing platinum resistance in 
ovarian cancer patients (92,93). However, DNMT inhibitors 
may simultaneously cause widespread genomic hypomethyl-
ation that potentially leads to genomic instability (94).

Histone deacetylation is a well‑known epigenetic mecha-
nism that also contributes to silencing of TSGs in cancer. 
While HDACIs and DNMTIs have demonstrated clinical 
activity as single‑agent therapies for hematopoietic malig-
nancies, DNA methylation and histone deacetylation often 
co‑ordinately inhibit gene transcription, and restoration of 
the two silencing mechanisms may be necessary for maximal 
gene derepression  (13). Treatment with a DNMTI/HDACI 
combination, in ovarian cancer cases, was synergistic for 
upregulation of the pro-apoptotic gene TMS1/ASC, in contrast 
to either agent alone (95). An earlier integrated microarray 
analysis demonstrated that a DNMTI/HDACI‑combined 
treatment of ovarian cancer cells affects more genes that either 
agent individually (96). Conventional chemotherapy together 
with methylation inhibitors have also been examined in 
phase I/II clinical trials. Decitabine in combination with carbo-
platin demonstrated no significant improvement over platinum 
alone in an ovarian cancer study (97). Another similar study 
that uses low‑dose decitabine plus carboplatin resulted in more 
disease responses and established in vivo biological activity 
in blood and tumor specimens of ovarian cancer patients (93). 
Carboplatin when combined with 5-azacytidine also showed 
encouraging results (92).

5. Conclusion

Epigenetic alterations such as DNA methylation are clearly 
involved in ovarian cancer initiation and progression. Global 
DNA hypomethylation and localized hypermethylation of 
specific gene promoters contribute to genome instability and 
transcriptional silencing of tumor suppressor genes, respec-
tively. Early studies focused on the methylation patterns of 
single genes associated with tumorigenesis. However, newer 
genome-wide methods have identified a group of genes whose 
regulation is altered by DNA methylation during ovarian 
cancer progression. The profiling of DNA methylomes may 
provide new insight into the development of biomarkers 
with clinical value for cancer risk assessment, early detec-
tion, prevention and prognosis. Therapeutic agents that target 
methylation are already being tested for future use and have 

proven beneficial in other types of malignancies. This is an 
exciting and rapidly evolving area of research in which inves-
tigations may lead to the possible detection of interindividual 
drug response differences and their reversal.
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