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Abstract. Various mechanisms have been proposed to 
underlie the cellular activity of genistein, based on biological 
experiments and epidemiological studies. The present study 
demonstrated that genistein inhibited the expression of 
cytoplasmic nicotinamide adenine dinucleotide phosphate 
(NADP)‑dependent isocitrate dehydrogenase (cICDH), thus 
increasing levels of intracellular reactive oxygen species 
(ROS) in human promyeloid leukemia HL‑60 cells. In genis-
tein‑treated cells, the cellular redox potential (GSH/GSSG) 
was significantly decreased. This decrease in redox potential 
was caused by significant downregulation of the cICDH 
gene, generating the reducing equivalents (NADPH) for 
maintenance of cellular redox potential and cellular ROS 
level, which may regulate cell growth and cell death. 
Genistein‑induced ROS partially induced rapid transition 
into the G2/M phase by upregulation of p21wap1/cip1 and apop-
totic cell death. Treatment of cells with N‑acetylcysteine, a 
well‑known antioxidant (ROS scavenger), not only partially 
restored cell growth and inhibited cell cycle arrest in G2/M, 
but also prevented apoptotic cell death. By contrast, normal 
lymphocytes did not significantly progress into the G2/M 
phase and radiation‑induced cell death was inhibited by 
genistein treatment. Therefore, genistein and γ‑irradiation 
together synergistically cause cell death in leukemia cells, 
however, genistein has a radioprotective effect in normal 

human lymphocytes. In conclusion, it was suggested that 
genistein selectively functions, not as an antioxidant, but as 
a pro‑oxidant in HL‑60 cells. This property can increase 
ionizing radiation‑induced cell cycle arrest and sensitivity to 
apoptotic cell death in human promyeloid leukemia HL‑60 
cells, but does not cause significant damage to normal cells.

Introduction

Genistein (4',5,7‑trihydroxyisoflavone), a naturally occurring 
soybean isoflavone glycoside with a heterocyclic diphenolic struc-
ture similar to estrogen (1), is considered to be a potent anticancer 
agent (2,3). The potential importance of genistein was highlighted 
by a previous study that reported an increased consumption of soy 
in Asia resulting in increased levels of isoflavone in serum, which 
is closely associated with a reduced risk of prostate cancer  (4). 
Genistein has been demonstrated to inhibit growth of tumor 
cell lines derived from various malignancies, including breast 
cancer, prostate cancer, head and neck squamous cell carcinoma, 
melanoma and leukemia (5‑11). Genistein is considered to affect 
diverse cell functions, for example, it has been demonstrated to 
trigger cell cycle arrest and apoptotic cell death through inactiva-
tion of NF‑κB and activation of caspase‑3 in prostate cancer cells, 
as well as to have potent anti‑angiogenic activity, inhibiting tumor 
cell proliferation (12‑14). Previous studies have also suggested 
that genistein suppresses tumor cell growth through the inhibition 
of tyrosine protein kinases (15), topoisomerases I and II (16,17) 
and the expression of mRNAs of cell cycle‑related genes (18) 
in different cell types. By contrast, under other circumstances, 
apoptotic cell death was inhibited in the presence of genistein. 
Several previous studies revealed that genistein was able to 
prevent apoptotic cell death via its antioxidant properties (19,20). 
Genistein inhibited UV irradiation‑induced oxidative stresses and 
neuronal damage resulting from production of reactive oxygen 
species (ROS). It also inhibited methylglyoxal‑induced apoptotic 
cell death in a human mononuclear cell model, and inhibited 
methylglyoxal‑induced DNA damage and ROS production 
in vitro. Animal experiments further confirmed the protective 
effect of genistein on methylglyoxal‑induced cell injury (21).

Genistein decreases cellular redox potential, partially 
suppresses cell growth in HL‑60 leukemia cells and 

sensitizes cells to γ‑radiation‑induced cell death
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Intracellular ROS, including superoxide, hydrogen 
peroxide and hydroxyl radicals, are generated following 
exposure to ionizing radiation, selected chemotherapeutic 
agents (Taxol and etoposide), hyperthermia, inhibition of 
antioxidant enzymes (including thioredoxins, catalase, 
superoxide dismutases and glutathione‑linked peroxidase) 
and depletion of cellular reductants, including nicotin-
amide adenine dinucleotide phosphate (NADPH), reducing 
equivalents and glutathione (GSH) (22‑25). Therefore, ROS 
are involved in numerous biological and pathophysiological 
situations, including aging and inflammation. ROS have 
high chemical reactivity and, thus, damage lipids, proteins, 
as well as mitochondrial and nuclear DNA, which can lead 
to cell cycle arrest  (26,27). Furthermore, ROS genera-
tion can induce apoptotic cell death through depletion of 
intracellular reduced GSH and protein thiols, and loss of 
mitochondrial membrane potential  (25,27). The present 
study used human promyeloid leukemia HL‑60 cells to 
examine the intracellular signal mechanisms involved in 
genistein‑induced cell growth arrest and cell death.

Materials and methods

Cell culture and growth. Genistein and N‑acetylcysteine 
were purchased from Sigma (St. Louis, MO, USA). A 
stock solution of genistein was prepared in dimethyl sulf-
oxide. Stock solution of N‑acetylcysteine was prepared in 
phosphate‑buffered saline (PBS). Working solutions were 
prepared by dilution of stock solutions in culture medium. 
HL‑60 human promyeloid leukemia cells (4x104/ml) were 
grown as suspension cultures in RPMI‑1640 medium 
(Gibco, Scotland, UK) supplemented with 10% fetal 
bovine serum (FBS; Hyclone, Logan, UT, USA) and 
100 U/ml penicillin/streptomycin (Sigma) in a humidified 
atmosphere containing 5% CO2 at 37˚C for 24 h. Normal 
human lymphocytes were isolated from peripheral blood 
of healthy human males. Blood was added to Ficoll‑Paque 
(Amersham Pharmacia Biotech, Uppsala, Sweden) and 
centrifuged at 400 x g for 20 min. The lymphocyte layer was 
collected using a micropipette and diluted with serum‑free 
RPMI‑1640[0]. The diluted cell suspension was centrifuged 
at 70 x g for 10 min. Lymphocytes (4x104/ml) were cultured 
in RPMI‑1640 supplemented with 10% FBS, 100  U/ml 
penicillin/streptomycin and 5 µg/ml phytohemagglutinin 
(Sigma) in a humidified atmosphere containing 5% CO2 at 
37˚C for 24 h. Cell growth and viability were determined 
using a trypan blue (Sigma) exclusion test.

γ‑irradiation. Cells (2x105/ml) pretreated with 20 µM genistein 
for 6 h and untreated cells were irradiated with a single dose 
of 2 Gy (dose rate, 0.2 Gy/min) or 5 Gy (dose rate, 0.5 Gy/min) 
and then cultured in a humidified atmosphere containing 5% 
CO2 at 37˚C.

Measurement of intracellular ROS level. HL‑60 cells 
(4x104 cells/4 ml) were cultured in T25 flasks and treated with 
20 µM genistein for 0, 12, 24 and 48 h. Harvested cells (5x105) 
were treated with 10 µM chloromethyl‑2',7'‑dichlorofluorescein 
diacetate (DCFH‑DA) for 30 min in the dark and then washed 
with PBS. The intracellular ROS level was measured using 

the FACScan (Beckman‑Coulter Instruments Inc., Brea, CA, 
USA) and visualized using a fluorescence microscope (Leica, 
Heidelberg, Germany).

Measurement of intracellular GSH level. In order to deter-
mine the total intracellular levels of reduced (GSH) and 
oxidized (GSSG) forms of GCH, a GSH assay kit (Cayman 
Chemical, Ann Arbor, MI, USA) was used. HL‑60 cells 
(1x107) were used for each experiment. Concentrations of 
GSH and GSSG were calculated from the typical standard 
curves. The detectable range was 0.2‑6.0 nmol/ml.

Reverse transcription‑polymerase chain reaction (RT‑PCR) 
analysis. TRIzol® reagent (Invitrogen Life Technologies, 
Grand Island, NY, USA) was used to isolate total RNA from 
5x106 HL‑60 cells according to the manufacturer's instruc-
tions. Total RNA (1 mg) was added to a 20‑µl reaction mixture 
containing Maxime RT PreMix (iNtRON Biotechnology, 
Seongnam, Korea) and 10 pmole primers. Primers used were 
cICDH, forward 5'‑TTGGATCCAAAATGTCCAAAAAA‑3' 
and reverse 5'‑ATGAATTCAAGTAGTCAGAACGT‑3'; 
β‑actin, forward 5'‑CA TCCTCACCCT GAAGTACCC‑3' and 
reverse 5'‑AGCCTGGATAGCAACGTACATG‑3'. RT‑PCR 
was performed in a thermal cycler (Apollo, San Diego, CA, 
USA) under conditions of 45˚C for 30 min, followed by 94˚C 
for 5 min, and 25 cycles of 94˚C for 1 min, 52˚C for 1 min 
and 72˚C for 1 min. PCR products were separated on a 1.5% 
agarose gel and visualized with ethidium bromide staining.

Propidium iodide staining for analysis of apoptotic cell death 
and cell cycle status. HL‑60 cells (2x105) were suspended in 
2 ml ice‑cold 50% ethanol and maintained at 4˚C for 40 min. 
Fixed cells were harvested by centrifugation, at 1,000 x g for 
10 min, and resuspended in 800 µl PBS. Subsequently, 100 µl 
RNase (1 mg/ml) and 100 µl propidium iodide (400 µg/ml) 
were added to the cell suspension, and cells were incubated at 
37˚C for 30 min. This allowed for the discrimination of live 
cells from apoptotic and necrotic cells. Analysis of apoptotic 
cell death was performed using a FACScan (Beckman‑Coulter 
Instruments Inc.) equipped with a single 488‑nm argon laser 
(Beckman‑Coulter Instruments Inc.). The percentages of apop-
totic cells and the cell cycle distribution were calculated using 
MultiCycle for Windows software (Phoenix Flow Systems, 
San Diego, CA, USA).

Western blot analysis. The protein extract sample was sepa-
rated in a 12.5% denaturing polyacrylamide gel, followed 
by transfer onto nitrocellulose membranes (GE Healthcare 
Bio‑Sciences, Pittsburgh, PA, USA). Membranes were incu-
bated with monoclonal anti‑human p21wap1/cip1, polyclonal 
anti‑human Bcl‑2‑associated X protein (Bax), polyclonal 
anti‑human β‑actin (Cell Signaling Technology, Inc., Danvers, 
MA, USA) and polyclonal anti‑human B‑cell lymphoma 2 
(Bcl‑2; Santa Cruz Biotechnology, Inc., Dallas, TX, USA) at 
room temperature for 2 h, and then with secondary antibodies 
(anti‑mouse or anti‑rabbit immunoglobulin G horseradish 
peroxidase‑conjugated; Cell Signalling Technology, Inc.) 
at room temperature for 1 h. Membranes were washed four 
times with Tris‑buffered saline with Tween 20 and protein 
bands were visualized using an ECL detection kit (Amersham 
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Pharmacia Biotech). Protein concentrations were determined 
by the Lowry method.

Morphological analysis. Human blood lymphocytes and 
HL‑60 cells were treated with genistein and γ‑radiation, 
followed by culture for 48  h. Cytochalasin‑B (4  µg/ml, 
Sigma) was added 20  h after γ‑irradiation. Cells were 
harvested and resuspended in hypotonic 0.075 M KCl for 
3 min. Cells were centrifuged again and Carnoy's fixative 
(American MasterTech, Lodi, CA, USA) was gently added. 
Cells were then mounted on clean slides and air‑dried. 
The slides were stained with Giemsa (Sigma) solution and 
observed under a light microscope (Leica).

Results

Effect of genistein on HL‑60 cell proliferation and intracel‑
lular ROS generation. Fig.  1A shows the time‑dependent 
response of HL‑60 cells to exposure to 20  µM genistein 
in the presence or absence of 15  mm N‑acetylcysteine, a 
sulfur‑containing antioxidant compound. Genistein‑treated 
cells demonstrated significant retardation of cell growth and, 
based on time‑lapse images, apoptotic cell death was signifi-
cantly increased (Fig. 1B). A strictly regulated cellular level 
of ROS is essential for the proliferation of tumor cell growth, 
therefore an imbalance of ROS affects cell growth arrest and 
cell death (28). The level of cellular ROS in HL‑60 cells was 

Figure 1. Effect of genistein on the proliferation of HL‑60 cells and intracellular ROS generation. (A) Growth curve for human promyeloid leukemia HL‑60 
cells exposed to genistein in the presence or absence of N‑acetylcysteine (15 µM). Values are presented as the mean ± SD of three independent experi-
ments. (B) Effect of genistein (20 µM) on the level of apoptotic cell death in HL‑60 cells. Values are expressed as the mean ± SD of three independent 
experiments. (C) Effect of genistein (20 µM) on intracellular ROS generation in HL‑60 cells. DCFH‑DA fluorescence was determined by flow cytometry 
and visualized using a fluorescence microscope 12, 24 and 48 h after the treatment. ROS, reactive oxygen species; SD, standard deviation; DCFH‑DA, 
chloromethyl‑2',7'‑dichlorofluorescein diacetate.
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examined to determine whether genistein causes a change in 
cellular ROS level and is associated with cell growth inhibi-
tion in these cells. The oxidant‑sensitive probe DCFH‑DA 
was used, which permits detection of various oxygen‑derived 
free radicals by flow cytometry and fluorescence microscopy 
(Leica). As shown in Fig. 1C, intracellular ROS were signifi-
cantly elevated in HL‑60 cells following treatment with 20 µM 
genistein for 12, 24 and 48 h, compared with the control HL‑60 
cells. However, cells partly recovered from genistein‑induced 
cell growth inhibition and death when exposed to genistein 
in the presence of N‑acetylcysteine, a cell‑permeable ROS 
scavenger. This finding indicates that genistein led to upregu-
lation of cellular ROS in HL‑60 cells and that this affected 
cell growth.

Expression of cICDH. The present study investigated how 
genistein induced elevation of the intracellular ROS level. 
In cells, the cellular redox potential (GSH/GSSG ratio) is an 
important factor in the homeostatic regulation of intracel-
lular ROS, which, in turn, is important in cell signaling for 
proliferation. In addition, redox potential is also a critical 
factor in the control of cell growth in various cancer cell 
lines. Reducing equivalents (NADPH) generated by cICDH or 
glucose‑6‑phosphate dehydrogenase are indispensable for the 
regeneration of oxidized GSH, kithioredoxin and other mole-
cules of this type. Therefore, to ascertain the role of genistein 
in the generation of ROS, intracellular redox potential, as well 
as cICDH involved in the regulation of cellular redox status 
was examined. Genistein treatment decreased the transcrip-
tional levels of cICDH and, thus, significantly decreased the 
GSH/GSSG ratio (Fig. 2A and B). The level of cICDH gene 
expression in the genistein‑treated HL‑60 cells was only 20% 
that of the control cells and, consequently, resulted in a decre-
ment by half in the GSH/GSSG ratio.

Pro‑oxidant activity of genistein results in G2/M phase arrest 
and apoptosis. Genistein was suggested to induce cell cycle arrest 
in the G2/M phase, which leads to inhibition of cell growth (29). 
To investigate whether ROS are involved in genistein‑induced 
G2/M phase transition and cell death in the HL‑60 cell line, 
cell cycle progression was analyzed. HL‑60 cells were treated 
for 48 h with 20 µM genistein. Following 12 h of genistein 
treatment, cell cycle progression into the G2/M phase was most 
prominent. In total, 63% of HL‑60 cells treated with genistein 
were in the G2/M phase, with a concomitant decrease in cells 
in the G0/G1 phase from 32 to 1%. An increase in the sub‑G0/
G1 peak (hypodiploid apoptotic cells) was also noted. Cell 
death exponentially increased 48 h after genistein treatment. By 
contrast, addition of N‑acetylcysteine inhibited or delayed genis-
tein‑induced G2/M phase progression and prevented apoptotic 
cell death. N‑acetylcysteine also significantly induced S phase 
arrest, enabling repair of genistein‑induced damage (Table I). 
These data indicated that genistein‑induced G2/M phase arrest 
is caused by elevated intracellular ROS. Based on these find-
ings, the levels of expression of p21WAF1/Cip1 and cyclin B1, two 
molecules involved in cell cycle progression, were evaluated by 
western blot analysis. As shown in Fig. 3, genistein increased the 
level of p21WAF1/Cip1 after 12, 24 and 48 h of treatment, resulting 
in a 2‑3‑fold increase in expression. The effect of genistein on 
the Bcl‑2 family of proteins, which are associated with apoptotic 

Figure 2. Effect of Ge(+) on the expression of the reducing‑equivalent‑gener-
ating cytoplasmic nicotinamide adenine dinucleotide phosphate‑dependent 
cICDH in HL‑60 cells. (A) Reverse transcription polymerase chain reaction 
was used to analyze the gene expression of cICDH in HL‑60 cells. The 
housekeeping gene β‑actin was used as an internal control. (B) Intracellular 
GSH/GSSG ratio was determined in genistein‑treated HL‑60 cells. Values 
are presented as the mean ± standard deviation of three independent experi-
ments. Ge, genistein; ICDH, isocitrate dehydrogenase.

Table I. Cell cycle distribution of HL‑60 cells following treat-
ment with genistein and N‑acetylcysteine.

		  Percentage of cells in
Time following	
treatment (h)	 Sub‑G0/G1	 G0/G1	 S	 G2/M

Genisteina				  
    0	   1.8	 32.6	 49.7	 15.9
  12	 10.7	   1.4	 24.6	 63.3
  24	 15.8	 30.6	 23.9	 29.7
  48	 31.4	 19.5	 11.1	 38.0

Genistein + 
N‑acetylcysteineb				  
    0	   2.4	 34.9	 47.0	 15.7
  12	 10.5	 41.2	 41.0	   7.3
  24	 19.3	 32.1	 46.2	   2.4
  48	 16.5	 12.6	 66.8	   4.1

aGenistein, 20 µM; bN‑acetylcysteine, 15 mm.

Figure 3. Effect of genistein on the cellular levels of the apoptosis‑related 
proteins p21waf1/cip1, Bax and Bcl‑2. Ge, genistein; Bcl‑2, B‑cell lymphoma 2; 
Bax, Bcl‑2 associated x protein.
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cell death, in HL‑60 cells was also examined. Upregulation 
of the proapoptotic protein Bax in genistein‑treated cells and 
downregulation of the antiapoptotic protein Bcl‑2 was observed.

Effects of γ‑irradiation on human promyeloid leukemia 
HL‑60 cells and normal human lymphocytes. As shown in 
Fig. 4, the effect of sensitization to γ‑radiation in apoptotic 
cell death was investigated in genistein‑treated HL‑60 cells 
by measuring the change in hypodiploid content. The effect 
of genistein on radiation‑induced damage in normal lympho-
cytes was also investigated. Following γ‑irradiation at a dose 
of 5 Gy (dose rate, 0.5 Gy/min), HL‑60 cells progressed 
into the G2/M phase and arrested there. After 48 h, cells 
either undergo cell death or are repaired and re‑enter the 
G1 phase; at that time point, ~21% of cells underwent cell 
death. Genistein‑treated HL‑60 cells also progressed into the 
G2/M phase and, 48 h after genistein treatment, cell death 
was observed in 27% of cells. When administered together, 
genistein and γ‑radiation synergistically increased cell death 
to a higher level than either agent alone (Fig. 4A). Notably, 
no such synergistic effect was observed in normal human 
lymphocytes. Compared with its radiosensitizing effect 
on HL‑60 leukemia cells, genistein had a radioprotective 
effect on normal lymphocytes after 24 and 48 h of treatment 
(Fig. 4B).

Differences in morphology of human promyeloid leukemia 
HL‑60 cells and normal human lymphocytes. Finally, 
it was confirmed that genistein had different effects on 
radiation‑induced damage in promyeloid leukemia HL‑60 
cells and normal human lymphocytes by the detection of 
apoptotic bodies. At a dose of 2 Gy, a negligible number of 
γ‑radiation‑induced apoptotic bodies were detected in normal 
lymphocytes. However, radiation treatment partially induced 
initiation of apoptosis in HL‑60 cells. Genistein clearly 
induced the formation of apoptotic bodies in certain HL‑60 
cells. However, it did not affect apoptotic body formation 
in normal lymphocytes. Genistein (20 µM) and γ‑radiation 
synergistically increased apoptotic body formation in HL‑60 
cells. Furthermore, this combination treatment resulted in 
the formation of apoptotic bodies in HL‑60 cells. However, 
significant numbers of apoptotic bodies were not observed in 
normal lymphocytes under any condition (Fig. 5).

Discussion

Genistein is known to induce differentiation, cell cycle arrest, 
apoptosis and inhibition of tumor cell growth, and also 
possesses anti‑angiogenesis and antioxidant activities (9‑11). 
Cell cycle arrest is a characteristic of eukaryotic cells and 
the cell cycle progresses through different phases commonly 

Figure 4. Ge and γ‑radiation‑induced apoptotic cell death in human promyeloid leukemia HL‑60 cells and normal human lymphocytes. The change in 
hypodiploid content produced by Ge treatment (20 µM) and γ‑irradiation (5 Gy) in (A) HL‑60 cells and (B) normal lymphocytes. Values are expressed as the 
mean ± standard deviation of three independent experiments. Ge, genistein.
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referred to as checkpoints (12). Cell cycle checkpoints are 
transient delays in G1/S or G2/M transition that constitute a 
response to DNA damage by cellular stressors, including ROS, 
and allow time for the activation of repair mechanisms (13). 
Following repair of damaged DNA, cells resume cell cycle 
progression. However, if the damage is too severe, the cells 
may undergo apoptosis or irreversible senescence  (14). 
Similarly to genistein, ROS cause DNA damage and induce 
G2/M phase arrest and apoptosis (22,25). The present study 
investigated whether ROS are involved in genistein‑induced 
cell cycle arrest and cell death in the HL‑60 cell line. To 
date, it has been hypothesized that genistein eliminates 
oxygen free radicals generated by toxic agents and hydrogen 
peroxide (28‑31). In addition, it is well known that genistein 
inhibits topoisomerase II activity, which leads to its cleavage 
and thus induced G2/M phase arrest and apoptosis (30‑32). 
However, additional mechanisms underlying the antioxidant 
activity and induction of apoptotic cell death by genistein 
remain to be elucidated. The present study concluded that, in 
human promyeloid leukemia HL‑60 cells, genistein affects the 
cellular redox potential level, which is known to be important 
in the regulation of cellular physiology, including cell growth 
and differentiation.

The result from the present study that G2/M arrest in 
response to genistein treatment sensitizes HL‑60 cells to 
γ‑radiation‑induced cell death, corroborates previous studies 
in DU145 human prostate cancer cells  (33) and cervical 
cancer cells (34). Cells in the G2/M phase have been demon-
strated to be more radiosensitive than cells in other phases 
of the cell cycle (35‑37). Pretreatment with genistein arrests 
cells in G2/M, and thus, may increase their radiosensitivity, 
resulting in increased cell death, in addition to the direct 
cytotoxic effects of genistein and γ‑radiation. The present 
study further addresses the role of the cellular redox potential 
and reducing equivalents‑generating enzyme, cICDH, in the 
mechanism by which genistein enhances intracellular ROS 
and radiation‑induced cell death. Intracellular GSH deple-
tion or low GSH/GSSG ratio caused excessive intracellular 

ROS accumulation. Alternatively, the downregulation of the 
enzymes involved in GSH synthesis, and maintenance of the 
reduced GSH level may also result in ROS accumulation and, 
thus, sensitivity to γ‑radiation and anticancer drugs. In the 
present study, total GSH increased with genistein treatment 
(data not shown). Furthermore, the level of the antioxidant 
enzyme thioredoxin also increased (data not shown). Despite 
elevated levels of these factors, genistein increased sensitivity 
to γ‑radiation‑induced cell death. These findings suggest 
that cellular redox potential (GSH/GSSG) may be a critical 
factor in this process. Although levels of GSH and thioredoxin 
increased, if the oxidized form is converted to the reduced 
form, cellular redox potential is not maintained at a steady 
state. NADP+‑dependent ICDH is necessary for the mainte-
nance of the cellular redox potential level at a steady state 
by production of the reducing equivalents (NADPH)  (38). 
Therefore, the present study examined the expression of the 
ICDH gene by RT‑PCR and confirmed that the expression level 
was significantly lower in genistein‑treated cells compared 
with the controls.

It has been reported that genistein treatment combined 
with radiation enhances radiosensitivity in numerous cancer 
cell lines (37,38). In the present study, it was demonstrated that 
genistein also has a synergistic effect with γ‑radiation on apop-
tosis in HL‑60 cells. By contrast, genistein has a protective 
effect on normal lymphocytes. Cells respond to DNA‑damaging 
agents by activating cell‑cycle checkpoints, and cells in the 
G2/M phase of the cell cycle have been demonstrated to be 
more radiosensitive than cells in other phases (33‑35). Several 
types of cancer cells are hypersensitive to γ‑radiation in the 
G2/M phase, compared with normal cells, as they are deficient 
in DNA repair capacity (39‑41). However, in normal human 
lymphocytes, neither genistein nor radiation alone promoted a 
decrease in the percentage of cells in G0/G1 and a concomitant 
increase in the percentage of cells in G2/M. This indicated 
that DNA damage by genistein or radiation is not critical in 
normal lymphocytes and, thus, cell cycle transition and arrest 
for repair is not required. This may explain why genistein did 

Figure 5. Ge and γ‑radiation‑induced morphological alterations between human promyeloid leukemia HL‑60 cells and normal human lymphocytes. Arrows 
indicate separated apoptotic cells (apoptotic bodies) Ge, Genistein.
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not have a synergistic effect on radiation‑induced cell death. 
By contrast, genistein had a radioprotective effect in normal 
human lymphocytes as G2/M phase arrest did not occur. In 
conclusion, the results from the present study suggest that 
genistein does not act as an antioxidant, but as a pro‑oxidant, 
in human promyeloid leukemia HL‑60 cells. The pro‑oxidant 
activity of genistein caused a rapid transition of HL‑60 cells 
into the G2/M phase and, thus, inhibited cell proliferation and 
apoptotic cell death. In addition, the combination of genistein 
treatment and γ‑irradiation demonstrated a synergistic effect 
on cell death in HL‑60 cells, whereas genistein exhibited a 
radioprotective effect in normal lymphocytes.
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