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Abstract. The identification of induced pluripotent stem cell 
(iPSC) technology represents great potential for recapitulating 
complex physiological phenotypes, probing toxicological 
testing and screening candidate drugs, demonstrating novel 
mechanistic insights and, in particular, applying iPSC-based 
therapeutic strategies for inherited disorders. Inherited arrhyth-
mias are caused by various genetic abnormalities and harbor 
similar clinical outcomes. Clinically, the poorest outcomes 
are fatal arrhythmias and sudden cardiac death. However, 
the current therapeutic options for inherited arrhythmias are 
inadequate and problematic. In this review, we summarize 
the advances of the iPSC technique in the field of inherited 
arrhythmias and discuss the possibility of iPSC‑based thera-
pies for inherited arrhythmias. Additionally, we highlight the 
key challenges faced in the field of iPSC and the emerging 
strategies used to address these concerns before the novel tech-
nique can be used safely and efficiently in clinical practice. It 
is likely that the iPSC technique will present opportunities and 
further challenges in the future.
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1. Introduction

Inherited arrhythmias are caused by certain genetic abnor-
malities, and the majority result in similar clinical outcomes. 
The worst of these are fatal arrhythmias and sudden 
cardiac death (SCD)  (1‑3). Inherited arrhythmic disorders 
consist of inherited long QT syndrome (LQTS; Table  I), 
catecholaminergic polymorphic ventricular tachycardia 
(CPVT), J wave syndrome (JWS) and other rare arrhythmic 
disorders, including familial atrial fibrillation resulting 
from gain‑of‑function mutations (3‑5). Inherited LQTSs are 
inherited electrical heart diseases characterized by prolon-
gation of the QT interval on the surface electrocardiogram. 
Clinically, patients with LQTS are at increased risk of torsade 
de pointes, a malignant polymorphic ventricular tachycardia 
that either self‑terminates or progresses into cardiac arrest or 
SCD. To date, hundreds of mutations responsible for LQTS 
have been identified in at least 13 genes (Table I) (6). JWS 
may be inherited or acquired (7,8). To date, inherited JWSs 
have been associated with hundreds of mutations in multiple 
genes encoding the cardiac ion channels or genes associated 
with the regulation of channel function, including SCN5A, 
CACNA1C, CACNB2b, CACNA2D1, glycerol‑3‑phosphate 
dehydrogenase 1-like enzyme gene, SCN1B, KCNE3, SCN3B, 
KCNJ8 and KCND3 (9). CPVT, also known as familial poly-
morphic ventricular tachycardia, is a familial arrhythmogenic 
syndrome caused by unstable sarcoplasmic reticulum calcium 
storage leading to exercise‑ or emotion‑induced ventricular 
tachyarrhythmias and SCD (10‑12). The majority of CPVT 
cases are associated with dominant mutations in the cardiac 
ryanodine receptor gene (RyR2), with variable penetrance, 
whereas the minority of cases result from recessive mutations 
in the cardiac calsequestrin isoform 2 gene (12‑14). Clinically, 
CPVT is characterized by the most common symptoms of 
dizziness and syncope, which often occur during exercise 
or as a response to emotional stress. Individuals affected by 
CPVT have a notably increased risk of SCD. The first syncope 
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in untreated patients often manifests around the age of 40, and 
the mortality rate is 30 to 50% (15,16).

Conventional studies have provided great insight into the 
mechanisms underlying inherited arrhythmias. For example, 
Delisle et al summarized the classification scheme for muta-
tions leading to long QT type 2 (LQT2) (17): Class 1 mutations 
cause abnormal protein synthesis by defective transcription or 
translation; Class 2 mutations lead to defective protein traf-
ficking; Class 3 mutations result in abnormal gating and/or 
kinetics; Class 4 mutations result in altered or absent channel 
selectivity or permeability; and Class 5 mutations cause a 
decrease in mutant mRNAs through nonsense-mediated decay, 
thereby altering the amount of mRNA available for subsequent 
human ether‑à‑go‑go‑related gene (hERG) protein genera-
tion (17,18). More recently, Wu et al initially identified the 
molecular mechanisms underlying the adrenergic‑induced QT 
prolongation associated with KCNQ1 mutations (19). However, 
previous insight into inherited arrhythmias mainly relied on 
particular cell types or animals, which do not always accu-
rately reproduce the human phenotypes. With respect to the 
therapeutic strategies, conventional treatments are problematic 
in reducing the frequency of SCD in patients with inherited 
arrhythmias (20‑22). The current situation has prompted the 
search for alternative therapeutic strategies. The development 
of a model system in which a mutant channel can be studied in 
human cardiomyocytes (CMs) may provide an ideal platform 
for better understanding inherited arrhythmias and evaluating 
newer therapeutic approaches.

Cellular reprogramming has successfully shown that 
patient profiles and response to drugs may be truly reflected 
through patient‑derived induced pluripotent stem cell (iPSC) 
cultures, promising notable potential in the field of regenerative 
medicine (23,24). iPSCs differentiate into various somatic cell 
lines of the human body, demonstrate the capacity of unlim-

ited replication and, notably, bypass conventional ethical and 
technical issues. Additionally, iPSCs represent a more effec-
tive source of producing patient‑specific and disease‑specific 
adult cells for therapeutic applications in the field of inherited 
arrhythmias.

In this review, we summarize the advances in the iPSC 
technique in the field of inherited arrhythmia and discuss 
the possibility of using iPSC‑based therapies for its treat-
ment. Additionally, we highlight the key challenges the iPSC 
field has faced and the emerging strategies to address these 
concerns before the iPSC technique can be used both safely 
and efficiently in clinical practice, providing a potential 
information resource for researchers who intend to exploit the 
iPSC technique in the area of inherited arrhythmias. This will 
be of great significance, as the detection of inherited arrhyth-
mias is increasing and they are emerging as a critical threat 
to public health. 

2. Advances in iPSC technology

Takahashi and Yamanaka were the first to reprogram fully 
differentiated adult mouse cells into iPSCs in 2006 (24). Since 
then, a number of studies have reported notable advances in 
iPSCs over recent years. iPSCs are generated most commonly 
from fibroblasts but also from other cell types, including 
hepatocytes, gastric epithelial cells, gastric epithelial cells, 
B lymphocytes, keratinocytes and pancreatic cells (25,26). 
Additionally, researchers have used various approaches to 
improve the drawbacks of low efficiency and the relatively long 
process of reprogramming. A tenfold more efficient genera-
tion of iPSCs has been reported using a polycistronic vector 
to transfer the reprogramming factors (27). Moreover, small 
molecules have also been reported to significantly improve 
reprogramming efficiency (28). Researchers have reported 

Table I. Inherited long QT syndrome.

Type	 Affected gene	 Chromosome	 Protein	 Current	 Trigger	 Proportion

LQT1	 KCNQ1	 11p15	 IKs α‑submit	 IKs↓	 Exercise	 42%
LQT2	 KCNH2	 7q35‑36	 IKr α‑submit	 IKr↓	 Ring, exercise, waking	 45%
LQT3	 SCN5A	 3p21‑23	 INa α‑submit	 INa↑	 Rest, sleep	   8%
LQT4	 ANK2	 4q25‑27	 Ankyrin‑B	 ICa2+↑	 Exercise	 <1%
LQT5	 KCNE1	 21p22	 IKs β‑submit	 IKs↓	 Rage, exercise	   3%
LQT6	 KCNE2	 21p22	 IKr β‑submit	 IKr↓	 Rest, exercise 	   2%
LQT7	 KCNJ2	 17p23‑24	 IK1	 IK2.1↓	 Rest, exercise	 <1%
LQT8	 CACNA1	 12p13	 ICa α‑submit	 ICa↑	 Exercise, nervousness	 <1%
LQT9	 CAV3	   3p25	 Caveolin	 INa↑	 Rest, sleep	 Rare
LQT10	 SCN4B	 11q23	 NAVβ4	 INa↑	 Exercise	 N/A
LQT11	 AKAP‑9	 7q21‑22	 Yotiao	 IKs↓	 N/A	 N/A
LQT12	 SNTA1	 20q11	 α1 syntrophin	 INa↑	 N/A	 N/A
LQT13	 KCNJ5	 11q24	 Kir4.3	 IK‑ACH↓	 N/A	 N/A
JLN1	 KCNQ1	 11p15	 IKs α‑submit	 IKs↓	 Rage, exercise	 1‑7%
JLN2	 KCNE1	 21p22	 IKr β‑submit	 IKs↓	 Rage, exercise	 <1%

LQT, long QT syndrome; JLN, Jervell and Lange-Nielsen syndrome.
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that iPSCs may be generated from mouse somatic cells using a 
combination of small‑molecule compounds (29).

The majority of reprogramming strategies include deliv-
ering exogenous genes into somatic cells using retroviral 
vectors or non‑integrating vectors. However, multiple repro-
gramming vectors possess the potential to induce pluripotency 
in somatic cells (25,26,30). The advances in RNA‑ and tran-
scriptome‑based techniques may overcome the safety issues 
involved with vector‑based gene alterations (31).

Although primarily derived from mice, iPSCs are also 
derived from other species, including humans, rats, pigs and 
monkeys (23,32‑34). Cellular reprogramming of the adult cells 
of larger animals to iPSCs represents a great achievement in 
the area of regenerative medicine. Larger animals, such as pigs 
and monkeys, share the same physiological and morphological 
properties as human beings, providing an ideal model similar 
to humans for preclinical trials (32‑34).

iPSCs hold great promise, primarily due to their 
powerful potential for modeling human diseases. Multiple 
disease‑specific iPSCs have been cloned from patients with 
various diseases, including amyotrophic lateral sclerosis, 
Parkinson's, muscular dystrophy, Huntington's disease and 
familial hypercholesterolemia (35‑40). The potential to restore 
pluripotency to somatic cells of patients has created a new 
abundance of opportunities for modeling diseases without 
an appropriate research model, offering the possibility of 
personalized regenerative therapies (12,41‑46). This method 
may revolutionize the current treatment strategies for human 
disease in the future, particularly in the case of inherited 
arrhythmias, for which we discuss the possibilities below.

iPSC‑based therapies involve two aspects. The first, 
which presents a greater number of challenges, is to create 

patient‑specific iPSCs or derived body cells to achieve 
therapeutic potential using autologous gene correction (47‑55). 
iPSC‑based therapies created by editing disease‑associated 
mutations are a promising therapeutic strategy for inherited 
disorders, leading to the restoration of normal gene function. 
Spinal muscular atrophy (SMA) is caused by homozygous 
mutations of the survival motor neuron 1 gene (56). Corti et al 
initially demonstrated that generating genetically corrected 
iPSCs obtained from SMA patients and differentiating them 
into motor neurons may provide a source of motor neurons for 
therapeutic transplantation in SMA (54). To date, a number of 
studies involving iPSC‑based gene correction therapies have 
been reported (Table II). An alternative method is allogeneic 
cell replacement therapy. Somatic cells derived from healthy 
iPSCs are implanted into the pathological organs and then inte-
grate and improve the condition in the disease model (57,58).

3. Advances in the iPSC technique in the field of inherited 
arrhythmias

Current models of cardiovascular disease are problematic. 
The lack of sufficient sources of CMs from patients for use 
in vitro and the inability to accurately model patient‑specific 
disease variations significantly hamper the development of 
novel therapeutic strategies for inherited arrhythmias. With 
advances in cellular reprogramming techniques, the potential 
of iPSC‑derived CMs (iPS‑CMs) to model cardiovascular 
disorders may improve our understanding of the cellular and 
molecular mechanisms underlying inherited arrhythmias and 
promote our use of iPSC‑based therapeutic strategies. 

To date, multiple iPSC models of inherited arrhythmias 
have been established (Table III)  (12,59‑69). Itzhaki et al 

Table II. Representative examples of induced pluripotent stem cell‑based therapies.

Syndrome	 Species	 Affected gene	 Methodology

SMA	 Humans	 SMN2	 Single‑stranded oligonucleotides
Tyrosinemia type 1	 Mice	 FAH	 Tetraploid embryo complementation 
			   method, transduced FAH cDNA into the
			   FAH‑/‑‑iPSCs using a third‑generation 
			   lentiviral vector to generate gene‑corrected
			   iPSCs.
FH	 Humans	 LDLR	 A plasmid vector carrying the normal
			   receptor ORF to genetically transform
			   human iPSCs
AAT deficiency	 Humans	 AAT	 Transcription activator‑like effector nuclease 
			   technology
Hemophilia	 Mice 	 F9	 ZFNs
DMD	 Mice and humans	 Dystrophin	 Transferring the DYS‑HAC via MMCT
β‑thalassemia major	 Mice and humans	 β‑globin	 Homologous recombination
LQT	 Humans	 KCNH2 (hERG) 	 Allele‑specific RNAi
SCN	 Humans	 HAX1	 Lentiviral transduction

SMA, spinal muscular atrophy; iPSC, induced pluripotent stem cell; FH, familial hypercholesterolemia; AAT, alpha‑1 antitrypsin; ZFNs, 
zinc finger nucleases; DMD, Duchenne muscular dystrophy; MMCT, microcell‑mediated chromosome transfer; DYS‑HAC, human artificial 
chromosome with a complete genomic dystrophin sequence; LQT, long QT syndrome; hERG, human ether‑à‑go‑go‑related gene; RNAi, RNA 
interference; SCN, severe congenital neutropenia.
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reported the development of disease‑specific human iPS‑CMs 
obtained from a patient with LQT2 due to the A614V 
missense mutation in the hERG gene (62). Detailed whole‑cell 
patch‑clamp and extracellular multi‑electrode recordings 
revealed evident prolongation of the action‑potential dura-
tion (APD) in LQTS human iPS‑CMs when compared with 
healthy control iPS‑CMs. Further voltage‑clamp analysis 
confirmed that this APD prolongation was the result of a 
significant reduction of a rapidly activating component of the 
delayed rectifier K+ current (IKr). Significantly, LQTS‑derived 
iPS‑CMs also demonstrate marked arrhythmogenicity, char-
acterized by early afterdepolarization (EAD) and triggered 
arrhythmias. These authors also used a human iPSC‑derived 
cardiac tissue LQTS model to evaluate the potency of existing 
and novel pharmacological compounds that may either aggra-
vate or improve the disease phenotype  (62). Additionally, 
these authors also initially demonstrated the potential of 
human iPSCs to model CPVT  (12). They demonstrated 
the development of delayed afterdepolarizations (DADs) 
in approximately 70% of the CPVT iPS‑CMs compared 
with approximately 10% in healthy control iPS‑CMs. They 
further illustrated that adrenergic stimulation by isoproter-
enol or forskolin increased the frequency and magnitude of 
afterdepolarizations and led to the development of triggered 
activity in the CPVT iPS‑CMs. In contrast, flecainide and 
thapsigargin eliminated all afterdepolarizations in these 
cells (12). Laser‑confocal calcium imaging revealed signifi-
cant whole‑cell calcium transient irregularities (frequent 
local and large‑storage calcium‑release events, broad and 
double‑humped transients, and triggered activity) in the 
CPVT CMs, which worsened with adrenergic stimulation 
and calcium overload and improved with β‑blockers. Store 
overload‑induced calcium release was also identified in the 
iPS‑CMs, and the threshold for such events was significantly 
reduced in the CPVT cells.

Currently, the significant advances in iPSC technology 
reveal the transformative potential of iPS‑CMs in patients 
with inherited arrhythmias, which offer a potentially unlim-
ited source of materials for biomedical study. These iPS‑CMs 
may be used to recapitulate complex physiological phenotypes, 
probe toxicological testing and drug screening, clarify novel 
mechanistic insights and also potentially rectify gene defects 
at the cellular and molecular levels (12). Despite the emerging 
challenges, iPSC technology has been increasingly recognized 
as a valuable and growing tool kit for modeling inherited 
arrhythmias. These achievements indicate that human iPSC 
technology enables the modeling of the abnormal functional 
phenotype of inherited arrhythmias and the screening of new 
potential therapeutic agents, representing a promising para-
digm to study disease mechanisms, optimize patient care and 
aid in the development of new therapies.

4. iPSC‑based therapeutic strategies for inherited 
arrhythmias

With respect to the treatment of inherited arrhythmias, the 
current strategies include β‑blockers, surgery for the implanta-
tion of pacemakers, cardioverter defibrillators and left cardiac 
sympathetic denervation  (70). However, the current thera-
peutic options are empirical and do not eliminate the risk of 

SCD. For example, an implantable cardioverter defibrillator 
(ICD) is highly effective in terminating malignant ventricular 
arrhythmias and appears to be the most effective treatment 
available in the prevention of SCD in a variety of other clinical 
disorders. However, in the field of inherited arrhythmias, inap-
propriate therapy and even exacerbation of the arrhythmic 
disorders by ICD therapy is possible (21,71‑73).

As for the therapeutic advantages of iPSC‑CMs for 
individuals with arrhythmic disorders, the most significant 
is the provision of a high‑throughput model system in which 
to screen more conventional pharmacological approaches. 
However, the present review will mainly focus on the 
anticipation of translating cell‑based therapies for inherited 
arrhythmias into reality following initial application of the 
iPSC technique in these diseases (64). The recent application 
of iPSC technology for the treatment of LQTS was the first 
step. By coupling iPSC technology with RNA interference 
(RNAi), Matsa  et  al produced corrected iPS‑CMs from 
LQT2 patients carrying a hERG G1681A mutation  (68). 
Allele‑specific RNAi directed towards the mutated hERG 
mRNA resulted in its knockdown while leaving the wild‑type 
mRNA unaffected. Electrophysiological analysis revealed 
normalized APDs and K+ currents with the concurrent rescue 
of spontaneous and drug‑induced arrhythmias in patient-
derived iPS‑CMs treated with mutation‑specific siRNAs. 
These findings provide initial in vitro evidence that the iPSC 
technique combined with other gene‑editing methods may 
rescue the diseased phenotypes of iPS‑CMs obtained from 
patients with inherited arrhythmias.

This is a potentially novel route for the treatment of 
numerous autosomal dominant‑negative inherited disorders, 
extending our capacity to develop new therapeutic strategies 
for inherited arrhythmias. There are two notable characteris-
tics of this type of research. First, the ability to ‘re‑supply’ the 
iPS‑CMs and overcome their limited source will be possible 
with further research. Second, gene‑corrected therapeutic 
iPS‑CMs could be patient- and disease specific, overcoming 
issues concerning the immune rejection of therapeutic cells.

However, there are certain issues and concerns that need 
to be addressed with further research. For example, the steps 
following the rectification of mutant iPS‑CMs in vitro must be 
determined. Here, we propose several possible schemes. The 
in vitro‑corrected iPS‑CMs could be injected into the heart 
with mutant CMs. However, this method involves a number of 
challenges, including how to replace or dispose of local mutant 
iPS‑CMs and how to ensure that the corrected CMs delivered 
are integrated into the heart. The second proposal is based on 
the more recent development involving a notable step forward 
in regenerative medicine. Takebe et al initially demonstrated 
the generation of vascularized and functional human liver 
from human iPSCs following the transplantation of liver buds 
created in vitro (iPSC‑LBs) (74). The formation of a functional 
vasculature stimulated the maturation of iPSC‑LBs into tissue 
resembling the adult liver. These results highlight the immense 
therapeutic potential of using in vitro‑grown organ‑bud trans-
plantation to treat organ failure. Based on this new idea, the 
same strategies used for the liver could potentially be applied 
to the heart in cases of malignant inherited arrhythmias, 
enabling the replacement of the whole end‑stage heart with 
gene‑edited iPSC‑CMs.
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5. Challenges

It is clear that iPS‑CMs could be of benefit for diagnostics, 
research and therapeutic approaches. However, it may prove 
challenging to promote large quantities of iPSC‑based 
therapies in the field of inherited arrhythmias in clinical 
practice since a number of obstacles, as discussed below, 
need to be overcome before the novel iPSC‑based treatment 
strategies for inherited arrhythmias can be achieved safely 
and economically. These issues include the dynamic and 
complex properties of arrhythmic disorders in the clinic, 
the risk of teratoma formation, incomplete reprogramming, 
tissue‑inappropriate differentiation, insertional mutagenesis 
caused by the reprogramming factors, the potential for genetic 
and epigenetic abnormalities and the immunogenicity of the 
transplanted cells. All major limitations preclude the use of 
this novel technique. 

The first point to consider is the presence of the dynamic 
and complex characteristics of inherited arrhythmic disorders 
in clinical practice. The in vitro screening of isolated CMs has 
substantial limitations. Arrhythmias are initiated when a trigger 
encounters an appropriate arrhythmogenic substrate. EADs and 
DADs are accepted triggers for arrhythmias, although they are 
able to sustain the arrhythmia if they occur repetitively in high 
frequency. EADs and DADs may be studied and predicted in 
iPS‑CM cultures. In contrast, reentry is the primary mechanism 
underlying cardiac arrhythmias, and it is impossible to study 
reentry in isolated cells as this is a multi‑cellular phenomenon. 
This may be a significant limitation in all research approaches 
dealing with isolated cells, and also applies to iPS‑CMs used 
for studying inherited arrhythmias.

The second concern to highlight is the presence of residual 
undifferentiated iPSCs, which may lead to tumorigenicity 
following delivery into patients. Evidence indicates that the 
pluripotent potential of iPSCs is associated with rapid cellular 
growth, which is one of the properties of cancer  (75,76). 
Wu  et  al demonstrated that iPSCs remained pluripotent 
following the correction of genetic defects (53). In accordance 
with this, other studies also confirmed that iPSCs have similari-
ties with malignant cancer cells (77). Therefore, the primary 
impediment to the use of the iPSC technique in regenerative 
medicine is likely to be preventing tumorigenicity.

The third issue of concern is that generating iPSCs may 
introduce unexpected mutations and genomic alterations, 
which may induce cancer in the host (57). Despite the improve-
ments leading to virus‑free and transgene‑free reprogramming 
in recent research, the potential for inducing genetic and 
epigenetic abnormalities remains. Therefore, the iPSC lines 
used in pre‑clinical trials need to be validated not only in 
small animal models but also in large animal models that are 
more physiologically similar to humans, ensuring their safe 
application in future trials (32,78‑80).

iPSCs harbor other problems as in vitro models of various 
diseases. For example, it is known that chromosomal insta-
bility and molecular changes exist in iPSC lines. Therefore, 
a disease model using iPSCs is not yet a perfect model for 
analyzing the pathophysiology of a disease. Additionally, there 
is no current evidence supporting the use of iPSC‑based appli-
cations in vivo in the field of inherited arrhythmias. Animal 
models may be useful for providing this evidence in the future. 

Animal models have traditionally been considered more infor-
mative than cell‑based in vitro approaches, and mice have 
become the gold standard for human disease modeling in vivo. 
For example, animal models are used to evaluate the thera-
peutic potential of candidate compounds in the presence of 
an intact heart in vivo as well as the adverse drug reactions of 
other organ systems. Such issues need to be further examined 
before iPSC‑based therapies are able to contribute to the field 
of inherited arrhythmias.

6. Perspective

The recent advances in iPSC technology have set the stage for 
devising alternative strategies for the treatment of inherited 
arrhythmias. The generation of patient‑specific iPS‑CMs 
derived from individuals with inherited arrhythmias will offer 
the possibility to characterize these inherited disorders, screen 
new therapeutics and, in particular, improve the limited treat-
ment strategies currently available to patients. Furthermore, 
iPSC technology may ultimately provide clinical trials of 
personalized therapies not only for inherited arrhythmias 
including LQTS, CPVT, JWS and symptomatic atrial fibril-
lation, but also other inherited disorders. For researchers, 
however, iPSC technology is currently a black box. iPSC‑based 
therapies are still in their infancy, and there are likely to be 
numerous challenges ahead. 

The future use of iPSC technology in clinical practice 
primarily depends on how accurately iPSCs are able to differ-
entiate into the affected cells and on the development of safe 
and effective methods to deliver them into the human body. 
For instance, although it is necessary to establish methods to 
generate functional CMs from gene‑corrected iPSCs in vitro, 
it remains to be determined whether the findings of in vitro 
and in vivo models are also valid for human iPSCs. Moreover, 
cell derivation protocols and transplantation procedures still 
need to be optimized, and further research is required to 
advance our knowledge of the mechanisms underlying cellular 
reprogramming. With regard to the limitations of studying 
multi‑cellular preparations, iPSC technology in combina-
tion with other modern techniques, including computational 
modeling, may be helpful as a supplemental tool. 

It may prove challenging to safely produce sufficient 
quantities of clinical‑grade, transplantable iPSCs to treat 
inherited arrhythmias; however, the development of a global 
iPSC bank may boost productivity, thus furthering the use of 
the iPSC technique and creating additional clinical applica-
tions (81). Due to the speed and extent of iPSC technological 
advances in recent years, particularly in cardiovascular regen-
erative medicine, iPSC therapy is likely to play a major role, 
providing a strong foundation on which to build and expand 
our knowledge and identify new opportunities for iPSC‑based 
therapeutic strategies and personalized medicine in the field of 
inherited arrhythmias.

7. Conclusion

iPSC technology represents a substantial promise in the field 
of regenerative medicine. In this review, the advances in iPSC 
technology and iPSC‑based therapies for inherited arrhyth-
mias were summarized. Several hypotheses on the use of 
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iPSC‑based therapies in the field of inherited arrhythmias in 
further clinical practice were also discussed. Finally, the key 
challenges that the iPSC field has faced were highlighted, as 
well as the emerging strategies used to address these concerns 
before the iPSC technique can be used both safely and effi-
ciently in the clinical practice. The iPSC technique will likely 
present opportunities and challenges in the future.
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