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Abstract. The transcriptome of metastatic gastr ic 
cancer (GC) was compared to that of non-metastatic GC to 
identify metastasis-related biomarkers. The gene expression 
dataset GSE21328, comprising 2 metastatic GC samples and 
2 non‑metastatic GC samples, was downloaded from the Gene 
Expression Omnibus database. Differential expression anal-
ysis was performed with the package limma of Bioconductor 
to identify differentially expressed genes  (DEGs). Gene 
Ontology (GO) enrichment analysis was performed to iden-
tify significantly altered biological functions. In addition, 
the transcriptional regulatory and protein-protein interaction 
networks were constructed with information from the UCSC 
genome browser and STRING database, respectively, followed 
by functional enrichment analysis of all of the genes in these 
two networks. A total of 584 DEGs were identified, of which 
175 were upregulated and 409 downregulated. Clustering 
analysis confirmed that these genes can distinguish metastatic 
from non-metastatic GC. Upregulated genes were enriched for 
the xenobiotic metabolic process, while downregulated genes 
were enriched for immune response and related pathways. 
Among the 584 DEGs, six genes (DAND5, EGR2, FOXD1, 
LMO2, PRRX2 and STAT1) were shown to encode transcrip-
tion factors, which were used to establish the transcriptional 
regulatory network with 169 target genes, forming 175 nodes. 
The proteins of this network were significantly enriched for 
the process of negative regulation of cell differentiation. In 
conclusion, this study identified a range of DEGs in meta-

static GC, which may enhance our current knowledge on this 
disease. Among these genes, STAT1 and EGR2 may constitute 
potential biomarkers of GC metastasis.

Introduction

Gastric cancer (GC) is the fourth most common cancer 
worldwide. It causes ~800,000 deaths/year, which renders 
it the second leading cause of cancer-related mortality after 
lung cancer (1). Metastasis occurs in 80-90% of individuals 
with GC, with a six-month survival rate of 65% for patients 
diagnosed at the early stages, and <15% for those diagnosed 
at late stages. Therefore, metastasis-related biomarkers 
are necessary to allow early diagnosis and development of 
targeted therapies.

A number of studies have demonstrated that diverse 
signaling pathways are involved in the metastasis of GC. 
Yonemura et al (2) demonstrated that cancer cells producing 
VEGF-C induces proliferation and dilation of lymphatic 
vessels, resulting in the invasion of cancer cells into the 
lymphatic vessel and lymph node metastasis. Shimizu et al (3) 
further showed that inhibition of VEGFR-3 signaling inhibits 
lymph node metastasis of GC cells. Xu et al (4) found that 
expression of receptors for advanced glycation end-products 
is closely associated with the invasive and metastatic activity 
of GC cells. The tumor microenvironment also appears to 
considerably affect metastasis. Upregulation of manganese 
superoxide dismutase was found in metastatic GC, which 
may be associated with the reactive oxygen status of the 
gastric tumor microenvironment (5). The epithelial cell adhe-
sion molecule E-cadherin also plays a role in tumorigenesis 
and metastasis of GC cells (6). Given the poor outcome of 
patients with metastatic GC, additional research is necessary 
to unveil the molecular mechanisms underlying metastasis, 
and thus provide useful biomarkers for early diagnosis and 
treatment.

Microarray technology is an appropriate tool to investigate 
the global gene expression changes in cancers such as GC. 
Hippo et al (7) adopted this technology to study the global 
gene expression profiles in GC. Kang et al  (8) identified 
differentially expressed genes (DEGs) in drug-resistant GC 
cells. Yamashita et al (9) carried out a genome-wide screening 
for methylation-silenced genes using 5-aza-2'-deoxycytidine 
treatment and oligonucleotide microarrays.
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By now, massive microarray data have been acquired. 
We considered that a comprehensive exploration of existing 
datasets with bioinformatic tools may provide novel insights 
into GC metastasis. Therefore, in the present study, a compara-
tive analysis between metastatic and non-metastatic GC gene 
expression data was performed to identify DEGs, which may 
allow to reveal the molecular mechanisms underlying metas-
tasis and provide potential biomarkers for the early diagnosis 
of this disease.

Materials and methods

Microarray data and pretreatment. The gene expression 
dataset GSE21328 was downloaded from the Gene Expression 
Omnibus database (10), and comprised 2 metastatic stomach 
cancer samples and 2  non-metastatic stomach cancer 
samples (11). The platform in which the data were acquired 
was the Agilent‑014850 Whole Human Genome 4x44K 
G4112F microarray (feature number version).

Raw data were log2 transformed. Probes were mapped to 
genes according to the annotation file. The average expression 
level for each gene was calculated from the expression data 
for all probes corresponding to the same gene. Normalization 
of the data was performed with the Affy package of 
Bioconductor (12).

Identif ication of DEGs. The Bioconductor package 
limma (13) was chosen for differential expression analysis. 
As cut-offs, we used the log (fold-change)  >1.5 and 
p-value  <0.05. Hierarchical clustering of the DEGs was 
performed on median-centered, log2-transformed data using 
the Cluster software (14), and was subsequently visualized 
using Treeview software (15).

Functional enrichment analysis. Gene Ontology (GO) 
enrichment analysis was performed for upregulated and down-
regulated genes with DAVID (16). Terms with false discovery 
rate (FDR) <0.05 were retained, and then compared between 
the two groups.

Transcriptional regulatory network analysis. A transcriptional 
regulatory network was constructed for DEGs with informa-
tion from the UCSC genome browser (http://genome.ucsc.
edu) (17). GO and Kyoto Encyclopedia of Genes and Genomes 
(KEGG; 18) enrichment analysis were performed for the nodes 
in the network in order to identify proteins and pathways that 
were significantly enriched in metastasis. FDR <0.05 was set 
as the cut-off.

Construction of a protein-protein interaction (PPI) network. 
A PPI network was constructed for DEGs using information 
from the STRING database (http://string-db.org/). The inter-
actions with score >0.7 were retrieved from the database and 
then visualized using the Cytoscape software platform (19). 
The proteins in the network were defined as the nodes and the 
degree of a node corresponds to the number of interactions 
of a protein. Functional enrichment analysis was applied on 
hub nodes with degree of >5. The Clustering with Overlapping 
Neighborhood Expansion (ClusterONE) plugin from 
Cytoscape (20) was used to extract functional modules from 

the entire network. Number of node ≥10 and p-value <0.05 
were set as the cut-offs.

Results

DEGs. The microarray dataset GSE21328 included 12,116 
gene expression values. Normalization of these data was 
satisfactory (Fig. 1). A total of 584 DEGs were then identified 
for metastatic stomach cancer, of which 175 were upregulated 
and 409 were downregulated. The clustering analysis result is 
shown in Fig. 2, indicating these genes may be used to distin-
guish between metastatic and non-metastatic GC.

Functional enrichment analysis. Upregulated genes were 
enriched for the GO term ‘xenobiotic metabolic process’. 
Downregulated genes were enriched for ‘immune response’, 
‘response to virus’, ‘antigen processing and presentation’, and 
‘cell morphogenesis involved in differentiation’. In addition, a 
considerable portion of DEGs was predicted to locate at the 
extracellular space (Table I).

Transcriptional regulatory network. A total of 215 transcrip-
tion factors (TFs) and 21,4607 TF-target gene interactions 
are included in the UCSC database. Out of the 584 DEGs, 
6 downregulated genes were found to encode TFs. These TFs 
were: DAN domain family member 5 (DAND5), which is a 
BMP antagonist, early growth response 2 (EGR2), forkhead 
box D1 (FOXD1), LIM domain only 2 (LMO2), paired meso-
derm homeobox protein 2 (PRRX2) and signal transducer 
and activator of transcription 1 (STAT1). No upregulated 
TFs were detected. A transcriptional regulatory network was 
constructed on the 6 TFs, and their 169 target genes (Fig. 3), 
forming 175 nodes (proteins) and 285 edges (interactions). 
Functional enrichment analysis showed that the proteins in this 
netwirk are significantly enriched for the GO term ‘negative 
regulation of cell differentiation’ (FDR<0.05). This category 
included proteins such as noggin  (NOG), LIM domain 
only 2 (LMO2), v-maf avian musculoaponeurotic fibrosar-
coma oncogene homolog B (MAFB), delta-like 3 (DLL3), 
tumor protein p63 (TP63), Toll-like receptor 3 (TLR3), nuclear 
receptor subfamily 2, group E, member 1 (NR2E1), parathyroid 
hormone-like hormone (PTHLH), brain-derived neurotrophic 
factor (BDNF), PR domain containing 6 (PRDM6), inositol 
polyphosphate-5-phosphatase(INPP5D), chordin (CHRD), and 
twist basic helix-loop-helix transcription factor 2 (TWIST2).

PPI network. Fig. 4 shows the PPI network of DEGs in meta-
static GC, which contained 191 nodes and 474 edges. The 
number of downregulated proteins was higher than that of 
upregulated proteins. Moreover, downregulated proteins were 
often observed as components of the same module, such as 
in module 1 in Fig. 5. A total of 6 modules were identified 
from the entire network (Fig. 5) using ClusterONE. Module 1 
comprised 32 downregulated genes products and 245 interac-
tions. Functional enrichment analysis showed that proteins 
of this module were significantly enriched for immune func-
tions, such as immune response (FDR<0.05) and antigen 
processing and presentation of peptide antigen via MHC 
class I (FDR<0.05). No significant enrichment for GO terms 
was observed in the remaining 5 modules. However, STAT1 
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Figure 1. Boxplots of gene expression data before (left) and after normalization (right). The medians (horizontal black lines) are nearly at the same level, 
indicating a good performance of normalization. Meta, metastasis.

Figure 2. Clustering analysis of differentially expressed genes. Data were derived from the log2 transformation for each gene. Red, high expression; green, 
low expression, according to z scores. Meta, metastasis.

Table I. GO enrichment analysis results for upregulated and downregulated genes.

Category	 GO term	 Count	 P-value	 FDR

Upregulated genes	 0006805-xenobiotic metabolic process	 5	 3.88E-02	 4.64E-02
Downregulated genes	 0006955-immune response	 45	 8.13E-09	 6.86E-09
	 0009615-response to virus	 16	 7.17E-06	 6.05E-06
	 0019882-antigen processing and presentation	 13	 1.56E-04	 1.31E-04
	 0000904-cell morphogenesis involved in differentiation	 17	 5.50E-02	 4.77E-02
	 0005615-extracellular space	 35	 3.91E-04	 1.96E-03
	 0044421-extracellular region part	 42	 1.38E-03	 6.91E-03
	 0005576-extracellular region	 69	 3.08E-03	 1.55E-02
	 0042611-MHC protein complex	 9	 5.05E-03	 2.54E-02
	 0009986-cell surface	 21	 8.53E-03	 4.29E-02

Count, the number of differentially expressed genes. FDR, false discovery rate; GO, Gene Ontology.
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was found to be part of two modules (1 and 2), suggesting that 
this protein may have a role in the development of metastatic 
GC.

Discussion

In the present study, a total of 584  DEGs were identi-
fied in metastatic GC, of which 175 were upregulated and 
409 downregulated. GO enrichment analysis revealed that the 
downregulated genes were significantly enriched for immune 
response and relevant pathways. According to the transcrip-
tional regulatory network analysis, 6 DEGs were found to 
be TFs, associated with 169 predicted targets. Functional 
enrichment analysis revealed that the genes in this network 
are enriched for negative regulation of cell differentiation. In 
addition, 6 functional modules were extracted from the PPI 

network; of these modules, module 1 showed a significant over-
representation for immune response and relevant biological 
functions.

Immune response is closely related to cancer, while 
immune escape is a critical gateway to malignancy (21). The 
study by Maehara et al (22) confirmed that there is a negative 
correlation between lymph node metastasis and dendritic cell 
infiltration in GC. In agreement with previous studies, a number 
of downregulated genes in metastatic GC were found to be 
involved in immune response, as well as antigen processing and 
presentation of peptide antigen via major histocompatibility 
complex (MHC) class I (Fig. 5, module 1). Downregulation 
of human leukocyte antigen (HLA) class I antigen processing 
molecules is considered to relate to renal cell carcinoma (23). 
Cabrera  et  al  (24) found that HLA class  I expression in 
metastatic melanoma correlates to tumor development during 

Figure 3. The transcriptional regulatory network of differentially expressed genes in metastatic gastric cancer. Dark rectangles represent transcription factors 
(n=6), gray ellipses upregulated target genes (n=49), and dark ellipses downregulated target genes (n=120).
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Figure 5. Six functional modules identified from the entire protein-protein interaction network using ClusterONE. Downregulated proteins in metastatic 
gastric cancer are in dark (n=81), upregulated proteins in gray (n=20), and non-differentially expressed ones in light gray (n=4).

Figure 4. The protein-protein interaction network of differentially expressed gene products in metastatic gastric cancer. Downregulated proteins in metastatic 
GC are in dark (n=133), upregulated proteins in gray (n=55), and non-differentially expressed ones in light gray (n=6).



FENG et al:  STUDY ON GASTRIC CANCER METASTASIS 391

autologous vaccination. A decrease in the expression of class I 
proteins was also reported in metastases of colorectal, gastric 
and laryngeal carcinomas (25). In the present study, several 
members of the HLA family were identified as downregulated, 
such as MHC class I, J (HLA‑J), MHC class I, B (HLA-B) and 
MHC class I, F (HLA-F). Downregulation of HLA-B was also 
observed in metastatic serous adenocarcinomas, although the 
difference was not statistically significant (26).

Dedifferentiation is related to metastasis (27,28). Certain 
of the proteins encoded by the DEGs that are associated 
with this term have been reported to be linked to metastasis. 
Nakata et al  (29) showed that LMO2 expression is related 
to aggressive behavior and distant metastasis in prostate 
cancer. TP63 is a suppressor of tumorigenesis and metas-
tasis interacting with the mutant p53 protein (30). TLR3 is a 
member of transmembrane proteins that recognize conserved 
molecular motifs of viral and bacterial origin and initiate 
the innate immune response. Zhang et al (31) reported that 
TLR3 activation inhibits nasopharyngeal carcinoma metas-
tasis via downregulation of the chemokine receptor CXCR4. 
González‑Reyes et al (32) asserted that the expression levels 
of TLR3, TLR4 and TLR9 have clinical value as indicators of 
tumor aggressiveness in breast cancer. TWIST2 is implicated in 
cell lineage determination and differentiation. Fang et al (33) 
reported that TWIST2 contributes to breast cancer progres-
sion by promoting the epithelial-mesenchymal transition 
and cancer stem-like cell self-renewal. Similar results were 
observed in cervical carcinoma (34). Future studies on the 
proteins encoded by these DEGs may provide interesting find-
ings and data for the development of new therapeutic targets 
for metastatic GC.

Six TFs were identified from the DEGs and these could 
regulate 169 target genes, forming 175 nodes in the transcrip-
tional regulatory network (Fig. 3). Previous studies have shed 
light on their roles in the development of metastatic cancers. 
Ernst et al (35) found that STAT3 and STAT1 mediate IL-11-
dependent and inflammation-associated gastric tumorigenesis 
in gp130 receptor-mutant mice. In addition, STAT1 is also 
related to metastasis. Khodarev et al (36) point out that the 
STAT1 pathway mediates amplification of the metastatic 
potential and resistance to therapy. In cultured cell-based 
experiments, Greenwood et al (37) reported that activation of 
STAT1 causes increased migration and invasion, and increases 
the abundance of CD74. CD74 overexpression leads to increased 
membrane expression of proteins involved in cell adhesion and 
metastasis. The protein inhibitor of activated STAT1 (PIAS1) 
is a novel modulator of the JAK/STAT signaling pathway that 
negatively regulates the inflammatory response. The study by 
Chen et al (38) showed that PIAS1 is downregulated in GC 
tissueS and involved in cell metastasis. However, according to 
the study by Huang et al (39), STAT1 is a negative regulator 
of tumor angiogenesis and, hence, of tumor growth and metas-
tasis. STAT1 is an important TF regulating a range of target 
genes. Diverse signaling pathways dominate the physiological 
processes at different cellular conditions, which may explain 
the conflicting roles reported for STAT1 in cancer. Research 
on deregulated target genes of STAT1 may enhance the current 
understanding on the regulatory mechanisms this TF is involved 
in. Certain of the target genes of STAT1 have been previously 
associated with cancer metastasis. The gene encoding the bone 

morphogenetic protein-2 (BMP-2) is one of these: Park et al (40) 
reported that BMP-2 is associated with progression to a meta-
static state in GC. The study by Kang et al (41) further pointed 
out that the BMP-2 signaling pathway enhances tumor metas-
tasis by sequential activation of the PI3K/AKT or the MAPK 
pathways, followed by the induction of nuclear factor-κB and 
MMP-9. The chemokine C-X-C motif ligand 17 gene (CXCL17) 
is another transcriptional target of STAT1. CXCL17 was found 
to be upregulated in metastatic GC in our data. Matsui et al (42) 
indicated that the CXCL17 protein recruits immature myeloid-
derived cells in tumor cells, and promotes tumor progression 
through angiogenesis. Future research on these target genes may 
reveal new therapeutic targets for metastatic GC.

EGR2 is a transcription factor with three tandem C2H2‑type 
zinc fingers. It has been identified as a tumor suppressor, and its 
expression level is decreased in various types of cancer (43,44). 
miR-150 promotes GC proliferation by negatively regulating 
the pro-apoptotic gene EGR2 (45). LaTulippe et al (46) reported 
that EGR2 and EGR3 are differentially expressed at least 
3-fold between primary and metastatic prostate cancer. ERG2 
has numerous target genes, among which TWIST2, which was 
previously linked to metastasis (47). The RGM domain family 
member A (RGMA), a member of the repulsive guidance mole-
cule family, is also a target gene of ERG2. RGMA is regarded as 
a key regulator of growth and aggressiveness of prostate cancer 
cells (48). Zhao et al (49) showed that decreased expression of 
RGMA by DNA methylation in colorectal cancer is related to 
tumor progression. In our data, RGMA was downregulated in 
metastatic GC. We therefore hypothesize that this gene may 
play a role in metastasis of GC cells.

Overall, the present study described the differential expres-
sion profiles between metastatic and non-metastatic GC. The 
results of this study provided meaningful data for future inves-
tigations; the identified DEGs will be useful in future research 
aiming to elucidate the regulatory mechanism underlying 
metastasis. Among these DEGs, STAT1 and EGR2 are prom-
ising candidates for use as metastatic GC biomarkers, and thus 
warrant further investigation.
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