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Abstract. The present study aimed to identify differentially 
expressed genes (DEGs) regulated by transcription factors 
(TFs) in glioblastoma, by conducting a bioinformatics anal-
ysis. The results of the present study may provide potential 
therapeutic targets that are involved in the development of 
glioblastoma. The GSE4290 raw data set was downloaded 
from the Gene Expression Omnibus database, and consisted 
of 23 non‑tumor samples and 77 glioblastoma (grade 4) tumor 
samples. Robust Multichip Averaging was used to identify 
DEGs between the glioblastoma and non‑tumor samples. 
Functional enrichment analysis of the DEGs was also 
performed. Based on the TRANSFAC® database, TFs associ-
ated with the glioblastoma gene expression profile were used to 
construct a regulatory network. Furthermore, trimmed subnets 
were identified according to calculated Z‑scores. A total of 676 
DEGs were identified, of which 190 were upregulated and 496 
were downregulated. Gene Ontology analysis demonstrated 
that the majority of these DEGs were functionally enriched 
in synaptic transmission, regulation of vesicle‑mediated trans-
port and ion‑gated channel activity. In addition, the enriched 
Kyoto Encyclopedia of Genes and Genomes pathway included 
neuroactive ligand‑receptor interaction, calcium signaling 
pathway, p53 signaling pathway and cell cycle. Based on the 
TRANSFAC® database, transcriptional regulatory networks 
with 2,246 nodes and 4,515 regulatory pairs were constructed. 
According to the Z‑scores, the following candidate TFs were 
identified: TP53, SP1, JUN, STAT3 and SPI1; alongside their 
downstream DEGs. TP53 was the only differentially expressed 
TF. These candidate TFs and their downstream DEGs may 
have important roles in the progression of glioblastoma, and 
could be potential biomarkers for clinical treatment.

Introduction

Glioblastoma is the most frequent and aggressive brain 
malignancy in adults, and is characterized by a heteroge-
neous population of cells that are involved with progression 
of the disease (1). It is a rapidly fatal malignancy and the 
majority of patients with glioblastoma suffer from a poor 
quality of life (2,3). Currently, the standard clinical treat-
ment is surgical resection of the malignant tissues, followed 
by radiotherapy and chemotherapy (4‑7). However, patients 
that receive these treatments may rapidly develop resistance 
to chemotherapy  (8). Recent studies have focused on the 
identification of candidate biomarkers of glioblastoma devel-
opment, in order to produce a more effective therapeutic 
strategy (9‑11).

Transcription factors (TFs) have important roles in the 
transcriptional networks that regulate gene expression, and 
modify and control cancer phenotypes (12,13). Differentially 
expressed TFs in glioblastoma, and their downstream 
gene targets, may be potential therapeutic biomarkers of 
glioblastoma (12,13). O6‑methylguanine DNA methyltrans-
ferase (MGMT) promoter hypermethylation  (14,15) and 
isocitrate dehydrogenase  1  (16‑18) have previously been 
suggested as potential therapeutic targets, and regulation of 
MGMT expression has been reported in numerous clinical 
studies (19,20). It has been suggested that MGMT expression 
may be regulated by inhibiting its upstream TF, such as SP1 
in glioblastoma (21).

Sun et al (22) collected mRNA expression data (GSE4290) 
from patients with brain tumors, and demonstrated that down-
regulation of stem cell factor (SCF) inhibits tumor‑mediated 
angiogenesis and glioma growth in vivo, whereas overexpres-
sion of SCF was associated with reduced survival in patients 
with malignant glioma. Numerous studies have identified 
glioblastoma‑associated genes based on the GSE4290 dataset, 
with the aim of improving diagnosis of glioma at the molec-
ular level (23,24). However, the importance of differentially 
expressed TFs has yet to be explored. The present study aimed 
to identify the differentially expressed TFs in glioblastoma, 
and the corresponding critical pathways involved in glioblas-
toma development.

In the present study, the raw mRNA data of Sun et al (22) 
was downloaded from the Gene Expression Omnibus 
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(GEO), and the differentially expressed genes (DEGs) in 
glioblastoma samples were identified. Functional enrichment 
analysis of the DEGs was then performed. TFs associated 
with the glioblastoma gene expression profile were used 
to construct a regulatory network. The present study may 
improve understanding regarding the development of glio-
blastomas. Furthermore, the differentially expressed TFs 
may be potential biomarkers for the prognosis and therapy 
of glioblastoma.

Databases and methods

Data acquisition. The raw data was downloaded from the 
GSE4290 dataset  (22) deposited in the GEO (http://www.
ncbi.nlm.nih.gov/geo/)(25). The dataset included 23 samples 
from patients with epilepsy, which are considered non‑tumor 
samples, and 77 glioblastoma (grade 4) tumor samples. The 
platform was GPL570 [HG‑U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array.

Analysis of DEGs. The raw data was initially analyzed using R 
software (v.3.0.0; http://www.r‑project.org/). The chip data was 
normalized using the Robust Multichip Averaging method (26) 
in Affy package (http://www.r-project.org/) (27). The DEGs 
were then identified using the Limma package (http://www.
bioconductor.org/packages/release/bioc/html/limma.html) (28) 
and tested for multi‑test correction by Bayes law (29). Genes 
with P<0.05 and |log2fold change (FC)| >1.5 were considered 
to be DEGs between the tumor and non‑tumor groups.

Functional enrichment analysis. For functional analysis 
of the selected DEGs, the DEGs were imported into the 
Database for Annotation, Visualization and Integrated 
Discovery  (http://david.abcc.ncifcrf.gov/)  (30), in order 
to perform a Gene Ontology (GO) functional enrichment 
analysis and a Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (31,32) pathway enrichment analysis. GO analysis 
encompasses three domains: Biological process, cellular 
components and molecular functions. P<0.05 was considered 
to indicate significance.

Weight of regulatory network. Based on the TRANSFAC® (33) 
database (http://www.gene‑regulation.com/pub/databases.
html) and the glioblastoma gene expression profile (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4290), 
TFs identified in the two datasets were selected and used 
to establish a regulatory network with their target genes. 
Combined with the gene expression levels, formulae i and ii 
were used to calculate the average rank correlation coefficient 
and formula iii was used to calculate the difference value of 
Spearman coefficients within the regulatory network. The 
absolute values of the averages of rank correlation coefficient 
were defined as weight of TF‑gene pairs and the absolute 
value of difference value was defined as weighted coeffi-
cient (28).

	�
(i)

	 �  (ii)

	�
(iii)

where Eij is the TF‑target gene between TF Vi and gene Vj; k is 
the kth sample; Vi and Vj are ranked by their expression levels in 
the samples respectively, and Xjk is the rank of Vi in kth sample, 
Xik is the rank of Vj of kth sample; xi, xj are the average ranks of 
Vi and Vj in the samples, respectively. 

r
Eij1 and rEij2 represent the 

Spearman coefficients of Eij in compared samples respectively. 
Permutation test was applied to rank the random difference 
values. TF‑gene pairs with a weighted coefficient >90% of 
the weighted coefficient value were excluded from further 
analysis (34).

Screening of sub‑networks within the regulatory network. TFs 
with a degree >15 in the regulatory network were selected and 
used to establish sub‑networks with their target genes. The 
weight of TF‑gene pairs in the sub‑networks were scored using 
the following methods. Initially, the weighted coefficients of 
all TF‑gene pairs within the regulatory network were ranked 
and defined as a background set (E), whereas the sub‑networks 
were considered as an objective set (S). The score of S 
enriched into E was then calculated by gene set enrichment 
analysis (35), according to formula iv:

	

� (iv)

where Ej is the jth TF‑target in the ranked regulatory pairs; rj 
is the weight of the jth regulatory pair in background set; P is 
a parameter and set as 1; N is the number of regulatory pairs 
in E; NH is the number of regulatory pairs in the subnet S. The 
enrichment score (ES) is the maximum deviation between Phit 
and Pmiss.

TF‑gene pairs without contribution to the ES were excluded 
from the analysis  (34,35). To estimate the significance of 
ES of the sub‑regulatory networks, ES was converted into 
Z value (34) using formula v.

� (v)

where ES (bar) is the mean of the random ES set; and S' is the 
standard deviation of the random ES set.

DEGs in the trimmed subnet. Genes from the gene expression 
profile were defined as a background set (E), whereas genes in 
the trimmed subnet were defined as an objective set (S). The 
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P‑values of the DEGs were ranked and the ES was calculated 
using formula vi (34).

	

� (vi)

where gj is the jth gene in the ranked genes; rj is the magnitude 
of differential expression of the jth gene; P is a parameter and 
set as 1; M is the number of genes in L; and MH is the number 
of genes in Strimmed.

Genes that did not contribute to the trimmed subnet ES 
were excluded. The significance of DEGs in the trimmed 
subnet was calculated by Z value transformation. The final 
Z‑score was calculated using formula  vii. The top five 
trimmed subnets were selected as the candidate regulatory 
subnets in glioblastoma.

	�  (vii)

Results

Identification of DEGs and functional enrichment analysis. 
With a cut‑off value of P<0.05 and |log2FC| >1.5, a total of 

676 DEGs were identified, of which 190 were upregulated and 
496 were downregulated (Table I). GO analysis demonstrated 
that the majority of DEGs were enriched in synaptic transmis-
sion, regulation of vesicle‑mediated transport and ion‑gated 
channel activity (Fig. 1). In addition, KEGG pathway enrich-
ment analysis identified the significantly enriched pathways, 
which included neuroactive ligand‑receptor interaction, 
calcium signaling pathway, p53 signaling pathway and cell 
cycle (Fig. 2).

Establishment of a weighted regulatory network and trimmed 
subnets. To identify TFs in the DEGs, TF‑gene pairs were 
selected based on the TRANSFAC® database and a transcrip-
tional regulatory network (not weighted) with 2,246 nodes 
and 4,515 regulatory pairs was constructed (Fig. 3). With a 
weighted coefficient >90% of the random weighted coefficient, 
1,312 pairs were excluded by permutation test.

TF‑gene pairs of trimmed subnets were calculated and the 
corresponding DEGs were scored. According to the Z‑scores, 
genes with the top 10 highest Z‑scores were identified and the 
corresponding subnets were constructed (Fig. 4). The candi-
date TFs and their downstream DEGs are listed in Table II. 
Only TP53 was identified as a differentially expressed TF in 
glioblastoma.

Discussion

In order to identify potential biomarkers for glioblastoma 
prognosis and therapy, a bioinformatics analysis was 
performed on the GSE4290 dataset. A total of 676 DEGs 
were identified, of which 190 were upregulated and 496 were 
downregulated. The majority of DEGs were functionally 
enriched in synaptic transmission, regulation of vesicle‑medi-
ated transport and ion‑gated channel activity. Furthermore, 
the enriched KEGG pathways of DEGs included neuroactive 
ligand‑receptor interaction, calcium signaling pathway, p53 
signaling pathway and cell cycle. Based on the TRANSFAC® 
database, a transcriptional regulatory network consisting 
of 2,246 nodes and 4,515 regulatory pairs was constructed. 
Based on weighted Z‑scores, TP53, SP1, JUN, STAT3, and 
SPI1 were identified as crucial TFs involved in the develop-
ment of glioblastoma.

Table I. Top 10 up‑ and downregulated differently expressed 
genes (DEGs) in glioblastoma tissue samples.

DEG	 Log2FC	 P‑value

IGFBP2	 3.774858	 5.10E‑19
TOP2A	 3.651993	 1.15E‑17
COL1A2	 3.498576	 1.94E‑13
PTX3	 3.131236	 5.99E‑11
UHRF1	 3.129304	 2.42E‑21
PBK	 3.089627	 1.95E‑16
CRNDE	 3.011189	 2.54E‑15
COL4A1	 2.903048	 1.37E‑15
SERPINA3	 2.830651	 1.92E‑15
CD163	 2.812399	 4.82E‑14
SST	 �4.05134	 1.28E‑26
MAL2	 �4.03901	 1.68E‑19
VSNL1	 �3.93557	 8.74E‑14
TAC1	 �3.83201	 1.19E‑17
CCK	 �3.78346	 2.53E‑16
SYT1	 �3.77802	 2.03E‑13
SYNPR	 �3.72399	 1.39E‑16
STMN2	 �3.67837	 3.36E‑13
RFPL1S	 �3.61819	 1.47E‑19
FAM19A1	 �3.60894	 1.93E‑22
 

Table II. TFs and their regulated‑DEGs.

TF	 Regulated‑DEG	 Z score

TP53a	 CHGA	 1.98
SP1	 IGFBP2, SERPINA3, CD163,	 1.25
	 CD99, KCNH8, SERPINE1,
	 HLA‑B
JUN	 TP53, VIP, FN1	 1.13
STAT3	 VIP	 1.19
SPI1		  1.30

aTP53 is a differentially expressed TF. TF, transcription factor; DEG, 
differentially expressed gene.
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As a common malignancy with poor prognosis, glioblas-
toma tumors harbor various cell types, including vascular 
cells, microglia, peripheral immune cells and neural 
precursor cells, which indicates that there is active communi-
cation ongoing between the tumor cells and non‑tumor cells, 

and there is a dramatic turnover in the microenvironment (1). 
It has previously been shown that calcium‑mediated trans-
duction systems, together with active gap junctions, have 
key roles in the communication of GL15 human glioblas-
toma cells with surrounding cells (36). Eukaryotic cells are 

Figure 1. Top 10 GO terms enriched by DEGs. (A) Biological processes; (B) Cellular components; (C) Molecular function. The horizontal axis represents the 
count of enriched DEGs. The vertical axis represents the different GO terms. GO, gene ontology, DEG, differentially expressed gene; GABA, γ‑aminobutyric 
acid.

Figure 2. The KEGG pathway enrichment analysis of DEGs. The horizontal axis represents the count of enriched DEGs. The vertical axis represents the 
different KEGG pathways. KEGG, Kyoto Enclyclopedia of Genes and Genomes; DEG, differentialy expressed gene; ECM, extracellular matrix.

  A

  B

  C
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capable of using multivesicular bodies for cytoplasmic traf-
ficking and release of exosomes, which may transfer genetic 
information between non‑immune cells (37). The pathway 
enrichment results of the present study demonstrated that the 

DEGs in glioblastoma were enriched in ion‑gated channels, 
gap junction signaling, vesicle‑mediated transport signaling 
and cell‑cell signaling, supporting the crucial role of calcium 
transport, coupled with gap junctions, in the invasive 

Figure 4. Corresponding sub‑regulation network of the transcriptional regulation network. The triangles represent differentially expressed transcription factors 
(TFs) (red, differential expression; green, expression without difference). The yellow circles represent differentially expressed genes (DEGs) regulated by TFs 
(yellow, DEGs; blue, expression without difference).

Figure 3. Transcriptional regulation network of genes from the gene expression profile of glioblastomas. The triangles represent differentially expressed 
transcription factors (TFs) (red, differential expression; green, expression without difference). The yellow circles represent differentially expressed genes 
(DEGs) regulated by TFs (yellow, DEGs; blue, expression without difference).
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capabilities of glioblastoma. Therefore monitoring these 
signaling pathways may aid prediction of tumor progression.

Among the five TFs identified in the present study to be 
associated with glioblastoma, TP53 was the only DEG. TP53 
encodes p53, a well‑known tumor suppressor protein  (38). 
The abnormal expression of p53 leads to failures of cell cycle 
and apoptosis regulation, as well as cancer development (38). 
However, few studies have investigated the role of p53 as a TF. 
Notably, the present study also identified JUN as a candidate 
biomarker, which is a proto‑oncogene that encodes a compo-
nent of the mitogen‑inducible immediate‑early TF AP1 and 
c‑Jun, and regulates the cell cycle (39). It has previously been 
reported that the regulation of JUN in the cell cycle and apop-
tosis is associated with p53 (40). Furthermore, overexpression 
of MGMT has previously been shown to accompany an 
increased recruitment of c‑Jun in glioblastoma (20); however, 
the association between TP53 and JUN in glioblastoma 
progression has yet to be elucidated. TP53 and JUN may act as 
potential biomarkers for the prognosis of glioblastoma.

SP1 was also identified as a candidate TF and the majority 
of its downstream targets were differentially expressed in 
glioblastoma, thus indicating that SP1 may be critical for 
the development of glioblastoma. Previous studies  (19,20) 
have targeted the transcriptional activity of SP1 to regulate 
the expression of MGMT and other genes for glioblastoma 
therapy. SPI1 is also a putative proto‑oncogene associated with 
tumor progression (41), which encodes a protein that functions 
in the development of lymphocytes (42). SPI1 may influence 
the development of glioblastoma through regulation of func-
tional immune cells. SPI1 may also be a potential biomarker 
or therapeutic target for glioblastoma; however, this requires 
further confirmatory study.

In conclusion, the present study identified DEGs between 
glioblastoma and non‑tumor samples, and a functional enrich-
ment analysis of the DEGs was performed. According to 
Z‑scores, the candidate TFs: TP53, SP1, JUN, STAT3 and 
SPI1, and their downstream DEGs, may have important roles 
in the progression of glioblastoma, and may be potential 
biomarkers for clinical treatment.
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