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Abstract. Epidermal growth factor receptor (EGFR) and 
insulin-like growth factor receptor-I (IGF-IR) are frequently 
overexpressed in gastric cancer cells. However, these cells are 
resistant to the anti-EGFR monoclonal antibody cetuximab. The 
aim of the present study was to determine whether cetuximab 
resistance in gastric cancer cells resulted from activation of the 
IGF-IR signaling pathway by cetuximab. The results demon-
strated that EGFR phosphorylation was markedly inhibited 
in gastric cancer cell lines (SGC7901 and MGC803) which 
possessed functional K-ras and BRAF following treatment with 
cetuximab. However, cetuximab treatment did not diminish 
cell viability; by contrast, IGF-IR activation was observed. 
Knockdown of IGF-IR or the use of an IGF-IR inhibitor were 
found to increase the sensitivity of gastric cancer cells to cetux-
imab. Furthermore, cetuximab induced phosphorylation of the 
non-receptor tyrosine kinase c-steroid receptor co-activator (Src). 
Treatment of gastric cancer cells with a Src inhibitor was shown 
to significantly reduce cetuximab‑induced phosphorylation of 
IGF-IR as well as Src, which resulted in enhanced sensitivity 
to cetuximab treatment. In conclusion, the results of the present 
study demonstrated that cetuximab-induced IGF-IR activation 
was involved in cetuximab resistance in gastric cancer cells and 
that Src was an important mediator for IGF-IR activation.

Introduction

Gastric cancer is highly prevalent in East Asia, with 42% of cases 
occurring in China (1). The median life expectancy of gastric 

cancer patients following diagnosis is <1 year; however, combi-
nation chemotherapy treatments have the potential to extend 
the survival rate of advanced stage patients (2-8). Therefore, 
using chemotherapy in conjunction with effective targeting 
of key factors may be beneficial for improving the clinical 
outcome of gastric cancer patients. A phase III clinical trial 
demonstrated that the use of chemotherapy in conjunction with 
a human epidermal growth factor receptor 2 (HER2)‑specific 
monoclonal antibody (trastuzumab) significantly improved 
the overall survival rate of patients with HER2-neu overex-
pressing gastroesophageal junction cancer compared with that 
of chemotherapy alone (7). However, overexpression of Her-2 
is present in only 10-20% of gastric cancer patients (9) and 
therefore, this combination treatment may not be beneficial for 
the majority of patients. Cetuximab (C225), an anti-epidermal 
growth factor receptor (EGFR) monoclonal antibody, has been 
widely used in combination with chemotherapy for the treat-
ment of various cancer types, including metastatic colorectal 
cancers that retain wild-type K‑ras and BRAF genes, squamous 
cell carcinoma of the head and neck as well as non-small cell 
lung cancer (NSCLC) (10-12). The majority of gastric cancers 
overexpress EGFR (13), while retaining wild-type K‑ras and 
BRAF genes (14,15). Phase II clinical studies have shown that 
cetuximab in combination with chemotherapy delayed the 
progression of gastric cancer in patients, with an acceptable 
response rate (13,16-18). However, two additional trials failed 
to demonstrate significant improvement in overall patient 
survival with use of the anti-EGFR antibodies cetuximab or 
panitumumab in combination with chemotherapy in advanced 
gastric cancer patients compared with that of chemotherapy 
alone (19,20). The results of these studies therefore suggested 
that alternate mechanisms of resistance to anti-EGFR anti-
bodies existed in gastric cancer patients.

Numerous key molecules are involved in the EGFR signal 
transduction pathway, which is also able to cross-talk with 
other signaling pathways. In addition to K-ras and BRAF, other 
molecules influence EGFR signaling pathways, including 
C-Met and the insulin-like growth factor receptor-I (IGF-IR) 
signaling pathway (21-23). IGF-IR is a receptor tyrosine 
kinase, which is overexpressed in numerous types of tumor, 
such as gastrointestinal carcinomas (24-26). IGF-IR becomes 
autophosphorylated following the binding of ligands, which 
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stimulates its tyrosine kinase activity and subsequently acti-
vates downstream signaling pathways (27). These pathways 
include the Ras/Raf/mitogen-activated protein kinase and 
phosphoinositide 3-kinase/Akt pathways, which are the 
primary downstream mediators of EGFR signaling (28). This 
therefore suggested that IGF-IR may modulate the sensitivity 
of gastric cancer cells to anti-EGFR antibodies.

Resistance to cetuximab was reported to be associated with 
overactivation of baseline IGF-IR in human nasopharyngeal 
carcinoma cells; in addition, the inhibition of baseline IGF-IR 
activation increased sensitivity to cetuximab in cutaneous 
squamous cell carcinoma (29). However, the involvement 
of cetuximab in the activation of the IGF-IR pathway and 
inhibition of the EGFR pathway as well as the role of IGF-IR 
signaling in cetuximab resistance in gastric cancer cells has 
remained to be elucidated.

The non-receptor tyrosine kinase c-steroid receptor 
co-activator (Src) was reported to have a crucial role in IGF-IR 
signaling. Numerous studies have indicated that Src may 
be an upstream signaling molecule of IGF-IR and EGFR in 
kidney cells and epididymal cells (30,31). By contrast, certain 
studies have shown that IGF-IR acts upstream of Src in human 
prostate cancer DU145 and breast cancer cells (32,33). Src has 
also been implicated in chemotherapy resistance in gastric 
cancer (34). However, the involvement of Src in the regulation 
of IGF-IR signal transduction and thereby cetuximab sensi-
tivity in gastric cancer cells has remained to be elucidated.

The aim of the present study was to investigate the role 
of cetuximab in the induction of IGF-IR and Src activation 
in gastric cancer cells in order to determine the mechanisms 
underlying cetuimab resistance.

Materials and methods

Reagents and antibodies. Cetuximab was obtained from 
Merck KGaA (Darmstadt, Germany). Src inhibitor 4-amino
-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d] pyrimi-
dine (PP2) was obtained from Sigma (St. Louis, MO, USA). 
IGF-IR inhibitor OSI-906 was purchased from SelleckBio 
(Houston, TX, USA). The following antibodies: Anti-EGFR 
polyclonal antibody, anti-phospho-EGFR (Tyr1068) polyclonal 
antibody, anti-phospho-Akt (Ser473) polyclonal antibody, 
anti-IGF-IRmonoclonal antibody, anti-phospho-Src (Y416) 
polyclonal antibody and anti-phospho-IGF-IR (Tyr1131) 
polyclonal antibody, were purchased from Cell Signaling 
Technology, Inc.(Danvers, MA, USA). The following antibodies: 
Anti-β-actin polyclonal antibody, anti-Akt monoclonal anti-
body, anti-extracellular signal-regulated kinase (ERK)1/2 
polyclonal antibody, anti-c-Src monoclonal antibody and 
anti-phospho-ERK1/2 (Tyr202/ Tyr204) polyclonal antibody, 
were purchased from Santa Cruz Biotechnology, Inc. (Dallas, 
TX, USA).

Cell cultures. Gastric cancer SGC7901 and MGC803 cells were 
purchased from the Cell Bank of Type Culture Collection of 
the Chinese Academy of Sciences (Shanghai, China). Mutations 
were not located in exons 19 or 21 of the EGFR gene in the two 
gastric cancer cell lines. The cells were cultured in RPMI-1640 
medium (Gibco-BRL, Grand Island, NY, USA) containing 10% 
heat-inactivated fetal bovine serum (FBS; Gibco-BRL), 100 U/ml 

penicillin and 100 µg/ml streptomycin (Life Technologies, Inc., 
Carlsbad, CA, USA)  at 37˚C under an atmosphere of 95% air 
and 5% CO2. Cells were routinely subcultured every two to 
three days and all cells used for experimental procedures were 
in the logarithmic growth phase.

Small interfering RNA (siRNA) transfections. IGF-IR siRNAs 
were obtained from Shanghai Gemma pharmaceutical technology 
Co., Ltd (Shanghai, China). IGF-IR siRNA was synthesized 
using the primer 5'-GCATGGTAGCCGAAGATTT-3'. 
Lipofectamine® 2000 was diluted dropwise into RPMI 1640 
and incubated at room temperature for 5 min. IGF-IR siRNA 
was then added to the diluted Lipofectamine® 2000 and incu-
bated for 20 min. Following 48 h of transient transfection, cells 
were analyzed using western blot analysis.

Cell viability assay. Cell viability was measured using an 
MTT assay. Cells were seeded at 3x104/well in 96-well plates 
and incubated overnight. Cells were then exposed to increasing 
doses of cetuximab (0.01, 0.1, 1.0 and 10 µg/ml) for 24 h; 
following which, 25 µl MTT solution (5 mg/ml) was added to 
each well and the cells were incubated for 4 h at 37˚C. The cell 
culture medium was then removed and the cells were lyzed 
in 200 µl dimethylsulphoxide. Optical density was measured 
at 570 nm using a microplate reader (Bio-Rad 550; Bio-Rad 
Laboratories, Hercules, CA, USA).

Western blot analysis. Cells were washed twice with ice-cold 
phosphate-buffered saline and solubilized in 1% Triton lysis buffer 
[1% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA); 50 mM 
Tris-Cl, pH 7.4; 150 mM NaCl; 10 mM EDTA; 100 mM NaF 
(all purchased from Sinopharm Chemical Reagent, Shanghai, 
China); 1 mM Na3VO4; 1 mM phenylmethylsulfonyl fluoride; 
and 2 µg/ml aprotinin (all purchased from Sigma-Alrich)] on 
ice and then quantified using the Lowry method (35). Cell lysate 
proteins were separated using SDS-PAGE and electrophoreti-
cally transferred onto a nitro-cellulose membrane (Immoblin-P; 
Millipore, Bedford, MA, USA). Membranes were blocked using 
5% skimmed milk in trimethyl benzene sulfonyl tetrazole 
buffer (10 mM Tris-C1, pH 7.4; 150 mM NaCl; 0.1% Tween 20; 
all purchased from Sinopharm Chemical Reagent) at 
room temperature for 2 h and incubated with anti-EGFR, 
anti-IGF-IR, anti-c-Src, anti-ERK1/2, anti-Akt, anti-β-Actin, 
anti-phosphor-EGFR(Tyr1068), anti-phospho-IGF-IR (Tyr1131), 
anti- phosphor-Src (Y416), anti-phospho-ERK 1/2 (Tyr202/ 
Tyr204) or anti-phospho-Akt (Ser473) primary antibodies at 
4˚C overnight. The secondary anti-rabbit or mouse monoclonal 
antibodies (Santa Cruz Biotechnology, Inc.) antibodies (dilution, 
1:800) were then added for 30 min at room temperature. Proteins 
were detected using an enhanced chemiluminescence reagent 
(SuperSignal Western Pico Chemiluminescent Substrate; 
Pierce Biotechnology, Rockford, IL, USA) and visualized 
using the Electrophoresis Gel Imaging Analysis System (DNR 
Bio-Imaging Systems, Ltd., Jerusalem, Israel).

Colony‑forming assay. In brief, 300 cells per well were seeded 
onto 12-well plates. Following adherence to the plates, cells 
were exposed to 10 µg/ml cetuximab, PP2 and OSI-906. On 
day 14, clones were air dried without RPMI-1640, then stained 
for 10 min with Giemsa stain (Sigma-Aldrich). The clones 
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were then washed with running water and air dried again. 
Clones in each well were counted and images were captured 
using inverted microscopy (M021; Olympus, Tokyo, Japan). 

Statistical analysis. All experiments were performed in trip-
licate. Values are expressed as the mean ± standard deviation. 
Statistical comparisons were made by Student's t-test. SPSS 
16.0 software was used for statistical analysis (International 
Business Machines, Armonk,NY, USA) and P<0.05 was 
considered to indicate a statistically significant difference 
between values.

Results

Gastric cancer cell lines are resistant to cetuximab. In order to 
evaluate the sensitivity of gastric cancer cell lines to cetuximab, 
SGC7901 and MGC803 cells were treated with increasing 
concentrations of cetuximab (0.01, 0.1, 1 and 10 µg/ml) for 24, 
48 and 72 h. Following treatment with cetuximab, the two cell 
lines exhibited minimal growth inhibition (<10%), which there-
fore indicated that the cells were cetuximab-resistant (Fig. 1A) 
and the maximal dose of 10 µg/ml cetuximab was therefore 
used for the subsequent experiments. As shown in Fig. 1B, the 
colony forming ability of gastric cancer cells was not affected 
by cetuximab treatment. Furthermore, in order to determine 
whether cetuximab had a role in blocking EGFR tyrosine kinase 
activation, the effect of cetuximab treatment on EGFR, ERK 
and Akt phosphorylation was examined. Cells were incubated 
with 10 µg/ml cetuximab for 2, 6 and 24 h. The results demon-
strated a marked decrease in EGFR and ERK phosphorylation; 
however, Akt phosphorylation remained unchanged (Fig. 1C). 

In addition, following a mutation analysis of K‑ras (codons 12 
and 13) and BRAF (exon 15, V600E) genes, no point mutations 
were observed in the two cell lines. This therefore indicated that 
cetuximab resistance was not associated with the mutation of 
these genes (Fig. 1D). Overall, these results suggested that an 
alternative pathway mediated cetuximab resistance via activa-
tion of Akt in gastric cancer cells.

Cetuximab induces activation of IGF‑IR and Src in gastric‑
cancer cells. SGC7901 and MGC803 cells were exposed to 
10 µg/ml cetuximab for 0.5, 2, 6, 16 and 24 h. Western blot anal-
ysis revealed that IGF-IR phosphorylation was notably increased 
in the two cell lines, with peak activation detected at 6 h. 
Increased Src phosphorylation was also observed in MGC803 
and SGC7901 cells, with peak activation detected at 6 and 16 h, 
respectively (Fig. 2). This suggested that cetuximab may have 
induced the activation of IGF-IR and Src in gastric cancer cells.

Inhibition of IGF‑IR activation or expression increases 
sensitivity of gastric cancer cells to cetuximab and reduces 
Src phosphorylation. In order to determine whether IGF-IR 
signaling induced cetuximab resistance, SGC7901 and 
MGC803 cells were treated with 10 µg/ml cetuximab in combi-
nation with the tyrosine kinase dual insulin receptor and IGF-IR 
inhibitor OSI-906 (10 µM) for 2 and 6 h. OSI-906 inhibited 
the cetuximab-induced phosphorylation of Src, IGF-IR and 
Akt in the two cell lines; however, ERK activation was not 
altered (Fig. 3A). Cetuximab treatment in combination with 
OSI-906 decreased cell viability in SCG7901 and MGC803 cells, 
respectively, by ~25 and 27% compared to treatment with cetux-
imab alone (Fig. 3B). Furthermore, a colony-forming assay of 

Figure 1. Effects of cetuximab on cell viability, colony formation and EGFR signaling pathways in two gastric cancer cell lines. (A) SGC7901 and MGC803 cells 
were treated with cetuximab (0.01, 0.1, 1 and 10 µg/ml) for 24, 48 and 72 h. Cell viability was measured using an MTT assay. (B) The two cell lines were 
exposed to 10 µg/ml cetuximab for 14 days and the colony formation was analyzed. (C) Western blot analysis of the EGFR signaling pathways of SGC7901 and 
MGC803 cells treated with 10 µg/ml cetuximab for 2, 6 and 24 h. (D) Primer sequences for mutation analysis of K-ras and BRAF. EGFR, epidermal growth 
factor receptor; ERK, extracellular signal-related kinase; p, phosphorylated; C225, cetuximab.
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Figure 3. OSI-906 suppresses IGF-IR and Src phosphorylation and enhances the growth inhibitory effects of cetuximab in gastric cancer cells. (A) SGC7901 
and MGC803 cells were pretreated with or without the IGF-IR inhibitor OSI-906 (10 µM) for 1 h and then incubated with 10 µg/ml cetuximab for 2 and 6 h. 
Western blot analysis was then used to detect protein expression levels of phosphorlyated and non-phosphorlyated IGF-IR, Src, ERK and Akt. (B) SGC7901 
and MGC803 cells were incubated with 10 µg/ml cetuximab with or without 10 µM OSI-906 for 48 h. Cell viability was then assessed using an MTT assay. 
*P<0.05 treament with combination cetuximab and OSI-906 vs. cetuximab alone. (C) Cells were treated with 10 µg/ml cetuximab and 10 µM OSI-906 alone or 
in combination for 14 days and a colony forming assay was performed. IGF-IR, insulin-like growth factor receptor 1; Src, steroid receptor co-activator; ERK, 
extracellular signal-related kinase; p, phosphorylated; C225, cetuximab; OSI, OSI-906.

Figure 2. Cetuximab activates IGF-IR and Src. Cells were treated with 10 µg/ml cetuximab for 0.5, 2, 6, 16 and 24 h. Western blot analysis was then used to 
detect protein expression levels of IGF-IR and Src. β-actin was used as an internal control. IGF-IR, insulin-like growth factor receptor 1; Src, steroid receptor 
co-activator; p, phosphorylated; C225, cetuximab.
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MGC803 cells revealed that treatment with cetuximab in 
combination with OSI-906 produced fewer and smaller colonies 
than treatment with cetuximab alone (Fig. 3C).

The effect of downregulated IGF-IR gene expression on 
downstream signaling in gastric cancer cells was examined using 
IGF‑IR‑specific siRNAs. As shown in Fig. 4A, western blot anal-
ysis was used to confirm the knockdown of IGF‑IR. Following 
exposure to 10 µg/ml cetuximab for 2 h, IGF-IR-depleted cells 
exhibited reduced expression of phosphorylated IGF-IR, Src 
and Akt; however, ERK phosphorylation remained unchanged 
(Fig. 4A). Cells transfected with IGF-IR siRNAs demonstrated 
significantly reduced survival rates compared to that of the 
control cells following exposure to cetuximab for 48 h (Fig. 4B). 
These results therefore indicated that cetuximab-induced 
IGF-IR activation was responsible for cetuximab resistance and 
that Src acted downstream of IGF-IR in gastric cancer cell lines.

Inhibition of Src restores cetuximab sensitivity and represses 
IGF‑IR phosphorylation in gastric cancer cells. In order 
to investigate the association between Src and IGF-IR, 
gastric cancer cells were pretreated with the Src inhibitor 
PP2 (10 µM) alone or in combination with cetuximab for 2 
and 6 h. Activation of IGF-IR was then assessed using western 
blot analysis. The results revealed that following treatment 
with PP2, cetuximab-mediated IGF-IR phosphorylation was 
markedly decreased (Fig. 5A). In addition, gastric cancer cell 
viability was significantly reduced following cetuximab treat-
ment in combination with PP2 compared to that of cetuximab 
treatment alone (Fig. 5B). Furthermore, the combination treat-
ment reduced colony formation in MGC803 cells relative to 
that of treatment with cetuximab alone (Fig. 5C). These results 

therefore showed that cetuximab-induced activation of IGF-IR 
was inhibited following the PP2-induced inhibition of Src acti-
vation, indicating that there may be a positive feedback loop 
between IGF-IR and Src.

Discussion

Numerous studies have confirmed that the primary mecha-
nism of cetuximab resistance was via K‑ras and BRAF gene 
mutations (36-39). In addition, cetuximab-sensitive gastric 
cancer cell lines were reported to significantly reduce EGFR 
activation following cetuximab treatment compared with 
cetuximab-resistant cells (40). Another study demonstrated 
that cetuximab failed to inhibit phosphorylation of EGFR path-
ways in a cetuximab-resistant head and neck squamous cell 
cancer cell line (41). The results of the present study indicated 
that cetuximab resistance occurred in gastric cancer SGC7901 
and MGC803 cells expressing wild-type K-ras and BRAF. 
However, these two cell lines exhibited reduced activation of 
EGFR and ERK following cetuximab exposure, whereas Akt 
activation was not affected. It was therefore suggested that 
other pathways may be involved in Akt activation, thereby 
mediating cetuximab resistance in gastric cancer cells.

It is widely accepted that EGFR is able to cross-talk with 
other signaling factors (42-45). A recent study demonstrated 
that tumor necrosis factor-related apoptosis-inducing ligand 
(TRAIL) was able to activate the EGFR pathway during 
TRAIL-induced apoptosis in gastric cancer cells (46). 
Morgillo et al (47) reported that the EGFR tyrosine 
kinase inhibitor erlotinib induced heterodimerization of 
EGFR/IGF-IR, with activation of IGF-IR and its downstream 

Figure 4. Knockdown of IGF-IR expression reduces cetuximab-induced Src and Akt phosphorylation as well as enhances cellular proliferation inhibition 
rates in gastric cancer cells. SGC7901 and MGC803 cells were transiently transfected with IGF-IR siRNAs for 48 h, followed by 10 µg/ml cetuximab for 2 h. 
(A) Western blot analysis was used to detect the phosphorylation of IGF-IR, Src, ERK and Akt. (B) Cell viability was assessed using an MTT assay. *P<0.05, 
IGF-IR siRNA cells vs. NS control. IGF-IR, insulin-like growth factor receptor 1; Src, steroid receptor co-activator; ERK, extracellular signal-related kinase; 
p, phosphorylated; C225, cetuximab; siRNA, small interfering RNA; NS, non-silenced.
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mediator Akt in NSCLC cells; in addition, overexpression of 
IGF-IR has also been observed in numerous types of human 
cancers (48) and was shown to be involved in cisplatin resis-
tance (49). Furthermore, it was reported that baseline activation 
of IGF-IR was correlated with cetuximab resistance (29). The 
present study found that baseline levels of phosphorylated 
IGF-IR in gastric cancer cells were not increased; however, 
following exposure to cetuximab there was a gradual increase 
in levels of IGF-IR phosphorylation. Furthermore, treatment 
with the IGF-IR inhibitor OSI-906 or IGF-IR siRNAs inhib-
ited activation of IGF-IR and Akt as well as increased the 
sensitivity of gastric cancer cells to cetuximab. This therefore 
indicated that cetuximab-induced IGF-IR and Akt activation 
were involved in cetuximab resistance in gastric cancer.

In order to further investigate the regulation of cetux-
imab-induced IGF-IR activation, Scr activation was then 
assessed in the present study. Peterson et al (50) reported that 
IGF-IR was a substrate for v-Src. Src activation was found to 
occur upstream of IGF-IR transactivation as well as stimulate 
IGF-dependent proliferation in HEK293 cells and pancreatic 
carcinoma cells (30,51). By contrast, it was reported that IGF 
induced Src activation in vascular smooth muscle cells (52). 
Therefore, the upstream and downstream association between 
Src and IGF-IR required further elucidation. In the present 
study, cetuximab was shown to simultaneously induce the 
activation of IGF-IR and Src. In turn, inhibition of IGF-IR 

activation prevented the activation of Src, while inhibition of 
Src activation inhibited the activation of IGF-IR. This there-
fore provided evidence for a positive feedback loop between 
IGF-IR and Src. Furthermore, inhibiting the activation of 
IGF-IR as well as Src improved gastric cancer-cell sensitivity 
to cetuximab, therefore indicating that cetuximab induced the 
activation of IGF-IR and Src, which resulted in cetuximab 
resistance in SGC7901 and MGC803 gastric cancer cells.

In conclusion, the results of the present study demonstrated 
that cetuximab blocked EGRF while concurrently inducing acti-
vation of IGF-IR and Src. Evidence was provided for a positive 
feedback loop between Src and IGF-IR, which activated the Akt 
signaling pathway downstream of EGFR, therefore mediating 
cetuximab resistance in gastric cancer cells. These present study 
contributed evidence towards an explanation for the mecha-
nisms underlying cetuximab resistance in gastric cancer cells 
that retain wild-type K‑ras and BRAF genes. In addition, the 
results of the present study indicated that inhibition of IGF-IR 
activation may be an effective mechanism by which cetuximab 
sensitivity may be enhanced in order to improve the effective-
ness of combination chemotherapy in gastric cancer patients.
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