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Abstract. The present study aimed to determine the molecular 
mechanisms leading to the production of advanced glyca-
tion end‑products (AGEs) and their effect on the morphology 
and function of rat glomerular capillary endothelial cells 
(GECs). Primary rat GECs were treated with AGE‑modified 
human serum albumin (AGE‑HSA) and divided into groups 
according to AGE concentration and treatment time. The 
structure and distribution of cytoskeletal protein F‑actin and 
the cortical actin binding protein, cortactin, were analyzed 
using immunofluorescence and confocal microscopy. As the 
Ras‑related C3 botulinum toxin substrate 1 (Rac1) signaling 
pathway was previously identified to be involved in mediating 
the contraction of endothelial actin‑myosin activity, Rac1 was 
examined subsequent to treatment of the cells with the Rac1 
agonist 2'‑O‑methyladenosine‑3',5'‑cyclic monophosphate 
(O‑Me‑cAMP) for 1 h using a pull‑down assay. Cell perme-
ability was determined by the leakage rate of a fluorescein 
isothiocyanate fluorescent marker protein. AGE‑HSA treatment 
resulted in alterations in the structure and distribution of F‑actin 
and cortactin in a dose‑ and time‑dependent manner, while no 
effect was observed with HSA alone. The effect of AGE on the 
cytoskeleton was inhibited by the addition of O‑Me‑cAMP. 
AGE‑HSA significantly reduced the level of Rac1 activity 
(P<0.05); however, no effect was observed on total protein 
levels. Furthermore, AGE‑HSA treatment led to a significant 
increase in the permeability of endothelial cells (P<0.01), which 
was inhibited by O‑Me‑cAMP (P<0.01). The Rac1 signaling 

pathway is thus suggested to serve an important function in 
mediating AGE‑induced alterations in GEC morphology and 
function.

Introduction

Previous studies have demonstrated that an increase in 
glomerular capillary permeability is a key step leading to 
proteinuria in patients with diabetes and nephropathy (1). 
Glomerular capillary endothelial cells (GECs) constitute 
the first barrier preventing blood macromolecules, such as 
proteins, from passing through the endothelial wall (2‑4). 
Therefore, the structure and distribution of GECs is closely 
associated with the permeability of the capillary. Previous 
studies have suggested that the reorganization and redistri-
bution of the cytoskeleton protein F‑actin and the cortical 
actin binding protein cortactin in endothelial cells is crucial 
to the increase in capillary permeability observed (5‑7). In 
addition, the Ras‑related C3 botulinum toxin substrate 1 
(Rac1) signaling pathway has been identified to be involved 
in mediating the contraction of endothelial actin‑myosin. 
This induces an alteration in cell morphology, destroying 
the cell‑cell connections and forming the gap between 
cells  (8‑12), suggesting an association between the Rac1 
signaling pathway and capillary permeability. It has been 
reported that advanced glycation end‑products (AGEs) are 
involved in inducing alterations in the distribution of cyto-
skeletal proteins and endothelial cell permeability in diabetic 
patients with microvascular complications (13‑16). However, 
the function of the Rac1 signaling pathway in this process 
remains elusive. In the present study, immunofluorescence 
staining and confocal microscopic analysis were conducted 
in order to determine the effect of AGEs on the structure and 
distribution of F‑actin and cortactin in GECs. In addition, the 
levels of Rac1 activity were investigated using a pull‑down 
assay, endothelial permeability was analyzed using a 
Transwell assay and the potential involvement of the Rac1 
signaling pathway in this process was examined. The present 
study aimed to improve the understanding of the pathogen-
esis of nephropathic proteinuria in diabetics and provide 
novel therapeutic targets for diabetes and nephropathy.
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Materials and methods

Materials. Dulbecco's modified Eagle's medium, MCDB131, 
trypsin and fetal bovine serum (FBS) were purchased 
from Gibco Life Technologies (Carlsbad, CA, USA). 
Vascular endothelial growth factor was purchased from 
BD Biosciences (San  Jose, CA, USA) and f luorescein 
isothiocyanate (FITC)‑phalloidin was obtained from 
Molecular Probes Life Technologies (Grand Island, NY, 
USA). FITC‑labeled goat anti‑rabbit antibody, human serum 
albumin (HSA) and FITC‑bovine serum albumin were from 
Sigma‑Aldrich (St. Louis, MO, USA). DAPI was purchased 
from Invitrogen Life Technologies (Carlsbad, CA, USA) 
and 2'‑O‑methyladenosine‑3',5'‑cyclic monophosphate 
(O‑Me‑cAMP) was purchased from Aladdin Reagents Co., 
Ltd (Shanghai, China). Transwell was purchased from Corning 
Life Sciences (Tewksbury, MA, USA) and a Rac1 Activity 
Detection kit was purchased from EMD Millipore (Billerica, 
MA, USA). A Bradford kit was purchased from Shenneng 
Bocai Biotechnology Co., Ltd. (Shanghai, China).

Isolation and culture of GECs. The isolation and culture of 
primary GECs was conducted as previously described (17‑19). 
All studies were approved by the Ethics Committee of Anhui 
Provincial Hospital (Hefei, China) for Animal Experiments 
and conformed to the Guide for the Care and Use of Laboratory 
Animals by the National Institutes of Health. Primary GECs 
were isolated from the kidneys of two male Wistar rats (body 
weight, 80‑120 g) (Animal Department of Anhui Medical 
University, China; certificate no. 003). Primary GECs were 
cultured in MCDB131 medium supplemented with 10% FBS 
in a humidified atmosphere with 5% CO2. All operations were 
performed under 10% chloral hydrate (Hechang Chemical 
Company, Wuhan, China) and all efforts were made to mini-
mize suffering.

Preparation of AGE‑modif ied HSA. AGE‑HSA was 
prepared by incubating HSA with glucose, as previously 
described (20‑23). The reaction system contained 1.5 g HSA 
and 3.0 g D‑glucose (Meilun Bio, Dalian, China), which were 
dissolved in 10 ml phosphate‑buffered saline (PBS; 0.2 mol; 
pH 7.4; Gibco Life Technologies) and filtered with 0.22 µm 
microporous membranes (EMD Millipore). The solution was 
then maintained in a container filled with nitrogen, which 
was sealed, protected from light and incubated at 37˚C for 
three months. The unbound materials were removed using 
a dialysis bag (molecular weight,  10,000; Corning, Inc., 
Corning, NY, USA). The same procedure was completed 
without the addition of D‑glucose for the control. The AGE 
value of the samples (1 mg/ml) was detected by fluorescence 
scanning (BX43; Olympus Corp., Tokyo, Japan) and samples 
were stored at ‑20˚C.

Immunofluorescence staining. Staining was conducted 
as previously described  (24‑27). The slides were washed 
in PBS twice and fixed in 4% paraformaldehyde at room 
temperature for 30 min. Subsequently, the slides were treated 
with 0.1% Triton X‑100 (Sangon Biotech Co., Ltd, Shanghai, 
China) for 15 min (F‑actin staining). Subsequent to blocking 
with 1% bovine serum albumin (BSA; Sigma‑Aldrich) for 

1 h at room temperature, the samples were incubated with 
FITC‑phalloidin for 1  h at room temperature in the dark 
(F‑actin staining), or with rabbit anti‑mouse monoclonal 
cortactin antibody (SAB1305513; 1:100) overnight at 4˚C. For 
cortactin staining, samples were then incubated with DyLight 
605‑labeled goat anti‑rabbit antibody (SAB4600398; 1:500) 
for 1 h at room temperature in the dark following washing 
three times with PBS for 5 min. Antibodies were obtained from 
Santa Cruz Biotechnology, Inc. (Beijing, China) and samples 
were incubated with antibodies for 2 h at room temperature. 
Glycerol (50%; Xilong Chemical Company, Guangzhou, 
China) was used to mount the glass slides with cells, and the 
images were captured using a confocal microscope.

Rac1 activity analysis. Racl activity was analyzed using a 
pull‑down assay, as previously described (9,28). The protein 
was extracted using a chemical cleavage method, and the 
protein concentration was detected using the Bradford 
assay. Samples (50  µg) underwent SDS‑PAGE (10%) and 
were subsequently transferred to polyvinylidene difluoride 
membranes (EMD Millipore). The membranes were incu-
bated with RAC1‑GTP antibody and were then incubated 
with horseradish peroxidase‑conjugated secondary antibodies 
(Zhongshan Jinqiao Company, Beijing, China). The chemilu-
minescent images were obtained using a Kodak Image Station 
2000R system (Kodak, Rochester, NY, USA) and the results 
were analyzed using ImageJ software version 1.44e (National 
Institutes of Health, Bethesda, MD, USA).

Cell permeability analysis. Using a previously reported 
method (29), GECs were seeded into the top compartment of 
a Transwell chamber with FITC‑albumin (100 µl; 1 mg/ml; 
Sigma‑Aldrich). Subsequent to incubation, the fluorescence 
intensity of samples was analyzed using a HTS‑7000 Bio 
Assay Reader (BioAssay Systems, Hayward, CA, USA) with 
495 nm excitation and 520 nm emission filters. The apparent 
permeability coefficient [(Pa)  =  (F/t)(1/A)(v/L)] was used, 
where F indicates the fluorescence intensity in the bottom 
chamber, t indicates time  (sec), A is the membrane area 
(cm2), v is the solution volume in the bottom chamber and L 
indicates the fluorescence intensity in the top chamber. The 
results are expressed as a percentage [Pa% = (experimental 
Pa value/control Pa value) x 100%]. The experiments were 
repeated a minimum of five times.

Statistical analysis. Statistical analysis was performed using 
SPSS software, version 13.0 (SPSS, Inc., Chicago, IL, USA). 
All data are presented as the mean ± standard error and were 
analyzed by a one‑way analysis of variance. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Effect of AGE‑HSA on F‑actin and cortactin morphologies 
in GECs. Under normal conditions, endothelial cells appear 
smooth and intact (30). F‑actin is filamentous among the long 
axis and near cell junctions and is present in reticular, intact and 
continuous lines, predominantly in the edges of cells and the 
inner membranes. A small amount of reticular nuclear matrix 
is also present around the nucleus. Cortactin is predominantly 
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distributed in the cytoplasm and is occasionally also present 
in the cell membrane. With an increase in AGE‑HSA concen-
tration or treatment time, the edge of the F‑actin peripheral 
dense band was observed to become rough and irregular, with 
a jagged appearance. F‑actin was observed to be diffusely 
distributed in cells and the number of stress fibers, composed 
of a single row of non‑polar actin filaments, increased. The 
distribution of cytoplasmic cortactin became disorganized 
and it was unclear in the cortex and membrane. Cells became 
round and retracted when treated with AGE‑HSA for 8 h at 
a concentration of 100 µg/ml; however, HSA alone did not 
produce these effects (Figs. 1 and 2).

Activation of Rac1 inhibits AGE‑HSA‑induced morphological 
alterations to F‑actin and cortactin in GECs. The recon-
figuration of the structure of F‑actin, formation of central 
stress fibers and retraction in GECs induced by AGE‑HSA 
was markedly inhibited by pre‑treatment with O‑Me‑cAMP. 
In addition, similar inhibitory effects were observed in 

AGE‑HSA‑induced cortactin disorganization and cell retrac-
tion with O‑Me‑cAMP‑pre‑treatment. However, HSA alone 
did not produce this inhibitory effect (Fig. 3). These observa-
tions further suggested an involvement of the Rac1 signaling 
pathway in the development of AGE‑induced morphological 
and structural alterations in GECs.

Effect of AGE‑HSA on the levels of Rac1 activity in GECs. 
The levels of Rac1 activity (but not total Rac1 levels) in the 
AGE‑HSA (100 µg/ml) treatment group were significantly 
reduced compared with those in the control group (P=0.002), 
whereas HSA alone did not produce this effect (Fig. 4). These 
results suggested that the Rac1 signaling pathway is important 
in the mediation of AGE‑induced functional alterations in 
endothelial cells.

Rac1 agonist inhibits the AGE‑HSA‑induced increase in GEC 
permeability. The permeability of GECs to FITC‑BSA was 
significantly increased with AGE‑HSA‑treatment (P<0.05), 

Figure 1. AGE alters the morphology and distribution of F‑actin and cor-
tactin in a dose‑dependent manner. Rat GECs were treated with different 
concentrations of AGE‑HSA (25, 50 or 100 µg/ml) for 8 h. Cells cultured 
in pure MCDB131 medium (control) or with HSA (100 µg/ml) alone were 
designated as the controls. With increasing AGE‑HAS concentration, the 
edge of the F‑actin peripheral dense band was observed to become rough and 
irregular with a jagged appearance, F‑actin was diffusely distributed in cells 
and the number of stress fibers increased. Cytoplasmic cortactin was unclear 
in the cortex and membrane and its distribution became disorganized. AGE, 
advanced glycation end‑products; GEC, glomerular capillary endothelial 
cells; HSA, human serum albumin.

Figure 2. Time‑dependent AGE‑induced alterations to the morphology 
and distribution of F‑actin and cortactin. GECs were treated with 
100 µg/ml AGE‑HSA for 2, 4 or 8 h. Cells cultured in pure MCDB131 
medium (control) or with HSA (100 µg/ml) alone were designated as the 
controls. With increasing AGE‑HAS treatment time, the edge of the F‑actin 
peripheral dense band was observed to become rough and irregular with a 
jagged appearance, F‑actin was diffusely distributed in cells and the number 
of stress fibers increased. Cytoplasmic cortactin was unclear in the cortex 
and membrane and its distribution became disorganized. AGE, advanced 
glycation end‑products; GEC, glomerular capillary endothelial cells; HSA, 
human serum albumin.
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but not with HSA alone (P>0.05). This effect was inhibited 
by O‑Me‑cAMP, as demonstrated by reduction in Pa from 
189.32±6.16 to 128.52±3.53% subsequent to treatment with 
O‑Me‑cAMP (Fig. 5).

Discussion

The initial step in the development of diabetes and nephrop-
athy is the structural and functional impairment of GECs, 
which induces glomerular capillary lesions and leads to 
disease progression (31,32). The increase in glomerular capil-
lary permeability is considered to indicate the development 
of diabetes and nephropathy and leads to the development of 
pathological proteinuria (33). The proximal damage among 
cells is considered to be the basis for the increase in endo-
thelial cell gap formation and vascular permeability (2,34‑36). 
A number of studies have demonstrated that the alterations 
in cellular morphology and the distribution of cytoskeletal 
proteins is closely associated with the integrity of the endothe-
lial cell‑cell connections (37,38). The AGE content in diabetic 
patients has been observed to be significantly increased, which 
may induce damage to GEC structure and function (39‑41). 
Additional studies have demonstrated that AGE increases the 
permeability of umbilical vein endothelial cells and induces 

alterations in the distribution and morphology of cytoskeletal 
proteins (8,11,12,14). To mimic the pathological process of 
glomerular capillary endothelial damage in diabetes and 
nephropathic patients, primary GECs were used in the present 
study. The effects of AGE on the distribution and morphology 
of F‑actin and cortactin in GECs were investigated and it 
was determined whether or not these processes were medi-
ated by the Rac1 signaling pathway. Rac1 is a member of the 
Ras protein superfamily and belongs to the Rho family of 
guanosine triphosphatases (42). Rac1 has multiple functions, 
including controlling cellular morphology, actin movement, 
transcriptional activation and apoptotic signals (43‑46). Rac1 
has two active forms, including an active form bound to 
guanosine triphosphate (GTP) on the cell membrane and an 
inactive form bound to GTP in the cytoplasm. The two forms 
can change as a result of upstream stimuli, Rac 1 combining 
with GTP on the cell membrane is activated, whereas on the 
cytoplasm it is inactivated, which in turn regulate the func-
tions of downstream effectors.

Figure 3. Effect of the Rac1 agonist O‑Me‑cAMP in regulating AGE‑induced 
alterations in F‑actin and cortactin morphology and distribution in endothe-
lial cells. In the O‑Me‑cAMP group, cells were pre‑treated with O‑Me‑cAMP 
(2  µmol/ml) for 60  min, then treated with AGE‑HSA (100  µg/ml) for 
8 h. The cells cultured in pure MCDB131 medium (control) or with HSA 
(100 µg/ml) alone were designated as the controls. AGE‑induced F‑actin 
structure reconstruction, the disorganized distribution of cortactin, altered 
cell morphology and the formation of stress fibers in endothelial cells 
were all markedly inhibited by O‑Me‑cAMP‑pre‑treatment. O‑Me‑cAMP, 
2'‑O‑methyladenosine‑3',5'‑cyclic monophosphate; AGE, advanced glycation 
end‑products; GEC, glomerular capillary endothelial cells; HSA, human 
serum albumin.

Figure 5. Effect of O‑Me‑cAMP on mediation of AGE‑induced altera-
tions in endothelial cell permeability. Compared with the control group, 
treatment with AGE‑HSA (100  µg/ml) for 8  h significantly increased 
permeability in endothelial cells (P<0.05), which was inhibited by 
O‑Me‑cAMP. #P<0.05 vs. control; *P<0.05 vs. AGE‑HSA. O‑Me‑cAMP, 
2'‑O‑methyladenosine‑3',5'‑cyclic monophosphate; AGE, advanced glycation 
end‑products; GEC, glomerular capillary endothelial cells; HSA, human 
serum albumin; BSA, bovine serum albumin.

Figure 4. Effect of AGE on the levels of Rac1 activity in GECs. AGE‑HSA 
(100  µg/ml) treatment for 8  h significantly reduced the levels of Rac1 
activity compared with controls, but did not affect the levels of total protein. 
#P<0.05 vs. control group. AGE, advanced glycation end‑products; GEC, 
glomerular capillary endothelial cells; HSA, human serum albumin; GTP, 
guanosine triphosphate.
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It has been demonstrated that Rac1 can be activated 
by specific extracellular signals, which in turn induce actin 
cytoskeleton‑directed assembly, resulting in characteristic 
morphological alterations, including cell stretch  (47), an 
increase in cortical actin polymerization (48) and an enhance-
ment of connections between cells (10). Therefore, the Rac1 
signaling pathway is suggested to be necessary for main-
taining the stability of vascular endothelial cell connections. 
Previous studies have suggested that activation of the Rac1 
signaling pathway can promote cortactin translocation to the 
plasma membrane and cortex, thus inhibiting cell collapse and 
gap‑formation and strengthening cell‑cell connections (49‑51). 
The mechanism for strengthening these connections is 
frequently associated with the increase in cortical actin polym-
erization, cortical cortactin and the enhancement of binding to 
the cortical actin cytoskeleton. Thus, cortical actin assembly is 
suggested to be closely associated with cortactin.

In the present study, the observations suggested that the 
AGE‑induced increase in GEC permeability was closely 
associated with inhibition of Rac1 activity. It was observed 
that the F‑actin peripheral dense band became thicker and 
disorganized, the number of central stress fibers increased, the 
expression levels of cortactin in cell membranes were reduced, 
the boundaries of cells were unclear and cells retracted and 
deformed upon treatment with AGE in a time‑ and dose‑depen-
dent manner (Figs. 1 and 2). These alterations are associated 
with the damage to endothelial cell integrity and the increase 
in permeability. The pull‑down assay was used to investigate 
Rac1 activity upon treatment with different concentrations 
of AGE‑HSA, and it was observed that AGE‑HSA was able 
to significantly reduce Rac1 activity (P<0.05; Fig. 4). This 
suggested an important involvement for Rac1 in the mediation 
of functional alterations in GECs induced by AGE. In addi-
tion, the present study demonstrated that with O‑Me‑cAMP 
pre‑treatment, AGE‑induced alterations in cell morphology 
and stress fiber‑formation (Fig. 3), in addition to increased GEC 
permeability, were significantly inhibited (P<0.05; Fig. 5).

In conclusion, the results of the present study suggested 
that Rac1 signaling is important in mediating AGE‑induced 
morphological and functional alterations in GECs. This may 
aid in the development of novel therapeutic targets for micro-
vascular complications in patients with advanced diabetes. 
Furthermore, it was observed that O‑Me‑cAMP was not able 
to completely reverse AGE‑induced alterations, including 
the disorganization of F‑actin and cortactin distribution 
and morphology, and the increase in cell permeability. This 
suggested that in addition to the Rac1 signaling pathway, 
other pathways may be involved in the pathological processes 
induced by AGE, which require further investigation.
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