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Abstract. Integrative analysis of chromatin immunoprecip-
itation-sequencing (ChIP-seq) data and microarray data was 
performed to illustrate the effect of Nutlin‑3 on promoter 
selectivity and transcriptional regulation by the tumor 
suppressor p53 in U2OS human osteosarcoma cells. Raw data 
(accession number, GSE46642) were downloaded from Gene 
Expression Omnibus. Differential analyses were performed 
using package limma of R software. Gene ontology enrich-
ment and Kyoto Encyclopedia of Genes and Genomes pathway 
enrichment analyses were performed for the differentially 
expressed genes (DEGs) using the Database for Annotation, 
Visualization and Integration Discovery. Integrative analysis 
of ChIP‑seq data and microarray data were confirmed with 
ChIP‑Array. A total of 565 DEGs were identified, including 
373 upregulated genes and 192 downregulated genes. Genes 
involved in the p53 signaling pathway, cell cycle, DNA repli-
cation, cytokine‑cytokine receptor interaction and melanoma 
were markedly over‑represented in the DEGs. A total of 
39 DEGs were directly regulated by p53 and two were the 
transcription factors (TFs), E2F2 and HOXA1. E2F2 regulated 
25 DEGs, while HOXA1 regulated one DEG. The cell cycle, 
p53 signaling pathway, melanoma and pathways involved in 
cancer were enriched in the direct and indirect target genes. 
Changes in the p53‑binding pattern induced by Nutlin‑3 were 
described in the present study, which may advance the under-
standing of the regulatory network of p53 in osteosarcoma and 
aid in the development of novel therapies.

Introduction

Gene transcription is regulated by dynamic interactions 
between cis‑regulatory elements and regulatory proteins, 
including transcription factors (TFs). Tumor protein p53 is an 
important TF involved in various cellular processes, including 
growth arrest, senescence and apoptosis  (1‑3). Following 
cellular stress, stabilized p53 translocates into the nucleus and 
subsequently binds to the consensus sequence motif to regu-
late the expression of hundreds of genes.

p53 is critical in tumor suppression and loss of p53 func-
tion is required for cancer progression. Mutational inactivation 
of p53 is detected in >50% of human cancer types  (4). A 
number of downstream proteins of p53 have been identi-
fied  (5‑7). Nevertheless, several of the factors expected to 
affect p53‑induced changes in gene expression are poorly 
understood, including the impact of different stresses that can 
induce p53. Genome‑wide studies may provide an improved 
understanding of its transcriptional regulatory functions in 
certain types of cancer (8‑10), including osteosarcoma.

Osteosarcoma is the eighth most common type of child-
hood cancer and is also the most common histological form of 
primary bone cancer (11). The mortality rates for osteosarcoma 
have been declining by ~1.3% annually (12). The overall 5-year 
survival rate for osteosarcoma is ~68% (12). Future studies 
are required to fully disclose the molecular mechanisms and 
advance therapeutic development.

In the present study, human U2OS osteosarcoma cells, 
expressing wild‑type p53, were used to investigate the effect 
of treatment with Nutlin‑3 (a non‑genotoxic activator of 
p53) on p53 binding genes. Different from a previous study 
by Menendez et al (13), a stricter threshold [|log2fold change 
(FC)|>1 and false discovery rate (FDR) <0.05 vs. FC>2 and 
FDR ≤0.1] was used to select the differentially expressed genes 
(DEGs) and to construct the regulatory association between 
p53 and its target genes.

Materials and methods

Raw data. The raw data (accession number, GSE46642) were 
downloaded from Gene Expression Omnibus (http://www.
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ncbi.nlm.nih.gov/geo/), including chromatin immunopre-
cipitation‑sequencing (ChIP‑seq) data (accession number, 
GSE46641; three Nutlin‑3 treated U2OS cell samples) and 
microarray data (accession number, GSE46493; three Nutlin‑3 
treated U2OS cell samples and three control samples). Gene 
expression levels were measured using Affymetrix Human 
Genome U133 Plus 2.0 Array (Affymetrix Inc., Santa Clara, 
CA, USA).

Pre‑treatment and differential analysis. The microarray data 
were read using the package, affy  (14), on the software R 
(http://www.r‑project.org/). Following background correction 
and normalization with a Robust Multi‑array Analysis (RMA) 
method in R affy, the gene expression levels were determined. 
Differential analysis was performed using the package, linear 
models for microarray data (limma) (15), on the software R. 
Multiple‑testing correction was performed using the Bayes 
method (implemented in the 'limma' R package). The following 
threshold was set for the screening of the DEGs: |log2 FC|>1 
and FDR<0.05.

Integrative analysis of microarray data and ChIP‑seq data. 
ChIP‑Array (http://jjwanglab.org/chip-array) is an online tool 
developed for integrative analysis of microarray data and 
ChIP‑seq data (16). It identifies the indirect target, Z, by iden-
tifying an intermediate transcription factor (TF), Y, which is a 
putative regulator of Z and a target of X. The putative regulator 
of Z is identified by scanning all promoters in the genome 
with position weight matrix (PWMs) of all Ys from three 
publicly accessible databases [JASPAR (http://jaspar.genereg.
net), UniPROBE (http://uniprobe.org) and TRANSFAC 
(http://www.gene-regulation.com/pub/databases.html) derived 
transcription factor binding site database from University of 
California, Santa Cruz genome browser] (16).

In the present study, the parameters were set as follows: 
Promoter range, ‑500~+100; TF database, UniPROBE; PWM 
scan P‑value, 10‑5; and conservation filtering P‑value, 0.001. 
Finally, a gene regulatory network was obtained for p53, 
including its direct and indirect target genes.

Functional enrichment analysis. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed for the DEGs using 
the Database for Annotation, Visualization and Integration 
Discovery (http://david.abcc.ncifcrf.gov/) online tools (17). 
P<0.05 was considered to indicate a statistically significant 
difference and was set as the cut‑off.

Results

Differentially expressed genes. Gene expression data prior 
to and following normalization with the RMA method are 
demonstrated in Fig. 1. A good performance of normalization 
was achieved.

A total of 565 DEGs were identified, including 373 upregu-
lated genes and 192 downregulated genes. Clustering and a 
heat‑map of the expression values for DEGs are shown in 
Fig. 2. The Nutlin‑3 treated U2OS samples were well distin-
guished from the control samples, suggesting the reliability of 
the DEGs.
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Functional enrichment analysis result. The top 10 GO terms 
are listed in Fig. 3. Nuclear division, the response to abiotic 
stimulus, positive regulation of cell proliferation and cell 
cycle were significantly enriched in the DEGs.

The KEGG pathways with P<0.05 are listed in Table I. 
The p53 signaling pathway, cell cycle, DNA replication, 
cytokine‑cytokine receptor interaction and melanoma were 
significantly over‑represented in the DEGs.

Transcriptional regulatory network of p53. Integrative anal-
ysis of ChIP‑seq data and microarray data was performed 
using the ChIP‑Array online tool. A total of 39 DEGs were 
directly regulated by p53, and two of them were TFs: E2F 
transcription factor 2 (E2F2) and homeobox A1 (HOXA1). 
E2F2 regulated 25 DEGs and HOXA1 regulated one DEG 
(Fig. 4).

Functional enrichment analysis result of the target genes. 
GO enrichment analysis was performed for the direct and 
indirect target genes of p53 (Fig. 5). Cell cycle and cell‑cell 
signaling were included in the list.

The KEGG pathway enr iched in all the target  
genes of p53 were also disclosed (Table II), including cell 
cycle, p53 signaling pathway, melanoma and pathways in 
cancer.

Discussion

In the present study, a total of 565 DEGs were identified in 
Nutlin‑3-treated U2OS cells compared with the control 
samples. Of these DEGs, 373 were upregulated genes and 
192  were downregulated genes. Functional enrichment 
analysis revealed that the p53 signaling pathway, cell cycle 
and DNA replication were significantly over‑represented in 
the DEGs. This result suggested the importance of p53 in 
osteosarcoma. p53 functions as a cell cycle control protein in 
osteosarcoma (18) and the presence of p53 mutations in human 
osteosarcoma is correlated with high levels of genomic insta-
bility (19), confirming the critical importance of p53 in response 
to stresses, including DNA damage. Berman et al (20) reported 
that metastatic osteosarcoma is induced by the inactivation of 
Rb and p53 (20). The comparative analysis of gene expression 
profiles between Nutlin‑3-treated U2OS cells and controls 
further described the critical importance of p53 in osteosar-
coma. Notably, p53 gene therapy of human osteosarcoma is 
also suggested and has been previously investigated (21).

To further illustrate the changes in the p53‑binding pattern 
in response to treatment with Nutlin‑3, integrative analysis of 
microarray data and ChIP‑seq data was performed and the 
transcriptional regulatory network of p53 was obtained. A total 
of 39 DEGs were directly regulated by p53 and two of which 

Figure 1. Box plots of gene expression data prior to (left) and following normalization (right). Nutlin‑3 treated U2OS samples are shown in red and control 
samples are in green.

Table II. Kyoto Encyclopedia of Genes and Genomes pathways enriched in the direct and indirect target genes of p53.

Pathway	 Count	 P‑value	 Genes

Cell cycle	 5	 1.01E-03	 E2F2, CDKN1B, MDM2, 
			   MCM2, CDC25A
p53 signaling pathway	 3	 2.60E-02	 TNFRSF10B, ZMAT3, MDM2
Melanoma	 3	 2.82E-02	 E2F2, MDM2, FGF1
Pathways in cancer	 5	 3.04E-02	 WNT5A, E2F2, CDKN1B, 
			   MDM2, FGF1
Chronic myeloid leukemia	 3	 3.12E-02	 E2F2, CDKN1B, MDM2
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were the TFs, E2F2 and HOXA1. E2F2 regulated 25 DEGs 
and HOXA1 regulated only one DEG. Functional enrichment 
analysis demonstrated that the cell cycle, p53 signaling pathway, 
melanoma and pathways in cancer were enriched in the direct 
and indirect target genes, further confirming the critical impor-
tance of p53 in osteosarcoma. It may be beneficial to further 
investigate these target genes to reveal the complete molecular 
mechanisms and provide potential therapeutic targets.

Several direct target genes of p53 have been confirmed 
to be involved in tumorigenesis. The MDM2 proto‑oncogene 

Figure 2. Clustering and heatmap of expression values for differentially 
expressed genes. Downregulated genes are shown in green and upregulated 
genes are in red. From left to right, the first three samples are nutlin‑3‑treated 
U2OS samples and the latter are three control samples.

Figure 3. Gene ontology term enriched in the differentially expressed genes.  
(A) Biological process, (B) cellular component and (C) molecular function.
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is a nuclear‑localized E3 ubiquitin ligase. MDM2 promotes 
tumor formation by targeting p53 for proteasomal degrada-

tion  (22). The gene is itself transcriptionally regulated by 
p53. Therefore, targeting the p53‑MDM2 interaction is 

Figure 4. Transcription regulatory network of p53. p53 is shown in blue and its direct target genes are in yellow. Two transcription factors are shown in pink 
and their target genes are in grey. E2F2, E2F transcription factor 2; HOXA1, homeobox A1.

Figure 5. Gene ontology biological process terms enriched in the direct and indirect target genes of p53.
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hypothesized as a cancer therapeutic agent (23,24). Syntaxin 6 
(STX6) is a regulator of the protein trafficking machinery. 
Zhang et al  (25) indicated that STX6 is an effector and a 
modulator of the p53 family in the regulation of cell adhesion 
and survival. Fibroblast growth factor 1 (FGF1) is a member 
of the FGF family. Bouleau et al (26) indicated that FGF1 
inhibits p53‑dependent apoptosis and cell cycle arrest via 
an intracrine pathway. Meningioma 1 stimulates vitamin D 
receptor‑mediated transcription and inhibits osteoblast cell 
proliferation  (27). It is required for appropriate osteoblast 
proliferation, motility, differentiation and function (28). The 
present study hypothesized that this protein may be a novel 
target to modulate osteosarcoma cell growth.

E2F2 and HOXA1 are directly targeted by p53 and they are 
also TFs. It has been confirmed that E2F2 inhibits tumorigen-
esis (29,30). E2F activity is critical for the control of the G1 to 
S phase transition. Laresgoiti et al (31) demonstrated that E2F2 
and CREB cooperatively regulate the transcriptional activity 
of cell cycle genes. Cyclin‑dependent kinase inhibitor 1B 
(CDKN1B) is one of the effectors of E2F2, which is important 
in the cellular transition from quiescence to the proliferative 
state. HOXA1‑stimulated oncogenicity is mediated by selec-
tive upregulation of components of the p44/42 MAP kinase 
pathway in human mammary carcinoma cells  (32). The 
expression level of HOXA1 is correlated with poor prognosis 
of oral squamous cell carcinoma (33). The only TF of HOXA1 
is wingless‑type MMTV integration site family member 5A 
(Wnt5a). It is reported that Wnt5a signaling is involved in the 
regulation of osteosarcoma cell invasiveness (34).

In conclusion, differential expression of several direct and 
indirect target genes of p53 was observed following treatment 
with Nutlin‑3. These findings not only advanced the under-
standing regarding the importance of p53 in osteosarcoma, 
but also provided clues for future development of therapeutic 
strategies.
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