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Abstract. Lipopolysaccharide-induced tumor necrosis 
factor-α factor (LITAF) exerts transcription factor activity and 
is involved in protein quality control. LITAF activity is highly 
dependent on correct translocation from the endosome/lyso-
some to the nucleus, while certain LITAF mutants mislocalize 
to areas, such as the cytosol and mitochondria, resulting in 
developmental diseases. In addition, previous studies have 
proposed that LITAF functions as a tumor suppressor and 
is frequently under-represented in certain types of cancer. 
However, the mechanism of this phenomenon remains unclear. 
The present review summarizes the major advances in LITAF 
studies, and proposes that LITAF may serve as a switch in the 
balance between classical and alternative activation in tumor 
associated‑inflammation. Thus, LITAF may be a promising 
therapeutic target with regard to the tumor microenvironment.
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1. Introduction

As first identified by Polyak et al in 1997 (1), the gene of 
lipopolysaccharide (LPS)-induced tumor necrosis factor 
(TNF)-α factor (LITAF) was initially termed p53‑inducible 
gene 7 (PIG7), due to the fact that it encodes for a protein that 
is positively regulated by the tumor suppressor protein, p53 (1). 
Two years later, Myokai et al (2) cloned an LPS-regulated gene 
with the same sequence as PIG7. This gene was subsequently 
termed LITAF as its encoded protein product, LITAF, trans-
located into the nucleus following cellular activation by LPS, 
which was followed by the upregulation of TNF‑α transcrip-
tion (2-4).

It is widely accepted that tumor‑associated inflammation 
is a major contributor to cancer progression, and it has been 
recognized as the seventh hallmark of cancer (5,6). Numerous 
primary inflammatory mediators have been identified, 
including interleukin (IL)‑4 (7), CCL18 (8) and granulocyte 
macrophage colony-stimulating factor (9). Previous obser-
vations suggest that LITAF, as a ubiquitously expressed 
gene (1-4), may be an enhancer of inflammatory diseases, as 
well as a suppressor of cancer‑associated inflammation. In the 
current review, the above-mentioned observations are summa-
rized, and LITAF is presented as a potential novel target for 
cancer therapy.

2. Structure and general features of LITAF

Human LITAF is located on chromosome 16 and it encodes a 
full length cDNA of 1,551 base pairs (bp), which contain three 
major structural components: A 5' untranslated region (UTR) 
of 1,001 bp, 3' UTR of 76 bp and an open reading frame of 
474 bp (2,10). The C-terminal of the LITAF protein has enriched 
cysteine residues and includes a highly conserved C3H4 zinc 
finger region that is interrupted by 23 hydrophobic amino acids, 
called small integral membrane protein of lysosome/late endo-
some (SIMPLE)‑like domain (SLD) (11). The SLD domain 
contains a YXX ø (ø is a hydrophobic amino acid) and double 
leucine motifs (12). It was reported that proteins containing 
the YXX ø motif interact with the clathrin adaptor compound 
and are, therefore, able to mediate the import and export of 
membrane proteins in the endosome, Golgi apparatus and lyso-
somes (13,14). Furthermore, proteins with double leucine motifs 
are able to target lysosomes and endosomes (15). However, 
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the N-terminal of the LITAF protein is enriched with proline 
residues and has PPXY and PS/TAP motifs, which mediate the 
association of LITAF with partner proteins (16‑18) (Fig. 1).

3. Trafficking of LITAF

The nuclear translocation and transcription factor activity 
of LITAF are critical for the activation of numerous immune 
cells via classical pathways (Fig. 2). While intracellular LITAF 
is located in the membranes of late endosomes and lysosomes 
under quiescent conditions, these processes require free 
LITAF to be released from these intracellular compartments. 
It has been proposed that such a process is orchestrated by 
the protein-protein interactions with ubiquitination-associated 
proteins, such as the E3 ligase NEDD4 (16). LITAF functions 
with the endosomal sorting complex required for transport 
components to control endosome‑to‑lysosome trafficking (17). 
As a negative control, previous studies have indicated that 
mutated LITAF proteins mislocalize to the cytosol (18) and/or 
mitochondria (19), where they cease their wild-type (WT) activ-
ities and serve as an etiological cause of Charcot-Marie-Tooth 
disease, a severe peripheral nervous system disorder (20,21).

4. LITAF and STAT6 (B) in inflammation

LITAF is known as a TNF‑α inducer (22), therefore, it is notable 
that transient transfection of LITAF resulted in no significant 
elevation of TNF-α levels following LPS treatment (3). This 
indicates that LPS activates additional factors, other than 
LITAF, that also regulate the transcription of TNF‑α and that 
these factors may be binding partners of LITAF. Using a yeast 
two-hybrid system, a transcription factor, signal transducer and 
activator of transcription (STAT)6 (B), has been identified as a 
functional binding partner of LITAF (3). LITAF and STAT6 (B) 
are activated by LPS, then associate with toll‑like receptor‑2/4 
to form a complex, which is dependent on MyD88 and is phos-
phorylated by p38‑α (3). Phosphorylated LITAF and STAT6 (B) 
consequently interact to form a protein complex prior to trans-
locating into the nucleus, where LITAF binds specifically to 
the promoter sequence, thus activating the expression of down-
stream genes, such as TNF‑α and IL‑6 (4,23) (Fig. 3). Focusing 
on this pathway, LITAF has become a novel target for the treat-
ment of endotoxic shock and inflammation (24), as implicated 
by Matsuno et al (25) who demonstrated that LITAF‑knockout 
mice were more resistant to LPS-induced mortality.

5. LITAF and inflammatory diseases

As a significant disease associated with LITAF, inflam-
matory bowel disease (IBD) is a type of chronic intestinal 

inflammatory disease with an unknown etiology, which 
includes ulcerative colitis (UC) and Crohn's disease (CD) (26). 
The typical pathogenesis of IBD includes aberrant expres-
sion of bowel‑specific proinflammatory cytokines, including 
TNF-α (24,27,28). This indicates that LITAF may be involved 
in IBD and may be abnormally expressed in this disease. 
Stucchi et al (29) observed that the mRNA levels of LITAF 
in colon tissue samples from patients with CD were five times 
higher than those from healthy controls. In addition, within 
the same CD sample, the inflammatory areas presented 
with 60% more LITAF mRNA than the non‑inflammatory 
areas (29). Similar phenomena have been observed in patients 
with UC. Colon tissues from patients with UC expressed LITAF 
mRNA levels 15 times greater than healthy individuals (26). 
However, in such patients, there was no significant difference 
in the mRNA level of LITAF between the inflammatory areas 
and the surrounding normal tissues. Immunohistochemistry 
has demonstrated that LITAF is predominantly expressed by 
lamina propria macrophages (LPM) (29). This was verified by 
Bushell et al (30) with a 2,4,6-trinitrobenzene sulfonic acid 
(TNBS)‑induced mouse colon inflammation model. This study 
additionally indicated that mRNA and protein levels of LITAF 
were dramatically upregulated in TNBS-treated mice when 
compared with untreated mice. Furthermore, the expression of 
TNF‑α in the LPM from LITAF mac-/- mice was significantly 
lower than that of the WT mice (30). These results strongly 
suggest that LITAF upregulates expression of TNF‑α in LPM 
and elevated expression of LITAF coincides with the progres-
sion of IBD.

Arthritis is an inflammatory disease occurring in the 
joints of the human body and surrounding tissues, which has 
a complex etiology. Causal factors include chronic inflamma-
tion, autoimmune reactions, infection, metabolic disorders, 
trauma and degenerative disorders (31). Patients with arthritis 
commonly exhibit vascular endothelial dysfunction with 
alterations in numerous inflammatory factors, including 
TNF-α, IL‑6 and IL‑8 (32,33). To investigate whether LITAF 
was involved in arthritis, Merrill et al (34) established an 
LITAF knockout mouse [tamLITAF(i)-/-] through tamoxifen 
induction. LPS was used to treat WT and tamLITAF(i)-/- mice 
and collagen-induced arthritis experiments were performed. 
The degree of disease severity was found to be dramatically 
higher in the WT mice than in the tamLITAF(i)-/- mice, 
this observation was noted from 3 days post-treatment and 
the difference became more significant over time. In addi-
tion, pannus and synovitis inflammations were observed 
to be elevated in the tamLITAF(i)-/- mice. Additionally, 
the degree of bone resorption was observed to be lower in 
tamLITAF(i)-/- mice compared with the WT mice (34). These 
results suggest that in vivo depletion of LITAF effectively 

Figure 1. Structure of lipopolysaccharide-induced tumor necrosis factor-α factor.



MOLECULAR MEDICINE REPORTS  12:  6399-6404,  2015 6401

reduces the harmful effects of arthritis. Corroborating these 
results, Srinivasan et al (35) identified a connection between 
LITAF and arthritis, and proposed that it may involve extra-
cellular‑related kinase 1/2 and protein kinase B (35). These 
observations suggest that LITAF may promote the progres-
sion of arthritis, as well as additional associated whole body 
inflammation in mice.

6. LITAF and cancer

In addition to inflammation, LITAF has been identified as 
a potential tumor suppressor gene, due to the fact that its 
expression can be induced by p53 (1). Evidence from cohort 
studies has revealed that LITAF expression is significantly 
lower in tumor tissues when compared with isogenic normal 
tissues (36,37). However, the functional mechanisms of the 
action of LITAF in tumors remains unclear.

Zhou et al (38) used small hairpin (sh)RNA to disrupt 
gene expression in the adenosine monophosphate-activated 
protein kinase (AMPK)‑LITAF‑TNF superfamily member 15 
(TNFSF15) signaling pathway in prostatic cancer cells and 
elucidated that shRNA targeting of LITAF (shRNA-LITAF) 
significantly enhanced the degree of malignancy of cancer 
cells. Notably, its effect was more marked than that of 
shRNA-p53 (38). Furthermore, Zhou et al (38) established an 
allograft prostatic tumor model by subcutaneous injection of 
prostatic cancer cells into nude mice. Following development 
of tumors, those analyzed from the shRNA-LITAF group were 
observed to be significantly larger in size and weight compared 
with the tumors from the shRNA‑control group (38). These 
results suggest that LITAF inhibits the proliferation of pros-
tatic cancer cells, which supports the assumption that LITAF 
functions as a tumor suppressor gene.

Furthermore, a breast cancer study analyzed the gene 
expression of normal breast tissues, ductal carcinoma in situ 
(DCIS) and invasive ductal carcinoma (IDC) using the Serial 
analysis of gene expression method. The study revealed that 
LITAF expression was 29 times lower in DCIS compared 
with that of normal tissues, while there was no clear altera-
tion in the LITAF levels observed in IDC (36). Similarly, 

Figure 2. Schematic representation of subcellular localization of LITAF. LPS stimulation translocates LITAF from the cytoplasm into the nucleus to promote 
target gene expression. LITAF may target the lysosome or endosome to regulate protein degradation. LITAF, lipopolysaccharide-induced tumor necrosis 
factor-α factor; LPS, lipopolysaccharide; TLR2/4; toll‑like receptor 2/4; TNF, tumor necrosis factor.

Figure 3. Mechanisms of inflammation regulation by LITAF. LITAF and its 
functional partner, STAT6 (B) can be activated by LPS/TLR2/4 signaling, 
which involves phosphorylated p38‑α. Phosphorylated LITAF binds to 
STAT6 (B), which is followed by translocation into the nucleus and regulation 
of proinflammatory gene expression. LITAF, lipopolysaccharide‑induced 
tumor necrosis factor-α factor; STAT6, signal transducer and activator of 
transcription 6; TLR2/4, toll‑like receptor 2/4.
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Fernandez-Cobo et al (39) confirmed that LITAF expression 
in breast cancer cells was 37 times lower than that in normal 
breast epithelial cells. It was hypothesized that LITAF and 
other cytokines participate in the recovery process of breast 
tissues following pregnancy and lactation, during which exten-
sive apoptotic events occur in breast tissues (40). Furthermore, 
lower expression of LITAF may promote the early transforma-
tion of breast tissues by slowing down the normal apoptotic 
process.

Wang et al (37) conducted qualitative polymerase chain 
reaction analysis and established that bone marrow LITAF 
expression in patients with acute leukemia (as well as refrac-
tory and relapsed acute leukemia) is significantly reduced, 
when compared with the expression levels in patients at 
initial diagnosis. In addition, Wang et al elucidated that the 
transient expression of LITAF has little apparent influence 
on the proliferation of acute leukemia cells. However, LITAF 
markedly enhances the inhibitory effects of etoposide and 
daunomycin on acute leukemia, suggesting that LITAF sensi-
tizes leukemic cells to chemotherapeutic agents (37).

It should be noted that not all cancer cells exhibit low 
expression of LITAF. For example, Matsumura et al (41) exam-
ined a rare malignant skin tumor, extra‑mammary Paget's 
disease (EMPD) and observed that EMPD tissues exhibited 
higher expression levels of LITAF in comparison with 
isogenic normal tissues, in three out of four individuals (41). 
This phenomenon may be relevant to somatic mutations. 
The study also identified LITAF site mutations in three out 
of 12 cases, among which two exhibited non-synonymous 
mutations and one exhibited synonymous mutations (41). The 
mechanism of this mutation and the associated expression 
remains unclear.

There are numerous mechanisms suggested to be involved 
in the tumor suppressor activity of LITAF (Fig. 4). Firstly, the 
two PPXY motifs at the N-terminal of LITAF associates with 
the WW domain containing proteins, such as NEDD4 and 
Itch, which are able to promote p53- and/or p72-mediated cell 
apoptosis and subsequently restrict tumor growth (40,42,43). 
Secondly, LITAF may promote the ubiquitin-proteasome 
system in mediating the degradation of pro-cancerous 
proteins (44). Thirdly, LITAF is able to stimulate the expres-
sion of TNFSF15 and then restrain angiogenesis to inhibit 
tumor growth, as it acts as a downstream target of the tumor 
suppressor factor, AMPK (38).

It is hypothesized that LITAF may serve as a switch in 
the balance between classical inflammation and alternative 
activation in cancer. Immune cell infiltration is a typical 
trigger of cancer‑associated inflammation. Notably, studies 
using mouse models suggested that the alleviation of immune 
responses results in a decline in the quantity and size of tumors 
in the murine body (45,46). Alternative activation of various 
cell types, including tumor-associated macrophages (47), 
cancer‑related fibroblasts (48) and aberrantly activated 
neutrophils (49) have been identified in numerous types of 
cancer, including breast (50) and colorectal cancer (51), and 
melanoma (52). In the context of these types of cancer, the 
regulators and determinants of classical and alternative 
immune activation remain unclear. It has been observed that 
LITAF is highly expressed in macrophages in various acute 
inflammatory tissues, and classically induces TNF‑α, which 

exerts antiviral, antitumor and proapoptotic activities when 
at sufficiently high in situ concentrations (53,54). Short-term 
activation of LITAF inhibits the growth of cancer cells 
potentially through proinflammatory effects that target the 
expansion of tumor‑antigen specific T cells and the cancer 
cells themselves (55). During chronic inflammation, inflam-
matory factors overexpressed by the alternative activated 
immune cells may suppress the expression of LITAF via the 
negative feedback mechanism, for example via the nitric 
oxide pathway (56). However, the exact role of LITAF in the 
transition from inflammation to tumor suppression requires 
further investigation, which may elucidate the potential for 
LITAF manipulation to modulate early carcinogenesis and/or 
cancer progression.

7. Summary and prospect

LITAF may affect cellular functions by either acting as a 
transcription factor in mediating target gene expression, or 
by acting as a recruiting factor that targets partner proteins to 
the lysosome for degradation. Current evidence indicates that 
various possible mechanisms may explain the contribution of 
altered LITAF expression to the progression of diseases, such 
as inflammation or tumors: i) Cytokine levels are dysregu-
lated; ii) p53-mediated cell apoptosis signaling is affected; 
iii) Protein degradation in the lysosome is interrupted. It is 
proposed that LITAF may serve as a switch in the balance 
of classical and alternative activation in the tumor microen-
vironment. It remains unclear whether LITAF is a cause or 
effect of tumor inflammation, thus it is an important focus 
for further investigation and may be a promising therapeutic 
target.

Acknowledgements

The current study was supported in part by grants from The 
National Science Foundation of China (grant nos. 81171952, 
8127292, 31460304 and 81460374) and a grant from Jiangxi 
Provincial Department of Science and Technology (grant 
no. 20133BBG70061). The authors would also like to thank 
Dr Zhijun Luo and Dr Yong Xie for their support.

Figure 4. Possible mechanisms of the tumor suppressing role of LITAF. 
LITAF, lipopolysaccharide-induced tumor necrosis factor-α factor.
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