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Abstract. Ewing's sarcoma (ES) is the second most common 
type of pediatric bone tumor, and is associated with a poor 
prognosis. Picropodophyllin (PPP), a novel selective inhibitor 
of insulin‑like growth factor‑1 receptor (IGF‑1R), is able 
to strongly inhibit various types of cancers. However, the 
effect of IGF‑1R on ES remains unclear. Following treatment 
with various concentrations of PPP for various times, cell 
viability was determined using an MTT assay. In addition, 
cell proliferation and apoptosis was investigated separately by 
bromodeoxyuridine staining and flow cytometry, respectively. 
The PPP‑associated signaling pathway was also investigated. 
The results of the present study suggested that PPP inhibited 
cell proliferation and viability of A673 and SK‑ES‑1 human 
Ewing's sarcoma cells in a dose- and time‑dependent manner. 
In addition, cell apoptosis rates were increased following 
treatment with PPP. Further investigation of the underlying 
mechanism revealed that PPP inhibited Akt phosphoryla-
tion. Fumonisin B1, an Akt‑specific activator, reversed the 
inhibitory effects of PPP on cell growth. Furthermore, the 
results suggested that PPP decreased the expression levels of 
IGF‑1R, a common activator of Akt signaling. PPP inhibited 
the growth of human Ewing's sarcoma cells by targeting the 
IGF‑1R/Akt signaling pathway. Therefore, PPP may prove 
useful in the development of an effective strategy for the treat-
ment of Ewing's sarcoma.

Introduction

Ewing's sarcoma (ES) is the second most common type of 
primary bone and soft malignant tumor, often occurs in 
children and adolescents, and is characterized by a pathogno-
monic chromosomal translocation known as t(11;22) (q24;q12) 
or t(21;22) (q22;q12) (1,2). Despite rapid advances in modern 
biomedicinal therapy, the 5‑year survival rate of patients with 
ES has only reached 50‑60% (3,4). Numerous studies have 
focused on investigating the underlying mechanism of ES, as 
well as therapeutic targets for patients with ES; however, the 
process of ES carcinogenesis remains largely unknown (5‑9). 
Therefore, developing an effective therapeutic strategy for the 
treatment of ES is critical for young patients.

Insulin‑like growth factor 1 receptor (IGF‑1R) represents an 
important therapeutic target in the pathogenesis of ES cells, and 
is regarded to be an effective biological therapy for ES (10‑12). 
A previous study reported that mutations in IGF‑1R may 
induce apoptosis and inhibit tumorigenesis, as well as enhance 
chemosensitivity in ES cells (13). Previous studies involving the 
inhibition of IGF‑1R to regulate cell proliferation and apoptosis 
were also conducted (14,15). Increasing evidence suggests that 
the IGF‑1R inhibitor NVP‑AEW541 may possess the ability to 
enhance cell apoptosis, inhibit proliferation or arrest the cell cycle 
in ES (16,17). Therefore, identifying more effective inhibitors of 
IGF‑1R may prove to be advantageous in the prevention of ES.

Picropodophyllin (PPP), an epimer of podophyllotoxin, may 
be a novel selective inhibitor of IGF‑1R. PPP strongly inhibits 
cell growth in various types of cancer, including lymphoma, 
asopharyngeal carcinoma and colorectal carcinoma (18‑21). 
Although PPP induces apoptosis in cultured IGF‑1R‑positive 
tumor cells, the mechanism underlying these effects remains to 
be elucidated (22). In addition, its effect on ES and the underlying 
mechanism also remain to be clarified. In the present study, the 
effects of PPP on the proliferation and apoptosis of ES cell lines 
was investigated, along with the associated signaling pathway.

Materials and methods

Cells and culture. A673 and SK‑ES‑1 human ES cell lines 
were obtained from the American Type Culture Collection 
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(Manassas, VA, USA). The A673 cells (5x105) were maintained 
in RPMI-1640 medium (Gibco Life Technologies, Carlsbad, 
CA, USA) supplemented with 10% fetal bovine serum (FBS; 
Invitrogen Life Technologies, Carlsbad, CA, USA), strepto-
mycin (100 mg/ml; Shanghai Sangon Biological Engineering 
Technology & Services Co., Ltd., Shanghai, China), and peni-
cillin (100 U/ml; Shanghai Sangon Biological Engineering 
Technology & Services Co., Ltd.) in a 5% (v/v) CO2 incubator 
at 37˚C. The SK‑ES‑1 cells were cultured in Dulbecco's modi-
fied Eagle's medium (DMEM; Invitrogen Life Technologies) 
supplemented with 15% FBS. The cells were also incubated 
in a humidified atmosphere containing 5% (v/v) CO2 at 37˚C.

Cell viability assay. An MTT assay was used to determine 
the effects of PPP or fumonisin B1 (FB1) on the viability of 
the ES cell lines. Briefly, the cells were seeded in 96‑well 
plates (3x103 cells/200 µl) for 24 h. The cells were treated with 
various concentrations (0.05, 0.1, 0.2, 0.4 and 0.8 µM) of PPP 
(cat. no. UNO‑000037; 99% pure; UNO, Zhongshan, China) 
or 50 µM FB1 (Santa Cruz Biotechnology, Inc., Dallas, TX, 
USA) for 48 h. MTT solution (Sigma-Aldrich, St. Louis, MO, 
USA) at a final concentration of 0.5 mg/ml was subsequently 
added and the samples were incubated for a further 4 h at 37˚C. 
The medium (RMPI‑1640 or DMEM) was then discarded, 
and 200  µl dimethyl sulfoxide (Gibco Life Technologies) 
was added to dissolve the formazan dye crystals for 15 min. 
Absorbance was finally measured at 570 nm using a microplate 
reader (Molecular Devices, LLC, Sunny Vale, CA, USA) with 
a reference wavelength of 630 nm. The results were expressed 
as a percentage of the MTT reduction, and assumed that the 
absorbance of the control cells was 100%. Each experiment 
was performed in triplicate.

Cell proliferation analysis. A bromodeoxyuridine (BrdU) 
Cell Staining kit (Invitrogen Life Technologies) was used 
to investigate the effects of PPP on ES cell proliferation, 
according to the manufacturer's instructions. Briefly, the 
cells were seeded in 96‑well plates (5x103  cells/well) for 
24 h, and exposed to various concentrations of PPP for a 
further 48 h. The cells were then fixed with 10 µl BrdU for 
5 h, and the medium (RMPI‑1640 or DMEM) was discarded 
prior to the addition of 100 µl/well fixing/denaturing solu-
tion (Beyotime Institute of Biotechnology, Nantong, China), 
incubated at room temperature for 15 min. The solution was 
then removed and 100 µl/well prepared detection antibody 
solution (mouse anti‑human BrdU monoclonal antibody) was 
added and incubated for 1 h at room temperature. The plates 
were then washed three times with phosphate-buffered saline 
(PBS), followed by the addition of 100 µl/well horseradish 
peroxidase (HRP)‑conjugated secondary antibody solution, 
incubated for 30 min at room temperature. The plates were 
further washed three times with washing buffer, and 100 µl 
3,3',5,5'-tetramethylbenzidine substrate was added, and incu-
bated for 30 min at room temperature. The quantity of BrdU 
incorporated into the cells was determined at 450 nm using 
a microplate reader (Bio‑Rad Laboratories, Inc., Hercules, 
CA, USA).

Apoptosis analysis. The cell lines cultured in RPMI-1640 
were seeded in 96‑well plates (2x104 cells/well), treated with 

PPP or FB1 for 24 h, and harvested with trypsin (Gibco Life 
Technologies). Following two washes with PBS on ice, the 
cells were incubated with fluorescein isothiocyanate‑conju-
gated Annexin V (Sigma-Aldrich) in binding buffer (50 mM 
HEPES, 700 mM NaCl, 12.5 mM CaCl2, pH 7.4) for 20 min 
at 37˚C in the dark. The cells were then washed with PBS, 
and incubated with 10 ml phosphatidylinositol (PI) solution 
(1 mg/ml; Sigma-Aldrich) for 20 min at room temperature in 
the dark. The cells were then analyzed at 488 nm and 633 nm 
using a FACScan Flow Cytometer (BD Biosciences, Franklin 
Lakes, NJ, USA) to determine the relative apoptosis levels. 

Western blot analysis. For western blot analysis, the 
cells were lysed with 2X lysis buffer containing 250 mM 
Tris‑HCl (pH 6.5), 2% SDS, 4% β‑mercaptoethanol, 0.02% 
bromphenol blue and 10% glycerol. Protein concentration 
was determined using a Bicinchoninic Acid Protein Assay 
kit (Bio‑Rad Laboratories, Inc.) and equal quantities of 
protein were analyzed by SDS‑PAGE (20 mg/lane) on a 5% 
stacking gel and a 10% separating gel (Beyotime Institute of 
Biotechnology), prior to being transferred onto polyvinylidene 
difluoride membranes (EMD Millipore, Billerica, MA, USA) 
at 10 V for 30 min. The membranes were blocked for 2 h with 
5% non‑fat dry milk in Tris‑buffered saline containing 0.1% 
Tween-20 (Beyotime Institute of Biotechnology) (TBST), and 
incubated at 4˚C overnight with the following primary anti-
bodies: Rabbit anti-human Akt (cat. no. 9272; Cell Signaling 
Technology, Inc., Danvers, MA, USA; 1:1,000), rabbit 
anti-human phosphorylated (p)‑Akt (cat. no. SAB4301497; 
Sigma‑Aldrich; 1:800), rabbit anti-human p‑IGF‑1R 
(cat. no.  I2033; Sigma‑Aldrich; 1:500), rabbit anti-human 
IGF‑1R (cat. no. 3027; Cell Signaling Technology, Inc.; 1:800) 
and mouse anti-human β‑actin (cat. no. 3700; Cell Signaling 
Technology, Inc.; 1:1,000). Following washing with TBST, 
the membranes were incubated with HRP‑conjugated goat 
anti‑rabbit IgG (cat. no. A0545; Sigma‑Aldrich; 1:80,000) or 
HRP‑conjugated horse anti‑mouse IgG (cat. no. 7076; Cell 
Signaling Technology, Inc.; 1:20,000) secondary antibodies 
targeting rabbit or mouse in TBST for 45  min at room 
temperature. Following three washes with TBST, the proteins 
were developed using an Enhanced Chemiluminescence kit 
(GE Healthcare Life Sciences, Chalfont, UK). Detection was 
performed using an Enhanced Chemiluminescence system 
(EMD Millipore).

Statistical analysis. The results are expressed as the 
mean ± standard deviation of at least three independent experi-
ments. Statistical analysis was conducted using SPSS 16.0 
(SPSS, Inc., Chicago, IL, USA). The statistical significance of 
the differences between the control and drug‑treated groups 
were evaluated using an unpaired Student's t‑test. P<0.05 was 
considered to indicated a statistically significant result.

Results

PPP inhibits cell viability in a dose- and time‑dependent 
manner. Cell viability evaluation is one of the most important 
steps in the quality control process for therapeutic drug use (23). 
To investigate the effects of PPP on ES, an MTT assay was 
first used to assess the influence of PPP on the cell growth of 
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the A673 and SK‑ES‑1 ES cell lines. As shown in Fig. 1A, PPP 
inhibited A673 and SK‑ES‑1 cell viability in a dose‑dependent 
manner, and the half maximal inhibitory concentration (IC50) 
values for the A673 and SK‑ES‑1 cell lines were 0.42 and 
0.48 µM, respectively. Further analysis determined that PPP 
exhibited time‑dependent inhibitory effects on A673 and 
SK‑ES‑1 cell viability. As shown in Fig. 1B, the percentage of 
A673 and SK‑ES‑1 cell viability declined significantly at 24 h, 
and the rates of cell viability were 49 and 52%, respectively, 
as compared with the control (P<0.05). These results suggest 
that PPP inhibits cell viability in a dose- and time‑dependent 
manner.

Effects of PPP on cell proliferation. To evaluate the effects 
of PPP on ES cell proliferation, a BrdU cell staining kit was 
used. As shown in Fig. 2A, PPP was able to inhibit >50% of 
A673 cells at an value IC50 of 0.42 µM. Although the effect of 
PPP on the SK‑ES‑1 cells was more marked than that on the 
A673 cells, cell viability still decreased by 44% in the A673 
cells. These results suggest that PPP is able to inhibit ES cell 
survival.

PPP treatment induces ES cell apoptosis. To further evaluate 
the effect of PPP on cell apoptosis, Annexin V/PI double 
staining was performed on the A673 and SK‑ES‑1 cells. The 

Figure 1. Effects of PPP on Ewing's sarcoma cell viability in vitro. (A) A673 and SK‑ES‑1 cell lines were treated with various concentrations of PPP  
(0, 0.05, 0.1, 0.2, 0.4 and 0.8 µM). A total of 48 h later, an MTT assay was performed to analyze cell viability. The error bars represent the mean ± standard 
deviation. (B) Following treatment with 0.4 µM PPP for 6, 12, 24 or 48 h, cell viability was detected using an MTT assay. *P<0.05 and **P<0.01, vs. the control 
group. PPP, picropodophyllin.

  A   B

Figure 2. Effects of PPP on cell proliferation and apoptosis. (A) Cell proliferation was determined using a bromodeoxyuridine cell staining kit, and was 
inhibited by PPP. (B) Cell apoptosis was determined by Annexin V/PI staining, and was induced by PPP. (C) The distribution of apoptotic cells induced by PPP. 
The data are presented as the mean ± standard deviation. *P<0.05, vs. the control group. PPP, picropodophyllin; PI, propidium iodide.

  A   B

  C
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SK‑ES‑1 cell apoptotic rates were significantly increased from 
10.1 (control) to 38.5% (PPP‑treated) (Fig. 2B). The apoptotic 
rates induced by PPP are shown in Fig. 2C. The apoptotic rates 
in the A673 cells were significantly increased from 11.2% 
(control) to 40.8% (PPP‑treated) following treatment with 
0.42 µM PPP. These data demonstrated the effect of PPP on 
cell apoptosis in the A673 and SK‑ES‑1 cells.

PPP blocks ES cell growth through Akt signaling. The Akt 
signaling pathway has an important role in cell progression, 
including proliferation and apoptosis. The activation of Akt 
improves the survival of ES cell lines (24). To explore the 
mechanism underlying the effects of PPP on cell growth, the 
effects of PPP on Akt expression were detected in the A673 and 
SK‑ES‑1 cell lines. As shown in Fig. 3A and B, the total Akt 
levels remained unchanged, whereas the phosphorylation levels 
of Akt markedly decreased in the two cell lines. Therefore, 
PPP may inhibit ES cell growth via Akt signaling. To further 

verify this hypothesis, FB1, a specific activator of Akt, was 
used for subsequent study. Following pre‑treatment with FB1, 
the viability of the A673 and SK‑ES‑1 cells was significantly 
increased. The viability of the A673 cells increased from 42.8 
to 63.5%, following the addition of 20 µg/ml FB1. In addition, 
PPP-inhibited cell viability in the SK‑ES‑1 cells increased 
from 44 to 53, 60 and 70.5%, respectively, following treatment 
with various doses of FB1 (Fig. 3C). Conversely, PPP‑induced 
cell apoptosis was decreased from 42.55 to 20% (40 µg/ml 
FB1-treated groups) in the A673 cells, following treatment 
with FB1. Furthermore, apoptotic rates in the SK‑ES‑1 cells 
also decreased from 38.55 (PPP-treated) to 17.5% (40 µg/ml 
FB1-treated; Fig. 3D). These results suggest that PPP mark-
edly inhibits A673 and SK‑ES‑1 cell growth by blocking Akt 
signaling.

Effects of PPP on IGF‑1R activation. IGF‑1R is over-
expressed in various tumors, including breast tumors, 

Figure 4. PPP decreased the expression levels of IGF‑1R and p‑IGF‑1R in A673 and SK‑ES‑1 cell lines. (A) Following treatment with PPP, the expression levels 
of IGF‑1R and p‑IGF‑1R were measured by western blotting. (B) The relative protein expression levels of IGF‑1R and p‑IGF‑1R in the A673 and SK‑ES‑1 cell 
lines. *P<0.01, vs. the control. PPP, picropodophyllin; p, phosphorylated; IGF‑1R, insulin‑like growth factor 1 receptor.

Figure 3. PPP affects Akt phosphorylation in A673 and SK‑ES‑1 cell lines. (A) The effects of PPP on Akt phosphorylation, as determined by western blotting. 
(B) The quantification of Akt and p‑Akt protein expression levels in A673 and SK‑ES‑1 cell lines. (C) The effects of FB1 on cell viability, as determined by 
an MTT assay. (D) The effects of FB1 on PPP‑induced apoptosis. **P<0.01, vs. the control and #P<0.05, vs. the PPP‑treated group. PPP, picropodophyllin; p, 
phosphorylated; FB1, fumonisin B1; DMSO, dimethyl sulfoxide.

  A   B

  C   D

  A   B
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prostate tumors and myeloma (25). In addition, IGF‑1R has 
an important role in the prevention of apoptosis by inducing 
the Akt signaling transduction cascade  (26). To further 
investigate the PPP‑regulated Akt signaling pathway in 
ES, the expression levels of IGF‑1R were analyzed. Total 
IGF‑1R expression levels in the A673 cells decreased by 
~35% compared with untreated cells, whereas SK‑ES‑1 cells 
exhibited a 40% decrease in IGF‑1R expression (Fig.  4). 
Similarly, the phosphorylation levels of IGF‑1R decreased by 
>50%, as compared with those of the control cells in the two 
cell lines. The A673 cells exhibited a 59% decrease in the 
phosphorylation levels of IGF-1R, and the SK‑ES‑1 cells a 
50.5% decrease, as compared with the control group. As an 
inhibitor of IGF‑1R, PPP significantly reduced the expression 
and phosphorylation levels of IGF‑1R. These results suggest 
that PPP regulates ES cell growth via the IGF‑1R/Akt 
signaling pathway.

Discussion

ES is a relatively rare type of malignancy predominantly 
occurring between the ages of four and 25 (27,28). The aim 
of current research is to acquire a greater understanding of 
the biological pathogenesis of ES, and to identify an effective 
drug for the treatment of ES (29). Previous studies demon-
strated that PPP inhibits numerous types of cancers, including 
osteosarcoma and human multiple myeloma (30,31); however, 
no research has been performed to date on ES. To the best 
of our knowledge, the present study is the first to investigate 
the function of PPP in ES. The results of the present study 
demonstrated that PPP induces proliferation inhibition and 
apoptotic enhancement in human ES cell lines. Therefore, PPP 
may be effective in the inhibition of ES, and merits further 
investigation.

Numerous molecular studies have demonstrated that the 
Akt signal transduction cascade usually participates in ES 
cell progression, cell apoptosis, cell proliferation and drug 
susceptibility (32‑34). As an IFG‑1R inhibitor, PPP was found 
to have Akt inhibitory effects in neuroblastoma cell lines (35). 
Furthermore, the efficacy of PPP against multiple myeloma 
has also been demonstrated (31). To further investigate the 
mechanism underlying the cell growth inhibitory effects of 
PPP, the present study investigated the Akt signaling pathway 
in ES. The results indicated that PPP induced downregulation 
of p‑Akt expression by ~50%. The inhibitory effect of PPP on 
p‑Akt was recovered following treatment with an Akt‑specific 
activator, FB1. These results demonstrated that PPP was 
indeed able to inhibit human ES survival by blocking the Akt 
signaling pathway.

Recently, IGF signaling has become a potential target for 
novel anticancer agents (36,37). IGF‑1R is an activator of the 
Akt signaling pathway. The IGF‑1R‑mediated Akt signaling 
pathway exhibited anticancer effects in various types of 
cancer (38,39). Baumgarten et al (40) suggested that IGF‑1R 
signaling may be required for Akt activation. Previous studies 
have also demonstrated the association between IFG‑1R 
and Akt (41,42). In the present study, PPP appeared to block 
IGF‑1R phosphorylation. Consequently, it was hypothesized 
that PPP may inhibit ES growth by inhibiting the IGF‑1R‑Akt 
signaling pathway.

In conclusion, the present study demonstrated the effec-
tiveness of PPP in human ES. The inhibition of cell survival, 
as well as the effective induction of apoptosis, led to further 
investigation of the underlying mechanism. The IGF‑1R/Akt 
signaling pathway was shown to involve the PPP‑induced 
survival in ES cells. Therefore, the application of PPP may 
provide a novel therapeutic strategy for the treatment of ES.
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