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Abstract. Long noncoding RNAs (lncRNAs) are endogenous 
transcribed RNA molecules without protein-coding potential, 
ranging between 200 and 100,000 nt in length. LncRNAs regu-
late the expression of specific genes in several ways, including 
guiding chromatin-remodeling, and affecting splicing, tran-
scription or translation. The mutations and dysregulation of 
lncRNAs have been found to be important in various human 
diseases, but particularly in human cancer. Previous studies 
have demonstrated that changes to lncRNAs are closely 
associated with tumorigenesis, metastasis, prognosis and 
diagnosis. The current review aims to present a brief overview 
of the associated reports of lncRNAs in malignant neoplasms, 
including breast cancer, prostate cancer and hematological 
malignancies. LncRNAs may be evaluated as novel markers 
in disease diagnosis, and as prospective therapeutic targets for 
the prevention and treatment of human diseases.
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1. Introduction

The regulation of protein-coding genes follows the central 
dogma: DNAàRNAàprotein. Results of human genome 
projects indicate that >90% of the genome is transcribed into 
RNA, only 1.5‑2.0% of the genome encodes protein‑coding 
genes, and the remainder are noncoding RNAs (ncRNAs), 
which were once considered to be transcriptional noise (1).

The ncRNAs are divided into two major groups based on 
their length: Small ncRNAs and long ncRNAs (lncRNAs) (2,3). 
Small ncRNAs (length, <200 nt), including microRNAs (miRs), 
are important in various cancer processes (4‑6). LncRNAs 
are commonly defined as independent transcriptional units 
with no significant protein‑coding capacity, and are between 
200 and 100,000 nt in length. Previous mass‑scale transcrip-
tome sequencing has revealed that thousands of lncRNAs are 
transcribed in large quantities in human and other mammalian 
genomes (7).

2. Definition and classification of lncRNAs

LncRNAs are commonly defined as non‑protein‑coding 
RNA molecules of >200 nt. Despite poor conservation of 
their nucleotide sequences, compared with protein-coding 
genes, lncRNAs have tissue‑specific expression patterns (8). 
LncRNAs are divided into several subtypes, according to 
their location with respect to protein-coding genes: i) Sense 
lncRNAs intersect one or more exons of another transcript on 
the same strand; ii) antisense lncRNAs have transcripts, which 
overlap with one or more exons of a protein‑coding locus on the 
opposite strand, and show evidence of antisense regulation of 
a protein-coding gene (9); iii) intergenic lncRNAs, also desig-
nated lincRNAs, do not intersect with any protein‑coding loci, 
and are located between two other genes; iv) intronic lncRNAs 
are contained completely within protein‑coding introns and 
do not intersect any exons; v) bidirectional lncRNAs share a 
promoter with another transcript in the opposite strand and 
are, thus coregulated (9,10).

3. Biological function of lncRNAs

With the development of whole genome and mass‑scale tran-
scriptome sequencing technologies, the functions of lncRNAs 
have been investigated in various fields (11‑13). Although 
only a small fraction of lncRNAs identified have been 
investigated experimentally, an emerging paradigm suggests 
that lncRNAs function in multiple biological contexts. For 
example, lncRNAs can also act as scaffolds during the forma-
tion of cellular substructures or protein complexes (14-16), and 
evidence indicates that lncRNAs are involved in regulating 
gene expression at transcriptional, post-transcriptional and 
epigenetic levels (17,18), which affect cell differentiation and 
cycle control (19,20), as well as controling apoptosis and cell 
death (21,22).
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Transcriptional control is important in the regulation of 
gene expression in prokaryotes and eukaryotes. It has been 
demonstrated that lncRNAs modulate large-scale gene expres-
sion via interacting with chromatin at numerous different 
locations across multiple chromosomes (23). It has been 
determined that lncRNAs can affect transcription via various 
mechanisms, including altering the activity of specific tran-
scription factors and polymerases, acting as coactivators of 
transcription factors, binding to DNA or proteins, interacting 
with RNA binding proteins and inhibiting the promoter of 
their target gene (24-26).

LncRNAs modulate the expression of mRNA at the 
post‑transcriptional level by affecting mRNA stability and 
modulating cell cycle distribution and cell differentiation. 
For example, growth-arrested DNA damage-inducible gene 7 
(gadd7), a DNA damage‑inducible lncRNA, controls cell‑cycle 
progression (27,28). It is key in the regulation of the G1/S 
checkpoint following DNA damage (28). UV‑induced gadd7 
specifically binds to TAR DNA‑binding protein (TDP‑43), 
disrupting the interaction between TDP‑43 and cyclin‑depen-
dent kinase 6 (Cdk6) mRNA, and decreasing the expression 
of Cdk6 (28). The antisense transcript for β‑site amyloid 
precursor protein (APP)‑cleaving enzyme 1 (BACE1‑AS) has 
been observed to stabilize mRNA, thus, maintaining mRNA 
expression levels at the post‑transcriptional level (29‑31). 
BACE1, also termed β-secretase-1, is a crucial enzyme in the 
pathophysiology of Alzheimer's disease. Increased expression 
levels of BACE1 and APP in plaque‑associated presynaptic 
dystrophies increase the generation of local peri‑plaque 
amyloid β (Aβ) and accelerate the growth of amyloid plaque in 
Alzheimer's disease (32,33). BACE1‑AS can regulate BACE1 
mRNA and subsequent BACE1 protein expression in vitro and 
in vivo, and in Alzheimer's disease, the upregulated expres-
sion of BACE1‑AS increases the stability of BACE1 mRNA 
and generates additional Aβ1‑42 via a post‑transcriptional 
feed-forward mechanism (29).

The term epigenetics refers to reversible modifications 
of DNA molecules of one cell or histones, which change the 
DNA conformation and result in changes to the expression of 
genes without altering the sequence of bases in the DNA (30). 
Epigenetic changes, including DNA methylation, histone 
modification, chromatin remodeling, genome imprinting 
and the regulatory mechanisms of RNA editing, can affect 
gene expression (35,36). Aberrations in epigenetic modifi-
cations are common in several human diseases, including 
cancer (35,37,38). DNA methylation, the best‑known epigen-
etic marker, is important in the regulation of a wide variety 
of molecular processes, including maintaining the stability 
of the genome and regulating gene expression and inactiva-
tion (36). Previous studies have demonstrated that lncRNAs 
are critical in epigenetic regulation (39,40), and have also 
indicated that DNA methylation and histone modifications are 
common epigenetic mechanisms, resulting in the deregulation 
of lncRNA expression levels in tumors (41,42).

Brannan et al (43) identified H19, a 2.3 kb lncRNA, which 
can interact with methyl‑CpG‑binding domain protein 1 
(MBD1) that is involved in the maintenance of repressive 
H3K9me3 histone marks, forming the H19 lncRNA‑MBD1 
complex and controlling gene expression of the imprinted gene 
network (IGN) (15). H19 associated with chromatin‑modifying 

complexes provides a method for regulating embryonic 
growth (15).

4. LncRNAs in tumors

Numerous experimental studies and clinical observations 
have suggested that aberrant lncRNA expression is associated 
with various human diseases and disorders, particularly in 
tumors (44‑46). Although the precise mechanism underlying 
how lncRNAs result in the development and progression of 
cancer remains to be elucidated, previous studies (15,22,47) 
have linked distinct types of mutations in lncRNA genes with 
diverse diseases, and have demonstrated that certain lncRNAs 
serve as tumor suppressors or carcinogenic factors in the 
development of cancer.

4.1 LncRNAs in lung cancer. Lung cancer is a leading cause of 
mortality worldwide (48). Non‑small cell lung cancer (NSCLC), 
including adenocarcinoma, squamous cell carcinoma and 
large cell carcinoma accounts for 80‑85% of new cases of lung 
cancer (49‑52). Evidence indicates that lung cancer metastasis 
is significantly associated with the noncoding metastasis‑asso-
ciated lung adenocarcinoma transcript 1 (MALAT1) located 
on chromosome 11q13, which is a highly expressed lncRNA 
with a length of >6,500 bp (53,54). The overexpression of 
MALAT1 results in an increase in cell proliferation and migra-
tion in lung cancer, and MALAT1 serves as a novel prognostic 
marker for survival in NSCLC (54,55).

4.2 LncRNAs in breast cancer. Breast cancer is a common 
malignancy in females, and its incidence in younger women is 
increasing. Previous studies have suggest that lncRNAs have 
a significant correlation with the onset and development of 
breast cancer (56,57).

HOX antisense intergenic RNA (lincRNA-HOTAIR) 
is a 2.2 kb carcinogenic lncRNA, which is located in the 
mammalian homeobox C (HOXC) locus on chromosome 
12q13.13 (58). HOTAIR acts as a scaffold by combining its 
3' region with the lysine‑specific demethylase 1 (LSD1)/core-
pressor for element-1-silencing transcription factor/repressor 
element RE-1 silencing transcription factor complex, and its 
5' region with polycomb repressive complex 2 (PRC2) (58‑60). 
This acts to regulate histone H3 methylation at lysine 27 
and demethylation at lysine 4, and silence the HOXD loci 
in trans (58). PRC2 is a protein responsible for H3K27 
methyltransferase, and is associated with developmental gene 
silencing and cancer progression (58‑61). LSD1 is a histone 
methyltransferase, which mediates the enzymatic demethyl-
ation of H3K4Me2 (62). The increased expression levels of 
HOTAIR have been associated with poor prognosis and tumor 
metastasis in breast cancer (58,63), and Gupta et al (63) demon-
strated that the expression levels of HOTAIR in the primary 
tumor and metastases were significantly increased, compared 
with non‑cancerous tissues. The systematically dysregulated 
HOTAIR results in increased in vitro cell invasion and in vivo 
metastasis in breast cancer cells (63-65). The genome-wide 
reorientation of PRC2, caused by enforced HOTAIR expres-
sion in epithelial cancer, leads to altered histone H3 lysine 
27 methylation and gene expression, which can increase the 
cancer invasiveness and metastasis, in a PRC2‑dependent 
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manner (63). Decreased levels of HOTAIR markedly reduce 
cancer invasiveness, particularly in cells with increased PRC2 
activity (63).

LncRNA-LOC554202 is another lncRNA, which is 
important in the development and progression of breast 
cancer (66,67). Compared with normal breast tissue, the 
expression level of lncRNA‑LOC554202 in breast cancer 
tissues is significantly upregulated, and is correlated with 
tumor size and advanced pathological stage (66). Small inter-
fering (si)RNA‑mediated knockdown of LOC554202 results in 
a significant accumulation of cells at the G0/G1-phase (P<0.05) 
and a marked decrease in cells in S‑phase. This indicates that 
siRNA‑mediated knockdown of lncRNAs‑LOC554202 inhib-
ited breast cancer proliferation, invasion and migration, and 
increased apoptosis in vitro and prevent tumorigenesis (66).

LncRNAs are important in modulating the occurrence and 
development of cancer, reinforcing the potential of identifying 
a novel type of targeted therapy to diagnose, treat and prevent 
breast cancer effectively. Further investigations to identify 
lncRNA markers with higher sensitivity and specificity in 
breast cancer‑associated lncRNAs is required, as are inves-
tigations aimed at reducing the occurrence of breast cancer 
by regulating the expression of specific lncRNAs that affect 
transcription of tumor suppressor genes.

4.3 LncRNAs in prostate cancer (PCa). Previous studies (68,69)
have demonstrated that the abnormal expression of genes 
regulated by lncRNAs are associated with PCa. Studies have 
indicated that lncRNAs are involved in cell proliferation, cell 
invasion and metastasis by functioning as oncogenes or as 
tumor suppressor genes, and lncRNAs associated with PCa 
have been identified, including PCA3 and PCAT1 (70,71).

PCA3 is a well‑investigated lncRNA in PCa (72,73). 
Compared with normal prostate tissue, the expression levels of 
PCA3 have been found to be upregulated 66‑fold in PCa tissue, 
and this overexpression was observed in >95% of primary 
and metastatic PCa specimens (73). PCA3 has been used as 
a biomarker for molecular diagnostics in clinical urological 
practice (72,73). PCa associated ncRNA transcript-1 (PCAT-1) 
is a highly prostate‑specific lncRNA, which is markedly 
overexpressed in a subset of PCa and promotes cell prolif-
eration (69). Crea et al (74) observed that a novel lncRNA, 
PCAT18, was specifically expressed in the prostate. PCAT18 
silencing can markedly inhibit PCa cell proliferation, and 
inhibit tumor cell migration and invasion (74). Together, this 
suggests that lncRNAs may act as novel therapeutic targets in 
PCa and as biomarkers for metastatic PCa.

4.4 LncRNAs in hematological malignancies
4.4.1 LncRNAs in acute leukemia. Leukemia is one of the 
most common types of malignant tumor. In previous years, 
miRs have been well described in hematological malignancies, 
while lncRNAs are expected to be increasingly investigated.

Maternally expressed gene 3 (MEG3) is an imprinted gene 
located at 14q32, which encodes an lncRNA correlated with 
several types of human cancer (75,76). MEG3 is also expressed 
in various normal tissues and functions as an lncRNA tumor 
suppressor. The loss of MEG3 expression in tumors occurs 
as a result of gene deletion, promoter hypermethylation and 
hypermethylation of the intergenic differentially methylated 

region (76). It was shown to activate p53 and facilitate p53‑depen-
dent or independent pathways, functioning as a tumor suppressor 
(77). Benetatos et al (78) observed that MEG3 was abnormally 
methylated in patients with acute myelogenous leukemia (AML) 
and myelodyplastic syndrome, and MEG3 hypermethylation 
was associated with significantly reduced overall survival rates 
in individuals with AML. The MEG3 methylation status may 
serve as a useful biomarker in leukemia.

T‑cell acute lymphoblastic leukemia (T‑ALL) is an agres-
sive hematological malignancy (79,80). T‑ALL‑R‑LncR1, is a 
novel long non‑coding RNA associated with apoptosis regula-
tion in T‑ALL cells, and is prominently expressed in certain 
tumor tissues, but not detected in normal human tissues (80). 
T‑ALL‑R‑LncR1 knockdown induced the formation of a pros-
tate apoptosis response-4/THAP protein complex, enhance 
the activation of caspase‑3, and accelerated apoptosis in Jurkat 
cells (80,81). Therefore, suppressing RNA T‑ALL‑R‑LncR1 
may be a potential therapeutic strategy in human T‑ALL.

Two novel lncRNAs have been identified in acute promy-
elocytic leukemia cells, HOX antisense intergenic RNA 
myeloid 1 (HOTAIRM1) and HOXA cluster antisense RNA 2 
(HOXA‑AS2) (82‑84). HOTAIRM1 and HOXA‑AS2 are 
upregulated in NB4 promyelocytic leukemia cells (82,83). 
HOTAIRM1 is a small intergenic transcript from the plus 
(opposite) strand between the HOXA1 and HOXA2 genes, 
and shows myeloid‑specific expression (84). It is involved in 
myelopoiesis through modulation of gene expression in the 
HOXA cluster (84). Knockdown of HOTAIRM1 quantitatively 
decreases RA-induced expression of HOXA1 and HOXA4 
during the myeloid differentiation of NB4 cells, and selectively 
attenuates the expression of myeloid differentiation genes, 
cluster of differentiation (CD)11b, CD11c and CD18 (82,84), but 
does not affect the more distal HOXA genes (83). HOXA‑AS2 
is located between HOXA3 and HOXA4 within the HOXA 
cluster in the human genome, and is transcribed in the opposite 
direction. It functions as an apoptosis repressor in all trans 
RA (ATRA)‑treated NB4 cells via mechanisms mediated, 
in part, by tumor necrosis factor‑related apoptosis‑inducing 
ligand, which is a prominent biologically‑targeted anti‑tumor 
protein due to its induction of apoptosis in a variety of human 
cancer cell lines, avoiding normal cells (85). Knockdown of 
HOXA‑AS2 decreases the number of viable cells and increases 
the proportion of apoptotic cells, and HOXA-AS2-mediated 
negative regulation contributes to the fine‑tuning of apoptosis in 
the myeloid differentiation induced by ATRA in NB4 cells (83).

LncRNA‑IRAIN is another novel antisense ncRNA, 5.4 kb 
in length, with no large open reading frames (86). It is located in 
the insulin‑like growth factor type I receptor (IGF1R) locus (86). 
IRAIN is expressed exclusively from the paternal allele, while 
the maternal counterpart is silenced as demonstrated by 
Sun et al (86) on investigating the underlying mechanism of 
IGF1R dysregulation in tumors. IGF1R is an abundantly phos-
phorylated receptor tyrosine kinase, which promotes cell growth 
via the phosphatidylinositol‑4,5‑bisphosphate 3‑kinase/Akt 
signaling pathway (86‑88). IGF1R regulates multiple cellular 
functions in tumors, including cellular survival, growth, tumor 
neovascularization and metastasis (89,90). IRAIN is transcribed 
in an antisense direction from an intronic promoter, and is down-
regulated in leukemia cell lines and in patients with high‑risk 
AML (86). Knockdown of IRAIN lncRNA with small hairpin 
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RNA eliminates the intrachromosomal interaction between 
chromatin DNA and lncRNA (86).

4.4.2 LncRNAs in chronic myeloid leukemia. Chronic 
myeloid leukemia (CML) is a malignant disease occurring 
in clonal hematopoietic stem cells, which accounts for ~20% 
of all adult leukemia cases (91) and is characterized by the 
clonal hyperproliferation of immature white blood cells. The 
Philadelphia (Ph) chromosome and/or breakpoint cluster 
region (Bcr)/ABL proto-oncogene 1 (Abl) gene rearrangement 
is a specific marker of CML (91,92). The BCR-ABL gene is a 
fusion gene generated by the t(9;22)(q34.1;q11.21) transloca-
tion, which produces the Ph chromosome (93). Bcr-Abl-induced 
tumorigenesis involves the alteration of numerous signaling 
pathways that regulate cell survival and proliferation, including 
the PI3K/phosphatase and tensin homolog (PTEN)/AKT, RAS 
and Janus kinases/signal transducer and activator of transcrip-
tion signaling pathways (94‑97). Altering the expression of the 
BCR-ABL gene regulates the induction of cellular proliferation, 
and the inhibition of cellular differentiation and programmed 
cell death (98,99). Guo et al (97) identified a novel lncRNA, 
lncRNA‑BGL3, which is a key regulator of Bcr‑Abl‑mediated 
cellular transformation. LncRNA-BGL3 was found to function 
as a competitive endogenous RNA for binding the miRs that 
repress PTEN mRNA, including miR-17, miR-93, miR-20a, 
miR-20b, miR-106a and miR-106b, to cross-regulate PTEN 
expression. LncRNA-BGL3 was induced following inhibition 
of Bcr‑Abl kinase activity or disruption of Bcr‑Abl expression 
in K562 cells and leukemic cells derived from patients with 
CML (97). It has been demonstrated that Bcr-Abl represses 
the expression of lncRNA‑BGL3 via c‑Myc‑dependent DNA 
methylation (97), which suggests that regulating the expression 
of lncRNA‑BGL3 may be a potential therapeutic strategy for 
Bcr‑Abl‑positive leukemia.

4.4.3 LncRNAs in lymphoma. FAS-AS1 is an lncRNA 
corresponding to an antisense transcript of Fas, which can 
tightly regulate the alternative splicing of Fas in lymphomas. 

Sehgal et al (42) found that expression levels of FAS‑AS1 
have a negative correlation with the production of soluble 
Fas (sFas), and that increased levels of FAS‑AS1 decrease the 
expression of sFas, and eliminate the inhibition of apoptosis 
by the sFas ligand, enhancing Fas-mediated apoptosis. Studies 
have demonstrated that impaired Fas‑mediated apoptosis is 
associated with poor clinical outcomes and cancer chemore-
sistance (100,101). Therefore, FAS‑AS1 may be an important 
target for lymphoma diagnosis and therapy.

Changes in specific lncRNAs have been demonstrated 
to correlate with a wide variety of types of cancer (Table I). 
These findings suggest that lncRNAs are important in tumor 
cell activation and progression, however, the mechanism of 
action requires further investigation.

5. Conclusions and future perspectives

LncRNAs are significant in a series of biological processes, 
including epigenetics, the regulation of translation and 
post-transcriptional processing. Aberrant lncRNA expression 
is associated with various human diseases. Unlike protein 
coding genes and miRNA, the specific roles of lncRNAs 
remain to be fully elucidated. Aberrant lncRNA expression 
is involved in carcinogenesis by disrupting major biological 
processes, including DNA methylation in epigenetic modi-
fications and gene silencing. However, only a small number 
of lncRNAs have been identified and, thus, the impact of 
lncRNAs in tumor development remains to be fully elucidated. 
Technological developments in investigating the function and 
mechanism of lncRNAs require further exploitation. The 
differential expression of lncRNAs may be a significant marker 
in cancer diagnosis and prognosis, and may offer potential in 
lncRNA‑mediated targeted therapy in the future.
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