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Abstract. Skeletal muscle atrophy, a conventional clinical 
feature in patients with cancer, chronic obstructive pulmonary 
disease, sepsis and severe burns, is defined as a reduction in 
muscle mass. During atrophy, the protein degradation is abnor-
mally activated and the aberrance between protein synthesis and 
protein degradation results in muscle atrophy. Previous studies 
have demonstrated that miRNAs, small non-coding RNA 
molecules, serve an important role in the regulation of muscle 
atrophy. Further studies have indicated the implications of the 
ubiquitin-proteasome and PI3K/Akt/FoxO signaling pathways 
and myogenic regulatory factors in miRNA-mediated muscle 
atrophy. Therefore, in this review, the effects and molecular 
mechanisms of miRNAs on muscle atrophy are summarized, 
leading to the suggestion that miRNAs may serve as potential 
therapeutic targets in muscle atrophy.

Contents

1. Introduction
2. The effect of the ubiquitin-proteasome pathway on
 miRNA-mediated muscle atrophy
3. miRNAs mediate muscle atrophy via the regulation of
 myogenesis
4. Implications of miRNA in cell apoptosis-mediated muscle
 atrophy
5. PI3K/Akt/FoxO signaling pathway in miRNA-mediated
 muscle atrophy
6. Conclusion

1. Introduction

Skeletal muscle makes up approximately 40% of the body 
weight and is essential for locomotion (1). Skeletal muscle 
atrophy, predominantly resulting from excessive protein degra-
dation, occurs in various conditions including starvation (2), 
aging (3), sepsis (4), cancer cachexia (5), severe burns (6,7) 
and chronic kidney disease (8). Muscle atrophy results in 
reductions in mobility of the patients and an increased risk 
of mortality (9). In patients with severe burns, skeletal muscle 
atrophy occurs as a result of prolongation of time spent 
bed-bound and suppression of wound healing (7). In general, 
skeletal muscle atrophy predicts poor prognosis of patients.

The ubiquitin-proteasome pathway and cell apoptosis are 
involved in regulating skeletal muscle atrophy (10-12). The 
ubiquitin-proteasome pathway contributes to protein degrada-
tion, as the targeted proteins for degradation are substrates 
that can be identified and bound to ubiquitin. Subsequently, 
poly-ubiquitinated substrates are targeted for degradation 
by proteasomes (11). Activation of the ubiquitin-proteasome 
pathway may serve an important role in the mediation of skel-
etal muscle atrophy (10,11). Previous studies have additionally 
demonstrated that increased cell apoptosis is accompanied by 
stress-induced skeletal muscle atrophy (12), and that apoptosis 
is also a critical factor which leads to muscle atrophy (13,14).

MicroRNAs (miRNAs), the small non-coding RNAs, 
were first identified in C. elegans and are highly conserved 
in eukaryotes (15). At present, greater than 1,700 miRNAs 
have been identified, which serve critical roles in regulating 
proliferation, differentiation and the development of various 
diseases (16). miRNA exerts its biological activation via 
binding to the 3'-untranslated region (3'-UTR) of targeted 
mRNA (17). Accelerating target mRNA degradation or 
inhibiting its translation are two key ways in which miRNA 
mediates the control of gene expression (18). The miRNA 
(miR)-1/206 family, miR-133, miR-208 and miR-488 are iden-
tified as muscle‑specific miRNAs and serve essential roles in 
regulating normal myoblast differentiation, proliferation and 
muscle remodeling in response to stress (19-21). In addition, 
muscle‑specific miRNAs, miR‑128a and miR‑351, are involved 
in the regulation of myogenesis (21,22).

The present review will focus upon the miRNAs involved 
in the regulation of skeletal muscle atrophy and the potential 
molecular mechanisms. Further studies are required in order 
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to elucidate the specific miRNAs implicated in stress‑induced 
skeletal muscle atrophy, which may lead to the development of 
novel targets for clinical therapy.

2. The effect of the ubiquitin‑proteasome pathway on miR‑
NA‑mediated muscle atrophy

Aberrant activation of protein degradation is the key factor 
that leads to muscle atrophy, and the ubiquitin-proteasome 
pathway serves a pivotal role in the mediation of protein 
degradation (11). The proteasome can identify the poly-ubiq-
uitinated protein and trigger the degradation procedure (23). 
E3 ligase is the critical mediator of protein ubiquitination. 
Muscle RING finger 1 (MuRF1) and muscle atrophy F‑box 
(MAFbx) are two muscle specific E3 ligases (24). During 
muscle atrophy, MuRF1 and MAFbx are overexpressed 
in muscle, and inhibiting the function of MuRF1 and 
MAFbx has been demonstrated to suppress muscle loss and 
subsequently attenuate muscle atrophy (25,26). Previous 
studies (27-29) have additionally indicated that miRNAs are 
implicated in the regulation of MuRF1 and MAFbx expres-
sion (Fig. 1). miR-23a is able to inhibit the translational 
activation of MuRF1 and MAFbx via binding with their 
3'-UTR, and miR-23a transgenic mice exert resistance against 
glucocorticoid-induced muscle atrophy (27). In a dexametha-
sone (Dex)‑induced mouse model of atrophy, muscle‑specific 
miR-1 expression is upregulated. miR-1 has been previously 
reported to induce MuRF1 and MAFbx expression via 
the HSP70/protein kinase B(Akt)/forkhead box (Fox) O3 
signaling pathway and is responsible for Dex-induced muscle 
atrophy (28). The miR-199/214 cluster is also involved in regu-
lating the ubiquitin-proteasome pathway (29). Taken together, 
miRNA-dependent activation of the ubiquitin-proteasome 
pathway is responsible for the promotion of muscle atrophy by 
directly or indirectly targeting the muscle specific E3 ligases 
of MuRF1 and MAFbx.

3. miRNAs mediate muscle atrophy via the regulation of 
myogenesis

In addition to enhancing muscle proteolysis, aberrant 
myogenesis is also a critical factor during muscle atrophy. 
Myogenesis is impaired in models of mice with cancer (30), 
and pigs with chronic obstructive pulmonary disease (31). 
Inactivation of myogenesis is also observed in diseases such as 
Duchenne muscular dystrophy and spinal and bulbar muscular 
atrophy (32,33). Muscle satellite cells are stem cells with 
self-renewal and differentiation potency, and when muscle 
disruption occurs, proliferative satellite cells could differen-
tiate into myotubes and contribute to muscle regeneration (34). 
Defects in post-natal myogenesis and muscle regeneration 
result in muscle atrophy, and miRNAs are implicated in the 
regulation of myogenesis and muscle atrophy (35,36). As 
presented in Fig. 2, paired-box transcription factor (Pax) is 
essential for satellite cell proliferation and differentiation. 
miR-1, miR-206 and miR-486 restrict satellite cell proliferation 
and promote its differentiation through suppression of Pax7 
expression (37-39). Pax3 is also the critical factor required to 
trigger satellite cell proliferation; suppressing miR-27b, miR-1 
and miR-206 expression suppresses satellite cell differentiation 

via enhancement of Pax3 activation (40,41). The myogenic 
regulatory factor (MRF) family, which includes MyoD, Myf5, 
myogenin and Myf6, has the pivotal role in myogenic differ-
entiation. MyoD is expressed in activated satellite cells, and 
miR-27a overexpression elevates the MyoD protein level and 
enhances myoblast differentiation (42). In C2C12 myoblast 
cells, miR-26a upregulates MyoD expression and promotes 
the myogenic process (43). Subsequent to injury, miR-26a is 
induced during muscle regeneration, and blocking miR-26a 
expression enhances Smad-dependent muscle differentia-
tion (44). miR-186 suppresses C2C12 myoblast cell myogenic 
differentiation via targeting myogenin (45). In addition to 
the MRF family, miRNAs also regulate myogenesis through 
targeting a variety of proteins. Myostatin is the negative medi-
ator of myogenesis; miR-27a and miR-27b promote satellite 
cell proliferation and post-natal myogenesis by suppressing 
myostatin expression (46-48). miR-125b, miR-133 and 
miR-199a-3p are involved in the regulation of the insulin-like 
growth factor/insulin-like growth factor receptor signaling 
pathway and inhibit cell differentiation and muscle regenera-
tion (49-51). miR-203 functions as the suppressor of myoblast 
differentiation by repressing c-Jun and myocyte enhancer 
factor 2C (MEF2C) expression (52). miR-155 inhibits MEF2A 
expression and suppresses the myogenic process (53). miR-29 
is a pro-myogenic factor, which acts through downregulation 
of Akt3 or RING1 and YY1-binding protein (54,55). Thus, 
miRNAs have critical roles in regulating satellite cell prolif-
eration, myogenic differentiation and muscle regeneration.

4. Implications of miRNAs in cell apoptosis‑mediated mus‑
cle atrophy

Cell apoptosis is programmed cell death and is a promoting 
factor of muscle atrophy (14,56). Studies using a mouse model 
have demonstrated that cell apoptosis is involved in the progres-
sion of heart failure, severe burns and age-associated muscle 
atrophy (57-60). The mitochondria and caspase-mediated apop-
totic pathways are some of the mechanisms of burn, age or 
stress-induced muscle atrophy (12,57,61,62). miRNA is an 
important mediator of myoblast cell apoptosis (63). In skeletal 
muscle, pre-conditional activation of interleukin (IL)-11/signal 
transducer and activator of transcription (STAT)3 pathway 
protects human skeletal myoblasts from oxidant-induced 
apoptosis (64), and miR-21 is a key regulator of extracellular 
signal-related kinase 1/2-STAT3 signaling downstream of 
IL-11 and inhibits the apoptosis of skeletal myoblasts (65). 
Skeletal muscle loss in cancer cachexia is partially associ-
ated with cell apoptosis, and a previous study indicated that 
miR-21 in microvesicles of cancer cachexia triggers muscle 
cell apoptosis via enhancement of c-Jun N-terminal kinase 
activation (66). In acute muscle injury, myogenic progenitor 
cell apoptosis is triggered by miR-351 knockdown (21). MyoD 
is a critical factor in the regulation muscle differentiation; 
MyoD knockout in myoblasts decelerates miR-1 and miR-206 
expression and results in resistance to apoptosis (67). Forced 
MyoD expression in MyoD knockout myoblasts enhances the 
expression of miR-1 and miR-206 and triggers cell apoptosis 
via Pax3 downregulation (67). Thus, it is suggested that 
miRNA is a critical mediator in regulating myoblast apoptosis 
and implicated in muscle atrophic process.
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5. PI3K/Akt/FoxO signaling pathway in miRNA‑mediated 
muscle atrophy

The PI3K/Akt/FoxO signal pathway serves an important role in 
muscle atrophy (Fig. 1). Attenuated activation of the PI3K/Akt 
signaling pathway results in rat skeletal muscle atrophy (13,68). 
Akt inactivation functions as the promoter of burn-induced 
muscle atrophy (69). FoxO is phosphorylated and exported into 
the cytoplasm by the upstream kinase Akt, and cytoplasmic FoxO 
is degraded with loss of transactivation (70). FoxO is additionally 
implicated in promoting muscle atrophy (71). Tumor necrosis 
factor receptor-associated factor 6 promotes starvation-induced 

atrophy in an Akt/FoxO3a-dependent manner (2). FoxO1, the 
dominant mediator of muscle atrophy, serves a critical role in 
chronic kidney disease or burn-induced muscle atrophy (8,72). 
miR-486, the regulator of PTEN, is overexpressed in Duchenne 
muscular dystrophy; and miR-486 transgenic mice exert the 
impairment of muscle regeneration in a PTEN/Akt dependent 
manner (73). In patients with breast patients, miR-486 is 
downregulated, and the expression of its target genes PTEN 
and FoxO1A are elevated (74). Myostatin is well known as a 
negative regulator of muscle mass by reducing protein synthesis. 
Overexpression of miR-486 is observed in skeletal muscle of 
myostatin knockout mice and is essential to maintain skeletal 

Figure 1. Schematic of the involvement of miRs in regulating muscle protein degradation and atrophic gene expression. MuRF1 and MAFbx are critical 
E3 ligases for mediating muscle protein ubiquitin, and ubiquitinated protein is degraded by proteasomes. miR-1, miR-182 and the miR-192/214 cluster 
exert inhibition of protein degradation by targeting MuRF1 and MAFbx. miRNAs are also implicated in the regulation of atrophic gene expression in a 
PI3K/Akt/FoxO-dependent manner. PTEN, the phosphatase of PI3K, is the target of miR-486. Suppressing PTEN expression enhances PI3K/Akt activation 
and promotes FoxO phosphorylation. Phosphorylated FoxO is located in the cytoplasm and is degraded by the proteasome. miR-1 and miR-182 are able to 
repress atrophic gene expression via inhibition of FoxO protein translation. miR, microRNA; MuRF1, muscle RING finger 1; MAFbx, muscle atrophy F‑box; 
PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; FoxO, forkhead box O; PTEN, phosphatase and tensin homolog.

Figure 2. miRs and myogenesis regulation. The transcription factors Pax3/7 are essential for the maintenance of satellite cell proliferation and suppression of 
the myogenic process. Myostatin also functions as the suppressor of myogenesis. miR-1, miR-27, miR-206 and miR-486 are implicated in restriction of Pax3/7 
or myostatin expression, respectively. Myogenic regulator factors, such as MyoD and myogenin, trigger myogenic process and are regulated by miR-26a, 
miR-27a and miR-186. miR-155 and miR-203 also suppress myogenesis by targeting MEF2A/C. miR, microRNA; Pax3/7, paired-box 3/7; MEF2A/C, myocyte 
enhancer factor 2A.
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muscle size through the Akt/mTOR signaling pathway (75). In 
the C2C12 myotube cells, miR-182 was reported to suppress 
FoxO3a protein expression via binding to the 3'-UTR of 
FoxO3a mRNA, and prevent glucocorticoid-induced rat muscle 
atrophy (76). Muscle-specific miR-1 is involved in dephos-
phorylating and activating FoxO3a in an HSP70/Akt dependent 
manner and promotes Dex- or myostatin-induced atrophy 
in skeletal muscle (28). In summary, PI3K/Akt inactivation 
reduces FoxO protein phosphorylation and dephosphorylated 
FoxO enters into the nucleus and promotes muscle atrophy.

6. Conclusion

Aberrant muscle protein degradation, impairment of myogenesis, 
and promotion of muscle cell apoptosis are all important factors 
that contribute to muscle atrophy. miRNAs are critical mediators 
of protein degradation and myogenesis through regulation of the 
ubiquitin-proteasome and PI3K/Akt/FoxO signaling pathways 
and other myogenic regulatory factors. Thus, miRNAs may be 
potential and effective therapeutic targets for muscle atrophy.
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