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Abstract. The present study aimed to investigate the 
molecular mechanisms underlying non‑syndromic cleft lip, 
with or without cleft palate (NSCL/P), and the association 
between this disease and cancer. The GSE42589 data set 
was downloaded from the Gene Expression Omnibus data-
base, and contained seven dental pulp stem cell samples 
from children with NSCL/P in the exfoliation period, and 
six controls. Differentially expressed genes (DEGs) were 
screened using the RankProd method, and their potential 
functions were revealed by pathway enrichment analysis and 
construction of a pathway interaction network. Subsequently, 
cancer genes were obtained from six cancer databases, and 
the cancer‑associated protein‑protein interaction network 
for the DEGs was visualized using Cytoscape. In total, 452 
upregulated and 1,288 downregulated DEGs were screened. 
The upregulated DEGs were significantly enriched in the 
arachidonic acid metabolism pathway, including PTGDS, 
CYP4F2 and PLA2G16; and transforming growth factor 
(TGF)‑β signaling pathway, including SMAD3 and TGFB2. 
The downregulated DEGs were distinctly involved in the path-
ways of DNA replication, including MCM2 and POLA1; cell 
cycle, including CDK1 and STAG1; and viral carcinogenesis, 
including PIK3CA and HIST1H2BF. Furthermore, the path-
ways of cell cycle and viral carcinogenesis, with higher degrees 
of interaction were found to interact with other pathways, 
including DNA replication, transcriptional misregulation in 
cancer, and the TGF‑β signaling pathway. Additionally, TP53, 
CDK1, SMAD3, PIK3R1 and CASP3, with higher degrees, 
interacted with the cancer genes. In conclusion, the DEGs 

for NSCL/P were implicated predominantly in the TGF‑β 
signaling pathway, the cell cycle and in viral carcinogenesis. 
The TP53, CDK1, SMAD3, PIK3R1 and CASP3 genes were 
found to be associated, not only with NSCL/P, but also with 
cancer. These results may contribute to a better understanding 
of the molecular mechanisms of NSCL/P.

Introduction

Non‑syndromic cleft lip, with or without cleft palate (NSCL/P) 
is one of the most common types of congenital defect and 
affects 3.4‑22.9/10,000 individuals worldwide (1). The inter-
action between environmental and genetic factors during 
embryonic development has been identified as the determinant 
pathogeny of NSCL/P (2). 

In previous years, common alleles affecting the suscep-
tibility to this complex disease have been identified using 
genome‑wide association studies (3,4). However, each variant 
has a low incidence in NSCL/P, which introduces difficulty 
in determining the expected heritability for the disease (5). 
There is sufficient evidence that variants in interferon 
regulatory factor 6 (IRF6) have a substantial impact on the 
occurrence of NSCL/P (6). For example, a single nucleotide 
polymorphism (rs642961; G>A) located within an enhancer 
~10 kb upstream of the IRF6 transcription initiation site is 
significantly over‑transmitted in NSCL/P, which can disrupt 
the binding site of transcription factor AP‑2α (7), which is 
a mutation in the autosomal dominant NSCL/P. In addition, 
mutations of MAFB, ABCA4 (8), VAX1 (9), FGFR2 (10) and 
SUMO1 (11), as well as the perturbation of the methionine and 
folate pathways (12), and haplotypes in the Wnt and fibroblast 
growth factor signaling pathway (13) have all been confirmed 
to increase the risk of NSCL/P.

In addition, anomalies in cell migration, proliferation, 
transdifferentiation and apoptosis are considered to be 
closely associated to the occurrence NSCL/P (14,15). These 
events are commonly known to be correlated with cancer. 
Studies have shown that alterations in certain genes, including 
WNT (16), MSX1 (17), BMP (18) and BCL3 (19), which are 
considered to be implicated in carcinogenesis, are also 
involved in NSCL/P (20‑23). In 2013, Kobayashi et al (24) 
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showed that, in NSCL/P dental pulp stem cells, BRCA1 
and RAD51, targeted by the E2F1 transcription factor, 
were dysregulated in the developing embryonic orofacial 
primordial, and are central to lip and palate morphogenesis. 
In addition, cellular defences against DNA damage may be 
involved in determining the susceptibility to NSCL/P, which 
suggests an etiological overlap between this malformation 
and cancer (24). However, this previous study predominantly 
investigated differentially expressed genes (DEGs) associ-
ated with DNA double‑strand break repair and cell cycle 
control in NSCL/P group samples, which is less convincing 
for the hypothesis of an etiological overlap between NSCL/P 
and cancer.

In the present study, the microarray data deposited 
by Kobayashi et al were downloaded to further reveal the 
interplay between the DEGs in NSCL/P samples and cancer 
genes, and to identify the precise nosogenesis of NSCL/P. 
Subsequently, pathway enrichment analysis and pathway 
interaction analysis of the DEGs were performed, and a 
cancer‑associated protein‑protein interaction (PPI) network 
for the DEGs was constructed. The results of these inves-
tigations may assist in elucidating the etiology of NSCL/P, 
and provide more information on the correlation between the 
mechanisms of NSCL/P and cancer.

Materials and methods

Affymetrix microarray data. The gene expression profile data 
of GSE42589 (24) were obtained from the Gene Expression 
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/), based 
on the GPL6244 [HuGene‑1_0‑st] Affymetrix Human 
Gene  1.0  ST Array platform (Affymetrix, Santa Clara, 
CA, USA; http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GPL6244). In total, 13 dental pulp stem cell samples 
were available for further analysis, including seven dental pulp 
stem cell samples collected from children with NSCL/P in 
the exfoliation period, and six controls obtained from healthy 
children in the exfoliation period. This study was approved 
by the Biosciences Institute Research Ethics Committee 
(Protocol 037/2005) at the University of São Paulo (São 
Paulo, Brazil), and all the patients or legal guardians signed 
informed-consent documents (22). All samples were cultured 
in Dulbecco's modified Eagle's medium/Ham's F-12 medium 
(Life Technologies; Thermo Fisher Scientific, Inc., Waltham, 
MA, USA) supplemented with 15% fetal bovine serum 
(HyClone, Logan, UT, USA), 1% non-essential amino acids 
solution (Life Technologies; Thermo Fisher Scientific, Inc.) 
and 1% penicillin-streptomycin solution (Life Technologies; 
Thermo Fisher Scientific, Inc.), in a humidified incubator at 
37˚C and 5% CO2.

CEL files and the probe annotation files were downloaded, 
and the gene expression data of all samples were normalized 
using the Robust Multi‑array Average (25) algorithm of the 
Bioconductor Affy package in R (http://www.bioconductor.
org/packages/release/bioc/html/affy.html) (26).

Screening of DEGs. The RankProd method  (27) in the 
Bioconductor package was used to identify genes, which were 
significantly differentially expressed in the NSCL/P dental 
pulp stem cells. The raw P‑value was adjusted into the false 

discovery rate (FDR) using the Benjamin and Hochberg 
method (28), and only the genes within the cut‑off criteria of 
|log2 fold change| >1 and FDR<0.05 were selected as DEGs.

Pathway enrichment analysis. To identify the significant 
metabolic pathways for the DEGs, the screened DEGs were 
submitted to the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (http://www.genome.jp/kegg/kegg1.html) 
for pathway enrichment analysis (29). An FDR <0.1 was used 
as the cut‑off criterion.

Pathway interaction analysis. Pathway interactions were 
analyzed based on the association between the DEGs in the 
pathways, which was determined from the protein‑protein 
interaction (PPI) network for the DEGs, obtained from the 
human protein reference database (http://www.hprd.org/) (30). 
The pathway interaction network was visualized using 
Cytoscape (http://cytoscape.org/) (31).

Construction of the cancer‑associated PPI network. Cancer 
genes were obtained from the a database of Functional 
Census of Human Cancer Genes (http://210.46.85.180:8080/
fcensus/) (32), which provides multiple dimension informa-
tion for cancer genes, including cancer type, cancer gene 
type, mutation type and mutation frequency, calculated from 
high‑throughput mutational screens of cancer genomes. The 
R package was used to obtain the interactions between the 
DEGs and cancer genes. The five DEGs exhibiting the highest 
degree were selected to construct the PPI network, and the 
network was visualized using Cytoscape.

Results

Identification of DEGs. Based on the cut‑off criteria used for 
determination of the DEGs, a total of 1,740 DEGs were identi-
fied in the NSCL/P samples, including 452 upregulated DEGs 
and 1,288 downregulated DEGs.

Pathway enrichment analysis of the upregulated and down‑
regulated DEGs. The upregulated DEGs were significantly 
enriched in three pathways: Seven DEGs, including TGFB2, 
TGFB3 and VCAM1, were enriched in the hsa05144 malaria 
pathway (FDR=6.27E‑02); seven DEGs, including PTGDS, 
PTGIS, CYP4F2, PTGES and PLA2G16 were enriched 
in the hsa00590 arachidonic acid metabolism pathway 
(FDR=9.75E‑02); and eight DEGs, including ID2, ID4, 
SMAD3 and TGFB2, were involved in the hsa04350 TGF‑β 
signaling pathway (FDR=9.75E‑02; Table I).

The downregulated DEGs were significantly enriched 
in 17 pathways. DEGs, including MCM2, MCM4, PRIM1, 
POLA1 and POLA2 were enriched in the pathway of 
hsa03030 DNA replication (FDR=7.58E‑10); DEGs, including 
UTP6, GTPBP4 and GNL3 were correlated with hsa03008 
ribosome biogenesis in eukaryotes (FDR=9.07E‑06); DEGs 
including RAD51 and TOP3A, were associated with hsa03440 
homologous recombination (FDR=1.78E‑05); DEGs, 
including CDC6, MCM2, CDK1, STAG1 and ANAPC10, were 
implicated in hsa04110 cell cycle (FDR=1.75E‑04); DEGs, 
including PIK3R1, CASP3, HIST1H2BL and HIST1H2BF, 
were enriched in the hsa05203 viral carcinogenesis pathway 
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(FDR=2.12E‑03); and DEGs, including POLA1, PNP and 
PRIM1, were implicated in hsa00240 pyrimidine metabolism 
(FDR=4.79E‑03; Table I).

Pathway interaction analysis. In the pathway interaction 
network, the pathways of the hsa04110 cell cycle and hsa05203 
viral carcinogenesis had the highest degrees of interaction, 
and interacted with other pathways, including hsa03030 DNA 
replication, hsa03008 ribosome biogenesis in eukaryotes, 
hsa00590 arachidonic acid metabolism, hsa00240 pyrimidine 
metabolism, and hsa03018 RNA degradation. In addition, 
the hsa04110 cell cycle pathway was found to interacted with 
the pathways of hsa05203 viral carcinogenesis and hsa04350 
TGF‑β signaling pathway (Fig. 1).

Analysis of the cancer‑associated PPI network. In total, 
2,617  interaction pairs of DEGs and cancer genes were 
screened in the present study. The five DEGs with the highest 
degree were TP53, SMAD3, PIK3R1, CASP3 and CDK1, and 
their degrees were 104, 75, 67, 60 and 54, respectively.

With the exception of CASP3, the four residual genes (TP53, 
SMAD3, PIK3R1 and CDK1) were not only DEGs of NSCL/P, 
but were also identified as cancer genes. In the PPI network, 
TP53 was directly associated with E2F1, GNL3, PRIM1, PNP 
and POLA1; CDK1 was associated with E2F1, MCM4 and 

POLA1; CASP3 was directly associated with MLH1, BLM, 
BRCA1 and RAD51, as well as TP53 and PIK3R1. SMAD3, and 
TP53, were associated to certain cancer genes, including TP73, 
IL16, MAPK1, MAPK9 and CDK2; and SMAD3 was found to 
interact with ANAPC10 (Fig. 2).

Discussion

In the present study, 452 DEGs were identified to be signifi-
cantly upregulated and 1,288 were found to be downregulated 
in the NSCL/P samples. According to the analysis of the 
cancer‑associated PPI network, the five DEGs with the highest 
degrees were TP53, SMAD3, PIK3R1, CASP3 and CDK1. 
Among these, TP53, SMAD3, PIK3R1 and CDK1 were not 
only DEGs for NSCL/P, but were also associated with cancer.

TP53, encoding the p53 protein, acts as a tumor suppressor, 
and its loss of function is a precondition for almost all types of 
cancer (33). The effector functions of p53 range from arresting 
the cell cycle to inducing more substantial events, including 
senescence or apoptosis (34). A previous study demonstrated 
that the transcription factor p63, a homologue of p53, can 
transactivate IRF6 by binding to an upstream enhancer 
element, whose genetic variation is associated with increased 
susceptibility to cleft lip  (35). It is also possible that p63 
may be an important upstream regulator of desmosomal cell 

Figure 1. Pathway interaction network for the upregulated and downregulated DEGs. The size of the nodes indicates the number of pathway interactions. 
DEGs, differentially expressed genes; TGF‑β, transforming growth factor‑β.
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adhesion, which may contribute to the skin fragility observed 
in patients with cleft lip and palate (36). In addition, the L514F 
mutation in the sterile α‑motif region of p63 can interrupt the 
binding of p63 to the RNA‑processing protein, ABBP1, which 
leads to aberrant splicing of the keratinocyte growth factor 
receptor and inhibition of epithelial differentiation (37). The 
present study observed that TP53 was directly associated with 
GNL3, PRIM1, PNP and POLA1. GNL3, encoding guanine 
nucleotide binding protein‑like 3, was enriched in the pathway 
of ribosome biogenesis in eukaryotes; PRIM1, encoding poly-
peptide 1 of DNA primase; PNP, encoding purine nucleoside 
phosphorylase; and POLA1, encoding the catalytic subunit of 
DNA polymerase, were enriched in the pathway of pyrimi-
dine metabolism. PRIM1 and POLA1 were also associated 
with DNA replication. These pathways were all involved in 
the process of cell proliferation Normal palate and orofacial 
morphogenesis requires mesenchymal cell proliferation and 
differentiation, and inhibiting the progression of cell cycle 

between the G1 and S phases in human embryonic palatal 
mesenchymal cells may induce cleft palate (38). Thus, TP53 
may be key in NSCL/P by modulating ribosome biogenesis, 
pyrimidine metabolism and DNA replication via interactions 
with GNL3, PRIM1, PNP and POLA1.

In addition, CDK1 was found to interact with POLA1, 
as well as MCM4, which were enriched in DNA replica-
tion. CDK1 encodes cyclin‑dependent kinase 1, a catalytic 
subunit of M‑phase promoting factor, which is crucial for 
G1/S and G2/M phase transitions in eukaryotic cell cycle (39). 
In addition, CDK1 and TP53 were observed to be associ-
ated with E2F1. E2F1, a master regulator of cell cycle, can 
promote the G1/S transition, transactivating a variety of genes 
involved in chromosomal DNA replication, including its own 
promoter (40). Increased E2F1 activity can promote tumori-
genesis  (41). A previous study reported that E2F1 may be 
involved during murine palatogenesis (42). The present study 
also observed that the pathway of the cell cycle interacted with 

Figure 2. Cancer‑associated PPI network for the five DEGs with the highest degree. Yellow nodes represent the DEGs in both NSCL/P and cancer; red 
nodes represent the DEGs only in NSCL/P; blue nodes represent the cancer genes. The size of the nodes indicate the degree of interaction of the DEGs; PPI, 
protein‑protein interaction; DEGs, differentially expressed genes; NSCL/P, non‑syndromic cleft lip, with or without cleft palate.
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the pathway of viral carcinogenesis, and PIK3R1 and CASP3 
were enriched in viral carcinogenesis. PIK3R1, encoding 
the p85α regulatory subunit of phosphoinositide‑3‑kinase is 
known to be associated with a series of cellular processes 
associated with malignant behavior, including proliferation, 
adherence, transformation and survival (43). A PIK3R1 mutant 
has been identified in glioblastoma, ovarian cancer and colon 
cancer (44,45). In addition, CASP3, encoding a member of 
the cysteine‑aspartic acid protease (caspase) family, is impor-
tant in the extrinsic and intrinsic apoptotic pathways (46). A 
previous study suggested that increased expression of CASP3 
is associated with tumors of the mouth (47). Thereby, CDK1, 
together with POLA1, MCM4, E2F1, PIK3R1 and CASP3 may 
not only be critical in the development of NSCL/P, but also in 
cancer.

SMAD3, a member of the SMAD family, was enriched 
in the TGF‑β signaling pathway. SMAD family members are 
essential intracellular signaling components of the TGF‑β 
superfamily  (48). TGF‑β is a cytokine, which controls the 
proliferation, differentiation, migration and apoptosis of 
several different cell types, and is important in mediating 
epithelial‑mesenchymal transformation during the normal 
fusion of the lip and palate (49,50). It has been confirmed that 
TGF‑β3 can promote fetal cleft lip repair and fusion in mouse 
fetuses by increasing the availability of mesenchymal cells or 
inducing expression of cyclin D1 (49). Also, TGF‑β can promote 
tumor cell proliferation by stimulating the production of auto-
crine mitogenic factors, such as platelet‑derived growth factor 
B (51). TGF‑β can contribute to tumor invasion by inducing 
eithelial‑mesenchymal transition (52). TGF‑β can also enhance 
cell motility by cooperating with ERBB2, which is observed 
to be overexpressed in breast cancer cells  (53). In addition, 
TGF‑β can suppress immunity in patients with human glioma 
via decreasing the expression of the activating immunoreceptor, 
NKG2D, in CD8+ T cells and natural killer cells, and repressing 
the expression of the NKG2D ligand, MICA (54). In the present 
study, SMAD3 was found to interact with ANAPC10, which was 
enriched in the pathway of cell cycle. Thereby, SMAD3 may be 
an important gene in the development of NSCL/P and cancer.

In conclusion, 452 upregulated and 1,288 downregulated 
DEGs were identified in the present study. Five important 
DEGs, including TP53, CDK1 and SMAD3, may be associ-
ated with both NSCL/P and cancer. These results suggested 
correlation between the pathogenesis of NSCL/P and cancer, 
which may provide novel information for the clinical diagnosis 
of NSCL/P.
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