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Abstract. Ultraviolet (UV) radiation is considered to be a 
potent cell‑damaging agent in various cell lineages; however, 
the effect of UV light‑emitting diode (LED) irradiation on 
human cells remains unclear. The aim of the present study 
was to examine the effect of UV LED irradiation emitting 
at 280 nm on cultured HL‑60 human leukemia cells, and to 
explore the underlying mechanisms. HL‑60 cells were irradi-
ated with UV LED (8, 15, 30 and 60 J/m2) and incubated for 2 h 
after irradiation. The rates of cell proliferation and apoptosis, 
the cell cycle profiles and the mRNA expression of B‑cell 
lymphoma 2 (Bcl‑2) were detected using cell counting kit‑8, 
multicaspase assays, propidium iodide staining and reverse 
transcription‑quantitative polymerase chain reaction, respec-
tively. The results showed that UV LED irradiation (8‑60 J/m2) 
inhibited the proliferation of HL‑60 cells in a dose‑dependent 
manner. UV LED at 8‑30 J/m2 induced dose‑dependent apop-
tosis and G0/G1 cell cycle arrest, and inhibited the expression 
of Bcl‑2 mRNA, while UV LED at 60 J/m2 induced necrosis. 
In conclusion, 280 nm UV LED irradiation inhibits prolif-
eration and induces apoptosis and necrosis in cultured HL‑60 
cells. In addition, the cell cycle arrest at the G0/G1 phase and 
the downregulation of Bcl‑2 mRNA expression were shown to 
be involved in UV LED‑induced apoptosis.

Introduction

Ultraviolet (UV) radiation is considered a potent agent for the 
induction of cell death (1). It has been reported that short periods 
of UVB irradiation trigger apoptosis, whereas prolonged expo-
sure induces necrosis in various cell lines, including HL‑60 
cell lines, in vitro  (2). UV‑induced apoptosis is principally 
attributed to DNA damage, death receptor activation and reac-
tive oxygen species (ROS) generation. These initiate multiple 
signaling pathways, which result in tumor suppressor gene p53 
activation, regulation of Bcl‑2 family members and mitochon-
drial cytochrome c release (3‑6).

Traditional UV lamps have gained popularity in curing 
and disinfection applications for decades; however, due to 
high energy demand and toxicity of mercury, other sources 
of UV light are receiving more interest (7). Over the past 
few decades, UV light‑emitting diodes (LEDs) have received 
considerable attention as an alternative UV source, due 
to a number of advantages over the traditional UV lamps, 
including the absence of mercury, high energy efficiency, 
increased operational flexibility and lifetime, and the absence 
of the requirement of a warm‑up period (8,9). UV LEDs have 
consequently been recommended to replace traditional UV 
lamps for numerous applications, such as sterilization, water 
purification and medical treatment, including medical photo-
therapy for plaque‑type psoriasis (10,11); however, the effect of 
UV LED irradiation on human cells remains poorly‑defined. 
In the present study, the effect of 280 nm UV LED irradiation 
on cultured HL‑60 human leukemia cells and the underlying 
mechanisms were examined.

Materials and methods

Cell culture. HL‑60 cells were obtained from the American 
Type Culture Collection (Manassas, VA, USA) and cultured 
in Iscove's modified Dulbecco's medium (Hyclone, Logan, UT, 
USA) supplemented with 10% fetal bovine serum (Hyclone) in a 
humidified incubator with 5% CO2 at 37˚C. Cells were passaged 
three times weekly, and exponentially growing cells were used 
for the experiments. All experiments were performed in tripli-
cate and repeated three times.
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Cell morphology. HL‑60 cells were planted in a 24‑well plate 
at a density of 1x106 cells/well. Once cells settled to an even 
monolayer, they were irradiated with UV LED at 0, 8, 15, 30 and 
60 J/m2, and incubated for 2 h at 37˚C in humidified air with 5% 
CO2. Cell morphology was observed using inverted microscopy 
(CKX41; Olympus Corporation, Tokyo, Japan) to identify the 
biological characteristics of HL‑60 cells.

Cell proliferation assay. HL‑60 cells were planted in a 96‑well 
plate at a density of 4x104 cells/well. After cells had settled to an 
even monolayer, they were irradiated with UV LED at 0, 8, 15, 
30 and 60 J/m2 and maintained in the CO2 incubator for 2 h after 
irradiation. All samples were co‑cultured with cell counting 
kit‑8 (CCK‑8) solution (Dojindo Molecular Technologies, Inc., 
Kyushu, Japan) for 3 h before the optical density (OD) was 
measured at a wavelength of 450 nm using a microplate reader 
(Multiskan FC; Thermo Fisher Scientific Inc., Waltham, MA, 
USA). The cell viability was calculated using the following 
formula: Cell viability (%) = OD 450Test/OD 450Control x 100.

Flow cytometric analysis for the detection of cell death. 
HL‑60 cell death was detected by flow cytometry (FC 500 
MPL; Beckman Coulter Inc., Fullerton, CA, USA) using 
multicaspase assay kits (Guava Technologies, Burlingame, 
CA, USA). HL‑60 cells were planted in a 24‑well plate at a 
density of 1x106 cells/well and irradiated with UV LED at 0, 
8, 15, 30 and 60 J/m2. Following incubation for 2 h at 37˚C, 
the cells were harvested, washed with phosphate‑buffered 
saline (PBS) and stained with sulforhodamine‑valyl 
‑alanyl‑aspartyl‑fluoromethyl‑ketone (SR‑VAD‑FMK) and 
7‑amino‑actinomycin  D (7‑AAD), according to the manu-
facturer's protocol. SR‑VAD‑FMK is a caspase inhibitor that 
covalently binds to multiple active caspases during apoptosis, 
and 7‑AAD is a nucleotide stain that only stains cells when 
membrane integrity is compromised. A total of 5x103 cells per 

analysis were examined using flow cytometry. Unstained cells, 
cells stained with SR‑VAD‑FMK alone and cells stained with 
7‑AAD alone were used as controls to set up compensation and 
quadrants. SR‑VAD‑FMK positive/7‑AAD negative cells (early 
apoptosis) and double positive cells (late apoptosis) were consid-
ered as the apoptotic cell population, while SR‑VAD‑FMK 
negative/7‑AAD positive cells as the necrotic cell population.

Cell cycle analysis. HL‑60 cells were plated in a 24‑well plate at 
a density of 1x106 cells/well and exposed to UV LED irradiation 
at 0, 8, 15 and 30 J/m2. Following incubation for 2 h, cells were 
harvested and resuspended in PBS and fixed in 70% ethanol at 
4˚C overnight. They were then washed twice in cold PBS and 
incubated with propidium iodide staining solution (Beyotime 
Institute of Biotechnology, Haimen, China) for 30 min at room 
temperature. The percentage of cells at various phases of the cell 
cycle, namely the G0/G1, S and G2/M phases, were determined 
by flow cytometric analysis of 1x105 cells.

Figure 1. Morphological characteristics of cultured HL‑60 cells. HL‑60 cells were irradiated with (A) 0, (B) 8, (C) 15, (D) 30 and (E) 60 J/m2 ultraviolet 
light‑emitting diode irradiation and incubated for 2 h. Magnification, x200.

Figure 2. Ultraviolet light‑emitting diode irradiation inhibits the prolif-
eration of HL‑60 cells in a dose‑dependent manner. P<0.05 for all pairwise 
comparisons.
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Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). HL‑60 cells were plated in a 24‑well plate at a 
density of 1x106 cells/well and exposed to UV LED irradiation 
(0, 8, 15 and 30 J/m2). Following incubation for 2 h, total RNA 
was extracted from cells using RNAiso Plus (Takara Bio, Inc., 
Shiga, Japan), according to the manufacturer's protocol, and 
quantified by OD 260/280 ratio using a NanoDrop 2000C spec-
trophotometer (Thermo Fisher Scientific Inc., Wilmington, DE, 
USA). Approximately 1 µg total RNA was reverse transcribed 
into cDNA in a total volume of 20 µl using PrimeScriptTM RT 
reagent kit with gDNA Eraser (Takara Bio, Inc.). The final 20 µl 
PCR reaction mixture consisted of 10 µl of 2X SYBR Premix 
Ex Taq (Takara Bio, Inc.), 0.8 µl PCR Forward Primer (10 µM), 
0.8 µl PCR Reverse Primer (10 µM), 2.0 µl template (≤100 ng) 
and 6.4 µl sterile distilled water. RT‑qPCR was performed in 
a Rotor‑Gene RG‑3000 cycler (Qiagen Pty, Ltd., Melbourne, 
Australia) under the following conditions: 1 Cycle at 95˚C 
for 30 sec, 40 cycles at 95˚C for 5 sec and 60˚C for 20 sec. 
Glyceraldehyde 3‑phosphate dehydrogenase (GAPDH) was 
used as an internal control. The relative mRNA expression of 
Bcl‑2 was calculated by comparing their Cq values with those 
of GAPDH using the 2‑ΔΔCq method (12). Statistical analysis 
of Bcl‑2 mRNA expression was performed using one‑way 
analysis of variance (ANOVA), followed by the Bonferroni 
correction for multiple pairwise comparisons. The primer 
sequences used were as follows: Forward, 5'‑GTC​CCA​TCA​
AAA​CTC​CTG​TCTT‑3' and reverse, 5'‑TTT​CCA​TCC​GTC​
TGC​TCTTC‑3' for Bcl‑2; and forward, 5'‑TCA​TGG​GTG​TGA​
ACC​ATG​AGAA‑3' and reverse, 5'‑GGC​ATG​GAC​TGT​GGT​

CAT​GAG‑3' for GAPDH (Sangon Biotech Shanghai Co., Ltd., 
Shanghai, China).

Statistical analysis. Statistical analysis was conducted 
using SPSS  17.0 software (SPSS, Inc., Chicago, IL, 
USA). Comparisons among groups were performed using 
one‑way ANOVA, followed by the Bonferroni correction 
for multiple pairwise comparisons. Data are presented as 
the mean  ±  standard deviation. P<0.05 was considered  
to indicate a statistically significant difference.

Results

Cell morphology. Cell morphology was observed by micros-
copy to identify the biological characteristics of HL‑60 cells. 
The control cells had a smooth membrane and were round and 
translucent, arranged in an orderly manner, while the cells 
treated with UV LED (Qingdao Ziyuan Photoelectronic Co., 
Ltd., Qingdao, China) were found to be deformed and disor-
dered. In addition, the transmittance and density decreased as 
the dose of UV LED increased. When the dose increased to 
60 J/m2, swollen cells and cell debris were clearly observed in 
the medium (Fig. 1).

UV LED irradiation inhibits the proliferation of HL‑60 cells. 
The CCK‑8 assay showed that, compared with the control 
group, various doses of UV LED irradiation (8‑60  J/m2) 
inhibited the proliferation of HL‑60 cells in a dose‑dependent 
manner (Fig. 2).

Figure 3. UV LED irradiation induces apoptotic and necrotic death in HL‑60 cells. HL‑60 cells were irradiated with (A) 0, (B) 8, (C) 15, (D) 30 and (E) 60 J/m2 
and incubated for 2 h. The four quadrants show the following: Lower left, viable cells; lower right, early apoptotic cells; upper right, late apoptotic cells; 
upper left, necrotic cells. (F) Percentage of apoptotic and necrotic HL‑60 cells exposed to UV LED irradiation. P<0.01 for multiple pairwise comparisons of 
apoptotic rate within the range of 0‑30 J/m2. *P<0.01 vs. 30 and 60 J/m2; **P<0.01 vs. 0, 8, 15 and 30 J/m2. UV LED, ultraviolet light‑emitting diode irradiation. 
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UV LED irradiation induces apoptotic and necrotic death of 
HL‑60 cells. To understand the mechanism of the anti‑prolif-
erative effects of UV LED irradiation on HL‑60 cells, flow 
cytometric analysis was performed using SR‑VAD‑FMK/7‑AAD 
double staining (Guava Technologies). The apoptotic cell ratios 
gradually increased with the increase in dose (from 8 to 30 J/m2), 
indicating that UV LED at 8‑30 J/m2 could induce apoptosis in 
a dose‑dependent manner. However, when cells were exposed 
to 60 J/m2 UV LED irradiation, the necrotic cell ratio markedly 
increased, which demonstrated that UV LED at 60 J/m2 princi-
pally induced necrosis rather than apoptosis (Fig. 3).

UV LED irradiation induces cell cycle arrest of HL‑60 cells. 
In an attempt to elucidate the mechanism underlying the induc-
tion of apoptosis by UV LED irradiation, cell cycle analysis was 
performed using flow cytometry. The percentages of HL‑60 cells 
in the G0/G1 phase were 27.18, 30.74, 38.23 and 54.72% when 
cells were subjected to 0, 8, 5 and 30 J/m2 UV LED irradiation, 

respectively. A dose‑dependent increase was observed in the 
percentage of G0/G1 cells at 8‑30 J/m2, indicating that UV LED 
irradiation was capable of inducing cell cycle arrest at the G0/G1 
phase (Fig. 4).

UV LED irradiation inhibits the mRNA expression of Bcl‑2. 
In order to further examine the induction of apoptosis the 
mRNA expression of Bcl‑2 was detected by RT‑qPCR. The 
results showed a decrease in the mRNA expression of Bcl‑2 
at 8‑30 J/m2, suggesting that UV LED irradiation was able to 
downregulate the mRNA expression of Bcl‑2 (Fig. 5).

Discussion

UV radiation has been confirmed to induce apoptosis through 
two biochemically and morphologically distinct processes, 
apoptosis and necrosis (2). Morphological features and chro-
matin changes show that various cell lines undergo apoptosis 
following low doses of UVB irradiation, whereas prolonged 
exposure induces necrosis  (1). UV‑induced apoptosis is a 
complex event that involves multiple pathways. UV radiation 
primarily induces DNA damage via the formation of ROS and 
DNA photoproducts, predominantly cyclobutane pyrimidine 
dimers and pyrimidine‑pyrimidone photoproducts, that effec-
tively block replication and transcription mechanisms (4‑6,13). 
This results in p53 activation which either arrests the cell cycle 
to enable DNA repair or triggers apoptosis (4,14‑17). Although 
DNA damage appears to be the main cause of the induction 
of apoptosis (18,19), it has been reported that UV radiation 
can either directly trigger clustering of death receptors in a 
ligand‑independent manner, or induce the release of their 
natural ligands (20,21). Furthermore, UV‑induced ROS are 
able to directly cause early cytochrome c release due to the 
mitochondrial membrane alterations, contributing indepen-
dently to the induction of apoptosis (22).

Figure 4. Cell cycle analysis of HL‑60 cells determined by flow cytometry. HL‑60 cells were irradiated with (A) 0, (B) 8, (C) 15 and (D) 30 J/m2, and incubated 
for 2 h. The percentages of HL‑60 cells in the G0/G1 phase were 27.18, 30.74, 38.23 and 54.72%, respectively. (E) UV LED irradiation induces dose‑dependent 
G0/G1 arrest of HL‑60 cells. P<0.05 for multiple pairwise comparisons. 

Figure 5. UV LED irradiation induces dose‑dependent inhibition of the 
mRNA expression of Bcl‑2. The relative mRNA expression of Bcl‑2 was 
compared with that of untreated cells (taken as 1). *P<0.01 vs. the control 
group. UV LED, ultraviolet light‑emitting diode irradiation.
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UV LEDs have become a viable option for the replacement 
of conventional mercury lamps for water disinfection (10). 
Despite the fact that UV LEDs are efficient in the destruc-
tion of microorganisms, the effect of UV LED irradiation on 
human cells remains to be elucidated. In the present study, 
it was found that 280 nm UV LED irradiation inhibited the 
proliferation of HL‑60 cells in vitro. UV LED irradiation at 
doses between 8‑30 J/m2 was found to induce dose‑dependent 
apoptosis. However, a higher dose of UV  LED (60  J/m2) 
was found to induce necrosis, indicating the toxic effect of 
UV LED irradiation at a high dose.

In response to UV‑mediated DNA damage, the cell cycle 
is arrested and repair mechanisms, such as nucleotide exci-
sion repair, are activated (23). The presence of checkpoints 
allows cells to accomplish DNA repair prior to DNA synthesis 
or mitosis, thus reducing the incidence of DNA mutations; 
however, if DNA damage is extensive and irreparable, proapop-
totic genes are targeted by p53 to initiate mitochondrial‑ and 
death receptor‑mediated apoptotic pathways, which ultimately 
activate a cascade of caspases to execute apoptosis (24). The 
present results showed that HL‑60 cells underwent apoptosis 
and G0/G1 arrest when they were subjected to 8‑30  J/m2 
UV LED irradiation, indicating that apoptosis occurred when 
the cell entered the G1/S checkpoint with damaged DNA.

Bcl‑2 serves an important role in the maintenance of mito-
chondrial membrane potential and calcium homeostasis, in the 
blockage of Bax and Bak activation, and in ROS generation, 
thus it acts as an antiapoptotic gene (25‑27). In the present 
study, UV LED irradiation at 8‑30 J/m2 induced apoptosis 
and inhibited the mRNA expression of Bcl-2. This suggested 
that the proapoptotic effect of UV LED irradiation on HL‑60 
cells was associated with the downregulation of Bcl‑2 mRNA 
expression.

In conclusion, 280 nm UV LED irradiation inhibits prolif-
eration and induces apoptosis and necrosis in cultured HL‑60 
human leukemia cells. G0/G1 cell cycle arrest and down-
regulation of the mRNA expression of Bcl‑2 are mechanisms 
partially responsible for the occurrence of apoptosis. Further 
research on other mechanisms is required in order to increase 
understanding of the interplay between different apoptotic 
pathways. This may provide an alternative way to enhance the 
killing effect on tumor cells.
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