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Abstract. The present study aimed to screen for potential 
genes and subnetworks associated with pancreatic cancer 
(PC) using the gene expression profile. The expression profile 
GSE 16515 was downloaded from the Gene Expression 
Omnibus database, which included 36 PC tissue samples and 
16 normal samples. Limma package in R language was used 
to screen differentially expressed genes (DEGs), which were 
grouped as up‑ and downregulated genes. Then, PFSNet was 
applied to perform subnetwork analysis for all the DEGs. 
Moreover, Gene Ontology (GO) and REACTOME pathway 
enrichment analysis of up- and downregulated genes was 
performed, followed by protein-protein interaction (PPI) 
network construction using Search Tool for the Retrieval of 
Interacting Genes Search Tool for the Retrieval of Interacting 
Genes. In total, 1,989 DEGs including 1,461 up‑ and 528 down-
regulated genes were screened out. Subnetworks including 
pancreatic cancer in PC tissue samples and intercellular adhe-
sion in normal samples were identified, respectively. A total of 
8 significant REACTOME pathways for upregulated DEGs, 
such as hemostasis and cell cycle, mitotic were identified. 
Moreover, 4 significant REACTOME pathways for downregu-
lated DEGs, including regulation of β-cell development and 
transmembrane transport of small molecules were screened 
out. Additionally, DEGs with high connectivity degrees, such 
as CCNA2 (cyclin A2) and PBK (PDZ binding kinase), of 
the module in the protein-protein interaction network were 
mainly enriched with cell‑division cycle. CCNA2 and PBK of 
the module and their relative pathway cell-division cycle, and 
two subnetworks (pancreatic cancer and intercellular adhesion 
subnetworks) may be pivotal for further understanding of the 
molecular mechanism of PC.

Introduction

Pancreatic cancer (PC), a digestive system tumor, is one of 
the most aggressive types of cancer. With a high degree of 
malignancy, rapid progression and poor prognosis, the 1- and 
5-year survival rates of patients with PC are only 8 and 3%, 
respectively (1). American Cancer Society statistics reported 
that there were an estimated 36,800 related fatalities and 
43,140 new cases of PC in 2010. PC remains the fourth leading 
cause of cancer-related mortality in the United States, despite 
advances in detection, chemotherapy and surgery (2). In 
developing countries, for example, in China, the incidence of 
PC has also been markedly increasing during the past several 
decades, and PC has been ranked the sixth leading cause of 
death from malignant disease (3).

The inability to detect PC in its early treatable stage may 
be the critical factor contributing to high mortality. PC is char-
acterized by the lack of notable clinical symptoms and patients 
often present with symptoms, such as back pain, weight loss, 
and digestive problems (4). As many as 80% of newly diag-
nosed patients with PC are already in the metastatic stage of 
the disease, which limits the potential for therapeutic inter-
vention (5). At this stage, several epigenetic as well as genetic 
changes have taken place and result in the silencing of tumor 
suppressors and overexpression of oncogenes, ultimately 
leading to tumor progression (6). In recent years, important 
advances have been made to understand the molecular biology 
of PC and genetic analyses have verified that the basis of this 
malignant disease is heterogenous and complex (7). The occur-
rence and pathogenesis of PC, however, is not yet completely 
understood.

Similar to the majority of tumors, the development and 
growth of PC is a multistep process including initiation, 
progression, invasion and ultimately metastasis. Each step in 
this process is considered to be driven by the accumulation of 
genetic alterations (8). Numerous studies involving PC have 
been conducted in order to identify cancer-causing genes 
over the past decade, and as a result several cancer-related 
genes have been identified (9,10). For instance, DPC4, which 
encodes SMAD family member 4 (SMAD4), is found to be 
inactivated in ~50% of all PCs (11). KRAS, an oncogene which 
is associated with cell survival, proliferation and differentia-
tion, has been identified in >90% of patients with PC, with the 
majority of these being point mutations at codon 12. In addi-
tion, it has been demonstrated that the detection of the KRAS 
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mutation may be useful in identifying patients at high risk for 
developing PC (12). The identification and characterization of 
cancer-associated genes have increased the understanding of 
PC development. However, the survival rate has not improved 
as much in the past years due to the lack of early diagnosis 
and effective chemotherapeutic treatments. Therefore, iden-
tification of genes associated with the development of PC is 
required.

To test the hypothesis that the FK506‑binding protein 51 
(FKBP51) may function as a tumor suppressor, Pei et al (13) 
performed microarray analysis and submitted the expression 
profile, including 36 pancreatic cancer tissue samples and 16 
normal samples, to the Gene Expression Omnibus database 
(GEO). This previous study was predominantly focused on 
the functional mechanism of the single gene FKBP51. Based 
on the gene expression profile submitted by Pei et al (13) 
and bioinformatics methods, differentially expressed genes 
(DEGs) between PC tissue samples and normal samples were 
determined in the present study. Furthermore, functional 
annotation of DEGs was conducted, followed by the construc-
tion of the protein‑protein interaction (PPI) network. This 
study aimed to increase the understanding of the mechanism 
underlying PC development.

Materials and methods

Affymetrix microarray data. The expression profiles were 
accessible at the National Center of Biotechnology Information 
(NCBI) Gene Expression Omnibus database (http://www.ncbi.
nlm.nih.gov/geo) using the series accession number GSE16515, 
which was deposited by Pei et al (13). This data set was based 
on the GPL570 platform of [Affymetrix Human Genome U133 
Plus 2.0 Array (HG‑U133_Plus_2); Affymetrix, Santa Clara, 
CA, USA] and updated on Aug 22, 2014. A total of 52 chips 
were divided into 2 groups: PC tissue samples (T-group, n=36) 
and normal samples (N‑group, n=16).

Data processing and DEG identification. The probe-level 
data were firstly transformed into gene expression data. Then 
background corrections and quartile data normalization were 
conducted using the robust multiarray average (RMA) in 
the affy package (Fred Hutchinson Cancer Research Center, 
Seattle, WA, USA) with default parameters (14).

To screen DEGs between the T-group and N-group, the 
Limma package (Linear Models for Microarray Data) in 
R language was used (15). The raw P‑value was adjusted to 
the false discovery rate based on the Benjamini‑Hochberg 
approach (16,17) using the Limma package (version 3.22.1; 
Fred Hutchinson Cancer Research Center). DEGs were 
identified with the cutoff value of FDR<0.05 and |log (fold 
change)|>1 (18,19).

Subnetwork analysis. Paired Fuzzy SNet (PFSNet) (20) is a 
powerful method to identify smaller parts of pathways termed 
subnetworks. Comparison with previously published methods 
shows that significant subnetworks (and the genes therein) 
identified by PFSNet are up to 51% (64%) more consistent 
across independent datasets of the same disease phenotypes, 
even for datasets based on different platforms (20). In order 
to obtain the genes and subnetworks that may be associated 

with the biological characteristics of a sample, PFSNet was 
used in this study to analyze the subnetworks of the genes 
from the T-group as well as the N-group based on pathways 
from PathwayAPI (21), which integrated Wikipathways (22), 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (23) 
and Ingenuity (24). Steps were conducted as follows: i) The 
pathways were divided into several subnetworks according to 
the genes with high expression level; ii) the subnetwork of each 
group was scored as 1 or 2, based on the equation as previ-
ously described (20); iii) the difference of scores in each group 
was evaluated by t‑test and the subnetworks with significantly 
different scores were screened out. Parameters in the PFSNet 
were set as b=0.5, t1=0.95, and t2=0.8.

Gene ontology (GO) function annotation and pathway enrich‑
ment analysis. The Database for Annotation Visualization and 
Integrated Discovery (DAVID) provides a comprehensive set 
of functional annotation tools to determined the biological 
meaning of a large list of genes (25). DAVID was used for GO 
function annotation and REACTOME pathway enrichment 
analysis of the up‑ and downregulated genes, respectively. 
P<0.05 was selected as the cut‑off criterion.

PPI network construction. Search Tool for the Retrieval of 
Interacting Genes (STRING, http://string‑db.org/) is an online 
database which includes experimental as well as predicted 
interaction information and comprises >1,100 completely 
sequenced organisms (26). The protein interactions in the 
STRING database were shown with a confidence score. To 
identify the interactive associations between the target genes 
and other genes, the up- and downregulated genes between the 
T-group and N-group were inputted into STRING and protein 
pairs with a confidence score ≥0.7 were considered to be 
significant. Cytoscape (National Institute of General Medical 
Sciences of the National Institutes of Health, Bethesda, MD, 
USA) was performed to visualize the PPI network.

The PPI network was complicated; thus, further analysis 
was required to expose the enriched functional modules of the 
PPI network using ClusterONE (Clustering with overlapping 
neighborhood expansion) in Cytoscape (27). Then DAVID was 
used to annotate the function of genes in each module.

Results

DEG identification. After data preprocessing, the normalized 
expression profile data were analyzed using Limma package 
in R language. With FDR<0.05 and |log (fold change)|>1, 
1,989 DEGs including 1,461 up‑ and 528 downregulated genes, 
were screened out in the T‑group compared with the N‑group.

Subnetwork analysis. In the N‑group, 5 significant subnet-
works were identified and were shown to be associated with 
glutathione metabolism (Fig. 1A), leucine and isoleucine 
metabolism (Fig. 1B), pancreatic cancer (Fig. 1C), calcium 
signaling pathway (Fig. 1D) and the mitogen-activated protein 
kinase pathway (Fig. 1E), respectively. Significant subnetworks 
of genes from the T-group were in association with galactose 
metabolism (Fig. 2A), alanine, aspartic acid and glutamic acid 
metabolism (Fig. 2B), intercellular cell adhesion (Fig. 2C) and 
contraction of vascular smooth muscle (Fig. 2D and E).
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Function and pathway annotation. To gain further insight into 
the function of the identified DEGs, the online biological classi-
fication software DAVID was applied to annotate the DEGs. The 
upregulated genes were enriched in 14 GO subcategories with 
the most genes enriched in the cell adhesion pathway (Table I). 
The downregulated genes were enriched in 9 subcategories with 
the highest number of genes enriched in the proteolysis pathway 
(Table I). In addition, 8 significant REACTOME pathways for 
upregulated genes, such as metabolism of carbohydrates, hemo-
stasis and cell cycle, mitotic were identified (Fig. 3A). Moreover, 
4 significant REACTOME pathways for downregulated genes, 
regulation of β-cell development, transmembrane transport of 
small molecules, hemostasis and metabolism of amino acids 
were screened out (Fig. 3B).

PPI construction and module analysis. The up- and downreg-
ulated genes between the T-group and N-group were input into 
the STRING database to identify the significant interactions 
with a confidence score of ≥0.7. The PPI network reveals the 
molecular mechanisms of pancreatic cancer, but it contains too 
many nodes and interactions to select the useful information. 
Therefore, the functional modules in the PPI network were 
mined by ClusterONE. In the current study, the significant 
module with the lowest P-value for the upregulated DEGs was 
displayed in Fig. 4A, and 5 DEGs with higher connectivity 
degrees including cyclin-dependent kinase 1 (CDK1), maternal 
embryonic leucine zipper kinase (MELK), PDZ-binding kinase 
(PBK), Cyclin A2 (CCNA2) and nucleolar and spindle associ-
ated protein 1 (NUSAP1) were included in this module. GO 

Figure 1. Five significant subnetworks of the N‑group, associated with (A) glutathione metabolism (B) leucine and isoleucine metabolism (C) pancreatic cancer 
(D) calcium signaling pathway and (E) the mitogen‑activated protein kinase pathway. Red nodes indicate upregulated genes and blue nodes downregulated genes.

Figure 2. Five significant subnetworks of genes from the T‑group, associated with (A) galactose metabolism (B) alanine, (C) aspartic acid and glutamic acid 
metabolism, (D) intercellular junction and (E) contraction of vascular smooth muscle. Red nodes represent the upregulated genes and the blue nodes represent 
downregulated genes. 
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analysis showed that the DEGs in this module were predomi-
nantly associated with cell‑division cycle (Table II). While, 5 
hub genes with the higher degrees including albumin (ALB), 
carboxypeptidase A1 (pancreatic) (CPA1), colipase, pancre-
atic (CLPS), epidermal growth factor (EGF) and complement 
component 5 (C5) were identified in the significant module 
with the lowest P-value for the downregulated DEGs with 
the lowest P-values, which is shown in Fig. 4B. Moreover, the 
DEGs in this module predominantly participated in biological 
processes, such as response to wounding, endogenous stimulus 
and regulation of cell proliferation (Table II).

Discussion

PC is one of the leading causes of cancer-related mortality 
worldwide; however, the molecular mechanisms of PC 
progression remain unclear. With the rapid expansion of 
knowledge on genomics, emerging evidence suggests that 
the initiation, progression, invasion and metastasis of PC are 
generally caused by the differential expression of genes. In the 

present study, a total of 1,989 DEGs including 1,461 up‑ and 
528 downregulated genes were screened out. In line with 
the results of the study by Pei et al (13), FKBP5 was identi-
fied as one of the downregulated genes in the PC samples. 
To understand the interaction of these DEGs, a PPI network 
was constructed and the significant module with the lowest 
P-value for upregulated genes with the top 5 nodes of CDK1, 
MELK, PBK, CCNA2 and NUSAP1 and the module with the 
lowest P-value for downregulated genes with the top 5 nodes 
of ALB, CPA1, CLPS, EGF and C5 were identified. Among 
all these proteins, CDK1, ALB, CPA1, CLPS and EGF were 
verified to be associated with PC (28-31). Moreover, the asso-
ciation of MELK and C5 with PC have been demonstrated 
in certain studies (32-34). However, according to the present 
results, CCNA2 and PBK, which have not previously been 
directly associated with PC, may be pivotal for the initiation 
and progression of PC. In addition, certain subnetworks may 
be important in PC via the differential expression of genes 
involved, such as the subnetwork directly associated with PC 
and the subnetwork associated with intercellular cell adhesion.

Table I. Top gene ontology functional enrichment of up‑ and downregulated genes.

A, Upregulated

Term Gene count P-value

GO:0007155~cell adhesion 73 <0.001 
GO:0022610~biological adhesion 73 <0.001 
GO:0006955~immune response 66 <0.001
GO:0006952~defense response 59 0.000001 
GO:0042127~regulation of cell proliferation 58 0.001423 
GO:0007049~cell cycle 57 0.001696 
GO:0009611~response to wounding 52 0.000002 
GO:0010033~response to organic substance 51 0.006513 
GO:0055114~oxidation reduction 47 0.004401 
GO:0022402~cell cycle process 46 0.000678 
GO:0008219~cell death 46 0.046477 
GO:0016265~death 46 0.047681 
GO:0008283~cell proliferation 43 0.000016 
GO:0022403~cell cycle phase 41 0.000024 

B, Downregulated

Term Gene count P-value

GO:0006508~proteolysis 33 0.000243 
GO:0010033~response to organic substance 24 0.001006 
GO:0006811~ion transport 22 0.009722 
GO:0042592~homeostatic process 21 0.015010 
GO:0009611~response to wounding 20 0.000721 
GO:0048878~chemical homeostasis 18 0.003062 
GO:0009719~response to endogenous stimulus 17 0.000678 
GO:0019725~cellular homeostasis 17 0.002910 
GO:0009725~response to hormone stimulus 16 0.000718

Term, Gene Ontology pathway name; gene counts, number of differentially expressed genes enriched in the Gene Ontology function.
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Cyclins are a family of proteins that control the progression 
of cells through the cell cycle by activating cyclin-dependent 
kinases (CDK) (35). As a member of the cyclin family, CCNA2 
is produced at the onset of DNA synthesis in proliferating 
somatic cells and is critical in cell cycle progression by regula-
tion of transition from G1 to S phase (36). Genetic variants 
of CCNA2, which may affect the function of the encoded 
protein by changing gene expression or by altering the protein 
structure, are found to significantly increase the risk of cancer 
development in a tissue‑specific manner, such as colon, liver 
and lung cancer (37). In addition, Gao et al (38) reported that 
CCNA2 was a biomarker for the prognosis of breast cancer 
and a promising target for developing novel strategies to 
prevent or even reverse tamoxifen resistance. In addition, 
the expression of CCNA2 may aid in monitoring tamoxifen 

efficacy and directing personalized therapies in patients with 
breast cancer (38). Few previous studies have focused on the 
association of CCNA2 and PC, while high throughput bioin-
formatics analysis in the present study indicates that CCNA2 
may be important for the initiation and development of PC. 
In the present study, CCNA2 was found to be upregulated in 
PC tissue samples, and functional analysis demonstrates that 
CCNA2 was predominantly enriched in the cell cycle pathway 
and participates in biological processes, such as regulation of 
cell proliferation, regulation of cell cycle, cell cycle check-
point and mitosis. These findings were concordant with those 
of previous studies (39,40). Therefore, it was hypothesized 
that CCNA2 may be important in the pathogenesis of PC via 
regulation of the cell cycle and mitosis, which may further 
influence tumor occurrence.

Figure 4. Significant module of (A) upregulated genes and (B) downregulated genes. Red nodes represent the upregulated DEGs. While blue nodes represent 
downregulated genes.

Figure 3. Pathway enrichment for differentially expressed genes. (A) Upregulated genes and (B) downregulated genes.
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PBK, also known as PDZ‑binding kinase, is a mitotic 
protein kinase and its encoding gene, PBK was found to be 
upregulated in PC tissue samples. Studying upregulated 
kinases in cancer may provide important clues as to the mech-
anism of malignant conversion (41,42). PBK is phosphorylated 
in vitro by Cdc2‑cyclin B at a site in the amino terminus 
(Thr 9) which is implicated in the binding of α-tubulin, and 
then localizes to mitotic spindles and spindle poles during 
metaphase (43). Studies regarding PBK have demonstrated 
that the expression of PBK is regulated by cell cycle‑specific 
transcription factors, such as E2F and CREB/ATF, and knock-
down expression of PBK may lead to cytokinetic dysfunction 
in breast cancer (44,45). Ayllón et al (46) suggested that PBK 
is involved in DNA damage sensing and repair via phosphory-
lating c‑H2AX. Nandi et al (47) confirmed that with western 
immunoblotting and immunoprecipation, and yeast two-hybrid 
analysis, PBK can directly interact with p53, downregulate its 
expression and attenuate G2/M checkpoint in fibrosarcoma 
cells, which was hypothesized to be a plausible explanation for 
the role of PBK in augmenting tumor cell growth. Similarly, 
the GO-biological process enrichment in the present study 
predicted that PBK was predominantly associated with nuclear 
division, cell division, M phase of mitotic cell cycle, and PBK 
with higher connectivity degree in the module with the lowest 
P-value of upregulated genes was enriched in cell division 
cycle. Based on these results, it was inferred that PBK may 
influence the occurrence of PC by regulating the mitotic cell 
cycle and other biological processes.

Intercellular cell adhesion determines the polarity of cells and 
participates in the maintenance of tissues (48). Several studies 
have shown that cell-cell adhesiveness is generally reduced 
in human cancer, which may result in influences as follows: 
Reduced intercellular adhesiveness allows loss and disruption 

of cell-cell adhesion, resulting in destruction of histological 
structure, which is the morphological hallmark of malignant 
tumors (48). Conversely, reduced intercellular adhesiveness is 
also indispensable for cancer invasion and metastasis (49). In 
line with the previous studies, subnetworks associated with 
intercellular cell adhesion were found to be significant in the 
T-group, and the majority of the genes in this subnetwork were 
identified to be upregulated in PC. Accordingly, intercellular 
cell adhesion may be important in the progression of PC.

The significant subnetwork directly associated with PC 
consisted of six genes, VEGFA, NFKB1, STAT3, PGF, RAC1 
and ARHGEF6. Expression levels of the majority of these 
genes were identified to be significantly higher in PC samples 
and this subnetwork is directly involved in PC via the differ-
ential expression of genes involved. For instance, STAT3 is 
confirmed to be vital in anti‑pancreatic cancer effects through 
its contributions to the positive feedback loop between reactive 
oxygen species and autophagy (50). The concentration of PGF 
is found to be significantly increased in pancreatic carcinoma 
compared with tumor‑free tissue (51). Moreover, activation 
of RAC1‑dependent superoxide generation leads to PC cell 
proliferation and inhibition of RAC1 may be a potential thera-
peutic strategy (52). Hence, as demonstrated, subnetworks 
directly associated with pancreatic cancer may be crucial in 
the pathogenesis of PC.

In conclusion, the results of this study may increase the 
understanding of the mechanism of the occurrence and 
development of PC. CCNA2 and PBK of the module and 
their relative pathway cell-division cycle may be pivotal for 
understanding the molecular mechanism of PC. In addition, 
two subnetworks (pancreatic cancer subnetwork and intercel-
lular adhesion subnetwork) may be highly associated with PC. 
However, the whole study was conducted based on bioinfor-

Table II. Top Gene Ontology annotation of up‑ and downregulated genes in the significant module with the lowest P‑value of the 
protein‑protein interaction network.

A, Upregulated

Term Gene count P-value

GO:0007049~cell cycle 44 <0.001
GO:0022402~cell cycle process 38 <0.001
GO:0022403~cell cycle phase 37 <0.001
GO:0000279~M phase 36 <0.001
GO:0000278~mitotic cell cycle 32 <0.001
GO:0051301~cell division 29 <0.001 

B, Downregulated

Term Gene count P-value

GO:0006508~proteolysis 15 0.000234
GO:0009611~response to wounding 11 0.000134
GO:0010033~response to organic substance 11 0.001507
GO:0009725~response to hormone stimulus   9 0.000256
GO:0009719~response to endogenous stimulus   9 0.000495
GO:0042127~regulation of cell proliferation   9 0.026531
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matics methods, and the conclusions have not been verified by 
corresponding experiments yet. Thus, further experiments are 
urgently required to confirm the results of this study.

References

 1. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, 
Au HJ, Murawa P, Walde D, Wolff RA, et al: Erlotinib plus 
gemcitabine compared with gemcitabine alone in patients with 
advanced pancreatic cancer: A phase III trial of the national 
cancer institute of canada clinical trials group. J Clin Oncol 25: 
1960-1966, 2007. 

 2. Jemal A, Siegel R, Xu J and Ward E: Cancer statistics, 2010. CA 
Cancer J Clin 60: 277-300, 2010. 

 3. Long J, Luo GP, Xiao ZW, Liu ZQ, Guo M, Liu L, Liu C, Xu J, 
Gao YT, Zheng Y, et al: Cancer statistics: Current diagnosis 
and treatment of pancreatic cancer in Shanghai, China. Cancer 
Lett 346: 273-277, 2014. 

 4. Chan A, Diamandis EP and Blasutig IM: Strategies for 
discovering novel pancreatic cancer biomarkers. J Proteomics 81: 
126‑134, 2013. 

 5. Pliarchopoulou K and Pectasides D: Pancreatic cancer: Current 
and future treatment strategies. Cancer Treat Rev 35: 431‑436, 
2009. 

 6. Sato N and Goggins M: The role of epigenetic alterations in 
pancreatic cancer. J Hepatobiliary Pancreat Surg 13: 286-295, 
2006. 

 7. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, 
Mankoo P, Carter H, Kamiyama H, Jimeno A, et al: Core 
signaling pathways in human pancreatic cancers revealed by 
global genomic analyses. Science 321: 1801-1806, 2008. 

 8. Logsdon CD, Simeone DM, Binkley C, Arumugam T, 
Greenson JK, Giordano TJ, Misek DE, Kuick R and Hanash S: 
Molecular profiling of pancreatic adenocarcinoma and chronic 
pancreatitis identifies multiple genes differentially regulated in 
pancreatic cancer. Cancer Res 63: 2649‑2657, 2003. 

 9. Wang B, Sun S and Liu Z: Analysis of dysregulation of immune 
system in pancreatic cancer based on gene expression profile. 
Mol Biol Rep 41: 4361‑4367, 2014. 

10. Kern SE: Molecular genetic alterations in ductal pancreatic 
adenocarcinomas. Med Clin North Am 84: 691-695, 2000. 

11. Shin SH, Kim SC, Hong SM, Kim YH, Song KB, Park KM and 
Lee YJ: Genetic alterations of K‑ras, p53, c‑erbB‑2 and DPC4 
in pancreatic ductal adenocarcinoma and their correlation with 
patient survival. Pancreas 42: 216-222, 2013. 

12. Fryzek JP, Garabrant DH, Schenk M, Kinnard M, Greenson JK 
and Sarkar FH: The association between selected risk factors for 
pancreatic cancer and the expression of p53 and K‑ras codon 12 
mutations. Int J Gastrointest Cancer 37: 139‑145, 2006. 

13. Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, 
Petersen G, Lou Z and Wang L: FKBP51 affects cancer cell 
response to chemotherapy by negatively regulating Akt. Cancer 
Cell 16: 259-266, 2009. 

14. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, 
Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, 
Siderowf A and Tanner CM: Projected number of people with 
Parkinson disease in the most populous nations, 2005 through 
2030. Neurology 68: 384‑386, 2007. 

15. Delhomme N, Padioleau I, Furlong EE and Steinmetz LM: 
easyRNASeq: A bioconductor package for processing RNA-Seq 
data. Bioinformatics 28: 2532-2533, 2012. 

16. Singh B, Ronghe AM, Chatterjee A, Bhat NK and Bhat HK: 
MicroRNA‑93 regulates NRF2 expression and is associated 
with breast carcinogenesis. Carcinogenesis 34: 1165-1172, 
2013. 

17. Chand Y and Alam MA: Network biology approach for iden-
tifying key regulatory genes by expression based study of breast 
cancer. Bioinformation 8: 1132-1138, 2012. 

18. Benjamini Y and Hochberg Y: Controlling the false discovery 
rate: A practical and powerful approach to multiple testing. J R 
Stat Soc Series B Stat Methodol: 289-300, 1995. 

19. Benjamini Y: Discovering the false discovery rate. J R Stat Soc 
Series B Stat Methodol 72: 405‑416, 2010. 

20. Lim K and Wong L: Finding consistent disease subnetworks 
using PFSNet. Bioinformatics 30: 189-196, 2014. 

21. Soh D, Dong D, Guo Y and Wong L: Consistency, compre-
hensiveness, and compatibility of pathway databases. BMC 
Bioinformatics 11: 449, 2010. 

22. Kelder T, van Iersel MP, Hanspers K, Kutmon M, Conklin BR, 
Evelo CT and Pico AR: WikiPathways: Building research 
communities on biological pathways. Nucleic Acids Res 40 
(Database Issue): D1301-D1307, 2012. 

23. Kanehisa M, Goto S, Sato Y, Furumichi M and Tanabe M: KEGG 
for integration and interpretation of large-scale molecular data 
sets. Nucleic Acids Res 40 (Database Issue): D109‑D114, 2012. 

24. Krämer A, Green J, Pollard J Jr and Tugendreich S: Causal analysis 
approaches in ingenuity pathway analysis. Bioinformatics 30: 
523-530, 2014. 

25. Hu Y, Hu Y, Liu D, Yu J and Liu D: Screening and bioinformatics 
analysis of differentially expressed genes in hyperplastic scar. 
Nan Fang Yi Ke Da Xue Xue Bao 34: 939‑944, 2014 (In Chinese). 

26. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, 
Roth A, Lin J, Minguez P, Bork P, von Mering C and Jensen LJ: 
STRING v9.1: Protein‑protein interaction networks, with 
increased coverage and integration. Nucleic Acids Res 41 
(Database Issue): D808-D815, 2013. 

27. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, 
Amin N, Schwikowski B and Ideker T: Cytoscape: A software 
environment for integrated models of biomolecular interaction 
networks. Genome Res 13: 2498‑2504, 2003. 

28. Feldmann G, Mishra A, Bisht S, Karikari C, Garrido‑Laguna I, 
Rasheed Z, Ottenhof NA, Dadon T, Alvarez H, Fendrich V, et al: 
Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) 
inhibits pancreatic cancer growth and progression in murine 
xenograft models. Cancer Biol Ther 12: 598-609, 2011. 

29. Hempen PM, Kurpad H, Calhoun ES, Abraham S and Kern SE: 
A double missense variation of the BUB1 gene and a defective 
mitotic spindle checkpoint in the pancreatic cancer cell line 
Hs766T. Hum Mutat 21: 445, 2003. 

30. Zhang P, Zou M, Wen X, Gu F, Li J, Liu G, Dong J, Deng X, 
Gao J, Li X, et al: Development of serum parameters panels 
for the early detection of pancreatic cancer. Int J Cancer 134: 
2646‑2655, 2014. 

31. Renouf D and Moore M: Evolution of systemic therapy for 
advanced pancreatic cancer. Expert Rev Anticancer Ther 10: 
529‑540, 2010. 

32. Kusakai G, Suzuki A, Ogura T, Kaminishi M and Esumi H: 
Strong association of ARK5 with tumor invasion and metastasis. 
J Exp Clin Cancer Res 23: 263-268, 2004. 

33. Kokkinakis DM, Liu X and Neuner RD: Modulation of cell cycle 
and gene expression in pancreatic tumor cell lines by methionine 
deprivation (methionine stress): Implications to the therapy of 
pancreatic adenocarcinoma. Mol Cancer Ther 4: 1338‑1348, 2005. 

34. Michl P, Buchholz M, Rolke M, Kunsch S, Löhr M, McClane B, 
Tsukita S, Leder G, Adler G and Gress TM: Claudin‑4: A new target 
for pancreatic cancer treatment using Clostridium perfringens 
enterotoxin. Gastroenterology 121: 678‑684, 2001. 

35. Dun B, Sharma A, Xu H, Liu H, Bai S, Zeng L and She JX: 
Transcriptomic changes induced by mycophenolic acid in gastric 
cancer cells. Am J Transl Res 6: 28‑42, 2013. 

36. Gong D, Pomerening JR, Myers JW, Gustavsson C, Jones JT, 
Hahn AT, Meyer T and Ferrell JE Jr: Cyclin A2 regulates 
nuclear-envelope breakdown and the nuclear accumulation of 
cyclin B1. Curr Biol 17: 85-91, 2007. 

37. Kim DH, Park SE, Kim M, Ji YI, Kang MY, Jung EH, Ko E, 
Kim Y, Kim S, Shim YM and Park J: A functional single 
nucleotide polymorphism at the promoter region of cyclin A2 is 
associated with increased risk of colon, liver and lung cancers. 
Cancer 117: 4080‑4091, 2011. 

38. Gao T, Han Y, Yu L, Ao S, Li Z and Ji J: CCNA2 is a prognostic 
biomarker for ER+ breast cancer and tamoxifen resistance. PLoS 
One 9: e91771, 2014. 

39. Kokkinakis DM, Liu XY and Neuner RD: Modulation of cell cycle 
and gene expression in pancreatic tumor cell lines by methionine 
deprivation (methionine stress): Implications to the therapy of 
pancreatic adenocarcinoma. Mol Cancer Ther 4: 1338‑1348, 2005.

40. Roderick HL and Cook SJ: Ca2+ signalling checkpoints in cancer: 
Remodelling Ca2+ for cancer cell proliferation and survival. Nat 
Rev Cancer 8: 361‑375, 2008.

41. Baselga J and Arribas J: Treating cancer's kinase 'addiction'. Nat 
Med 10: 786-787, 2004. 

42. Bettencourt‑Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, 
Balloux F, Zafiropoulos PJ, Yamaguchi S, Winter S, Carthew RW, 
et al: Genome-wide survey of protein kinases required for cell 
cycle progression. Nature 432: 980-987, 2004. 

43. Gaudet S, Branton D and Lue RA: Characterization of 
PDZ-binding kinase, a mitotic kinase. Proc Natl Acad Sci 
USA 97: 5167-5172, 2000. 



LONG et al:  IDENTIFICATION OF GENES AND SUBNETWORKS ASSOCIATED WITH PC3786

44. Park JH, Lin ML, Nishidate T, Nakamura Y and Katagiri T: 
PDZ-binding kinase/T‑LAK cell‑originated protein kinase, a 
putative cancer/testis antigen with an oncogenic activity in breast 
cancer. Cancer Res 66: 9186-9195, 2006. 

45. Nandi AK and Rapoport AP: Expression of PDZ-binding kinase 
(PBK) is regulated by cell cycle‑specific transcription factors 
E2F and CREB/ATF. Leuk Res 30: 437‑447, 2006. 

46. Ayllón V and O'connor R: PBK/TOPK promotes tumour cell 
proliferation through p38 MAPK activity and regulation of the 
DNA damage response. Oncogene 26: 3451‑3461, 2007. 

47. Nandi AK, Ford T, Fleksher D, Neuman B and Rapoport AP: 
Attenuation of DNA damage checkpoint by PBK, a novel mitotic 
kinase, involves protein-protein interaction with tumor suppressor 
p53. Biochem Biophys Res Commun 358: 181-188, 2007. 

48. Hirohashi S and Kanai Y: Cell adhesion system and human 
cancer morphogenesis. Cancer Sci 94: 575-581, 2003. 

49. Saiki I: Cell adhesion molecules and cancer metastasis. Jpn J 
Pharmacol 75: 215‑242, 1997. 

50. Gong J, Muñoz AR, Chan D, Ghosh R and Kumar AP: STAT3 
down regulates LC3 to inhibit autophagy and pancreatic cancer 
cell growth. Oncotarget 5: 2529‑2541, 2014. 

51. Heukamp I, Kilian M, Gregor JI, Kiewert C, Schimke I, 
Kristiansen G, Walz MK, Jacobi CA and Wenger FA: Impact of 
polyunsaturated fatty acids on hepato-pancreatic prostaglandin 
and leukotriene concentration in ductal pancreatic cancer-is 
there a correlation to tumour growth and liver metastasis? 
Prostaglandins Leukot Essent Fatty Acids 74: 223-233, 2006. 

52. Aravindan S, Delma CR, Thirugnanasambandan SS, Herman TS 
and Aravindan N: Anti-pancreatic cancer deliverables from 
sea: First‑hand evidence on the efficacy, molecular targets and 
mode of action for multifarious polyphenols from five different 
brown-algae. PLoS One 8: e61977, 2013. 


