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Abstract. The present study identified differentially‑expressed 
genes (DEGs) between pancreatic cancer (PC) tissues and 
normal tissues, and assessed genetic factors associated with 
the pathogenesis of PC. The mRNA expression microarray 
dataset, GSE16515, containing 52 samples, including 16 paired 
tumor and normal tissue samples, and 20 tumor samples, was 
downloaded from Gene Expression Omnibus. Raw data were 
normalized and DEGs were identified. Subsequently, clustering 
was performed, protein‑protein interaction networks were 
drawn, and functional and pathway enrichment analyses of the 
DEGs were performed. Copy number variations of DEGs were 
also identified. A total of 1,765 DEGs between PC and normal 
tissues were identified, including 1,312  upregulated and 
453 downregulated DEGs. Upregulated DEGs were associated 
with the regulation of nucleocytoplasmic and intracellular 
transport, whereas downregulated DEGs were associated with 
the response to organic substances and hormone stimulus. 
The pancreatic cancer pathway was connected to three DEGs, 
namely transforming growth factor  β1 (TGFB1), TGFβ 
receptor 1 (TGFBR1) and epidermal growth factor (EGF), 
which had 2, 3 and 5 CNVs, respectively. These results indi-
cated the important roles of TGFB1, TGFBR1 and EGF in the 
pathogenesis of PC. These genes may be potential therapeutic 
targets for the treatment of PC.

Introduction

Pancreatic cancer (PC; OMIM 260350) is a highly lethal 
disease, with an incidence rate that is constantly increasing (1). 
The 5‑year survival rate of PC is <5% (2), and almost all patients 
with primary PC develop metastases.

Previous studies have indicated that PC has a complex 
genomic landscape with frequent copy number variations (CNVs) 

or copy number polymorphisms (CNPs) (3). Biankin et al (4) 
defined 16 significantly mutated genes [e.g., Kirsten rat sarcoma 
viral oncogene homolog (KRAS), tumor protein p53 (TP53), 
SMAD family member 4 (SMAD4) and transforming growth 
factor β receptor 2 (TGFBR2)] that were reaffirmed known 
mutations associated with PC. The commonly mutated genes, 
such as KRAS (74‑100%), cyclin‑dependent kinase inhibitor 2A 
(up to 98%), TP53 (43‑76%), erb‑b2 receptor tyrosine kinase 2 
(ERBB2; ~65%) and fragile histidine triad (~70%) have been 
found in PC (5‑9). Among these genes, KRAS and ERBB2 are 
proto‑oncogenes, whereas the other genes are tumor suppres-
sors (3). The progression of PC is correlated with the activation 
of oncogenes and the inactivation of tumor suppressor genes, 
as well as the deregulation of a number of signaling pathways, 
among which the epidermal growth factor receptor (EGFR), 
v‑akt murine thymoma viral oncogene homolog 1 (v‑AKT1) and 
nuclear factor of κ light polypeptide gene enhancer in B‑cells 1 
(NFκB1) pathways appear to be most relevant (10).

AKT1 is a central regulator of cell growth. AKT1 has been 
shown to inhibit apoptosis and promote cell survival, thus 
contributing to the pathogenesis of cancer (11,12). Pei et al (13) 
showed that FK506‑binding protein 51 (FKBP51) acted as a 
scaffolding protein for Akt and that it promoted the activation 
of Akt. The expression of FKBP51 was downregulated in PC 
tissues. Decreased FKBP51 expression resulted in the hyper-
phosphorylation of Akt, and then decreased the level of cell 
death in the PC tissues. Thus, Pei et al demonstrated FKBP51 
to be a negative regulator of the Akt pathway (13). Pei et al also 
released the mRNA expression microarray dataset, GSE16515, 
consisting of 36  pancreatic tumor and 16  normal tissue 
samples. Numerous studies have since been performed using 
this dataset (14‑16). For example, using the GSE16515 dataset, 
Yang et al  (14) screened the differentially‑expressed genes 
(DEGs), such as TGF α (TGFA) and EGF, between PC tumor 
tissues and normal tissues, and selected the important single 
nucleotide polymorphisms (SNPs) of A/G and C/T in the DEGs. 
However, none of the studies based on the GSE16515 dataset 
performed an analysis of CNVs in the DEGs.

Using the GSE16515 dataset downloaded from Gene 
Expression Omnibus (GEO), the DEGs between PC tumor 
tissues and normal tissues were screened in the present study. 
Next, clustering analysis and construction of a protein‑protein 
interaction (PPI) network of DEGs was performed. The under-
lying functions of these DEGs were investigated by functional 
and pathway enrichment analyses. Finally, the CNVs of these 
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DEGs were also analyzed. This will be beneficial for developing 
therapeutic strategies for patients with PC.

Materials and methods

mRNA microarray data. The mRNA expression microarray 
data from the GSE16515 dataset (6) was downloaded from GEO 
(http://www.ncbi.nlm.nih.gov/geo/), based on the platform of 
GPL570 [HG‑U133_Plus_2] Affymetrix Human Genome U133 
Plus 2.0 Array (Affymetrix, Santa Clara, CA, USA). GSE16515 
was composed of 52 samples (from 34 males and 18 females). In 
total, 32 samples consisted of tumor and normal expression data, 
whereas 20 samples consisted of only tumor data. These samples 
were obtained during clinically indicated surgical procedures 
and consent was obtained for experimental purposes. The raw 
data and the probe annotation files were downloaded for further 
analysis. The microarray data of the GSE16515 dataset was 
analyzed following the procedures presented in Fig. 1.

Data preprocessing and DEG identification. The Robust 
Multiarray Average in Affy package of R (http://www.biocon-
ductor.org/packages/release/bioc/html/affy.html), provided by 
Bioconductor project (17), was applied to process the raw micro-
array data. The processing included background correction, 
quantile normalization and probe summarization of expression 
values. The gene expression matrices were obtained for further 
analysis. Afterwards, the Linear Models for Microarray Data 
package was used to identify the gene signatures between the 
tumor and normal tissues, with significant differences indicated 
using a P‑value of <0.05. Next, the Bonferroni correction (18) 
was applied to adjust the raw P‑value for the false discovery 
rate (FDR) and to calculate the fold change (FC). In the present 
study, the cut‑off criteria for the statistically significant DEGs 
were |log2FC| >1 and FDR <0.05.

Clustering analysis of DEGs. Based on the Euclidean 
distance between the expression profile of each DEG filtered 
from the samples, hierarchical clustering can be used to 
build a hierarchy of clusters of DEGs  (19). The heatmap 
figure of the DEGs was drawn with the R package pheatmap 
(http://cran.r‑project.org/web/packages/pheatmap/index.html) 
function. DEGs with the same signatures were clustered 
together, indicating the specificity of the DEGs.

Identification of PPIs of DEGs. Identification of protein 
complexes and functional modules from PPI networks is crucial 
to predict protein functions and to understand the principles of 
cellular organization (20). The Search Tool for the Retrieval 
of Interacting Genes (STRING; http://string‑db.org/) database 
provides uniquely comprehensive coverage and ease of access 
for the prediction of interaction information  (21). To better 
understand the interactions of the DEGs, the PPI network of 
their encoding products was predicted using the STRING data-
base, with the reliability threshold of >0.9. Cytoscape software 
(http://cytoscape.org/), a standard tool for the integrated analysis 
and visualization of biological networks, was used to visualize 
the PPI network (22).

Functional enrichment analysis of DEGs. Gene Ontology (GO; 
http://www.geneontology.org/) analysis is an functional study 

method for large‑scale transcriptomic or genomic data (23). In 
order to investigate the biofunctions of DEGs in tumor progres-
sion, the Database for Annotation, Visualization and Integrated 
Discovery (http://david.abcc.Ncifcrf.gov/), a high‑throughput 
and integrated data‑mining environment (24), was used to iden-
tify the enriched GO biological processes that the DEGs were 
associated with (FDR<0.05).

Pathway analysis of DEGs. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG; http://www.genome.jp/kegg/pathway.html) 
pathway database provides information on how molecules 
or genes function (25). Pathway analysis of all the DEGs was 
performed using the KEGG database. The KEGG maps of 
biological functions associated with DEGs were obtained 
(P<0.05).

CNV analysis of DEGs. The Database of Genomic Variants 
(DGV; http://dgv.tcag.ca/) (26) was used to identify the CNVs in 
the DEGs, including deletions, insertions, duplications, complex 
multi‑site variants and SNPs.

Results

Data processing and identification of DEGs. After the normal-
ization, the DEGs between the tumor and normal tissues 
of the 52 samples were identified, with the cut‑off criteria of 
|log2FC| >1 and FDR <0.05. A total of 1,765 DEGs were identi-
fied between the PC and normal tissues, of which 1,312 were 
upregulated and 453 were downregulated.

Hierarchical clustering of DEGs. Hierarchical clustering of the 
1,765 DEGs is presented in Fig. 2. The LogFC values of the 
DEGs ranged from 6‑fold downregulated and 6‑fold upregu-
lated. The majority of the DEGs were upregulated in the PC 
tumors compared with the normal tissues. The tumor samples 
and the normal control samples could easily be distinguished 
from the characteristics of the DEGs.

PPIs analysis of DEGs. To identify the PPIs and predict protein 
functions, PPI network analysis was performed using the 
STRING database (threshold >0.9). The resulting PPI network 

Figure 1. Flowchart of the analysis of the microarray data from the GSE16515 
dataset. DEG, differentially‑expressed gene.
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of upregulated DEGs connected to 92 nodes (proteins) through 
171 PPIs, whereas the PPI network of the downregulated DEGs 
connected to 82 nodes through 83 PPIs (Fig 3).

Functional enrichment analysis of DEGs. To obtain the enriched 
GO biological processes of the DEGs in the PPI networks, GO 

functional enrichment analysis was performed for the up‑ and 
downregulated DEGs, respectively (FDR <0.05). The upregu-
lated DEGs (including TGFB1 and TGFBR1) were associated 
with significant biological processes, such as the regulation of 
nucleocytoplasmic transport, protein localization and intracel-
lular transport (Table I), whereas the downregulated DEGs 

Figure 2. Heat map clustering of the differentially‑expressed genes between two samples. The x‑axis represents normal and tumor samples, and the y‑axis 
represents genes. Blue (<0) indicates downregulation and orange (>0) indicates upregulation of gene expression in the pancreatic and normal tissues.

Table I. Enriched GO biological processes of the DEGs in the protein‑protein interaction networks.

Term and function	 Count	 Genes	 P‑value	 FDR

Upregulated DEGs	
  GO:0046822 ‑ Regulation of	 7	 CDKN2A, TGFBR1, SMAD3, CDH1,	 1.72x10‑6	 0.002848
  nucleocytoplasmic transport		  TACC3, FLNA, TGFB1
  GO:0032880 ‑ Regulation of	 9	 TGFBR1, SMAD3, CDH1, CDH2, 	 2.60x10‑6	 0.004308
  protein localization		  CASP1, TACC3, FLNA, TGFB1, IL1A
GO:0051222 ‑ Positive regulation	 7	 TGFBR1, SMAD3, CDH1, CASP1,	 4.05x10‑6	 0.006710
  of protein transport		  FLNA, TGFB1, IL1A
  GO:0032386 ‑ Regulation of	 7	 CDKN2A, TGFBR1, SMAD3, CDH1,	 5.69x10‑6	 0.009436
  intracellular transport		  TACC3, FLNA, TGFB1
Downregulated DEGs	
  GO:0043085 ‑ Positive	 13	 ADCY1, PTGER3, CCKBR, C6, C5,	 1.72x10‑5	 0.027131
  regulation of catalytic activity		  LPAR3, EDNRB, PRKAR2B, PLCE1,
		  CLPS, GNAS, EGF, PSMD6
  GO:0010033 ‑ Response to	 15	 TF, ADCY1, PNLIPRP1, GATM, 	 2.20x10‑5	 0.034801
  organic substances		  PDE3B, EPHX1, CFTR, PDE3A,
		  NPY1R, PRKAR2B, ABAT, ANGPT1,
		  GNAS, SST, GNG7
  GO:0009725 ‑ Response to	 11	 PRKAR2B, PNLIPRP1, ADCY1, GATM,	 2.29x10‑5	 0.036206
  hormone stimuli		  PDE3B, GNAS, ANGPT1, CFTR,
		  NPY1R, SST, GNG7
  GO:0006575 ‑ Cellular amino	 8	 GSTA1, P4HB, CTH, GATM, GPX3, 
  acid derivative metabolic processes		  ABAT, GAMT, GNMT	 2.78x10‑5	 0.043955

FDR, false discovery rate; DEG, differentially‑expressed genes; GO, gene ontology.
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(e.g., EGF) were correlated with the biological processes of the 
positive regulation of catalytic activity, the response to organic 
substances and the response to hormone stimuli (Table I).

Pathway analysis of DEGs. The KEGG maps of biological 
functions associated with DEGs in the PPI networks were 
obtained (P<0.05). The results showed that only the pancreatic 

Figure 3. Protein‑protein interaction networks of (A) upregulated DEGs (orange) and (B) downregulated DEGs (blue). The nodes represent proteins and the 
lines between nodes represent interactions. DEG, differentially‑expressed gene.

  A

  B
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cancer pathway was associated with DEGs in the PPI networks, 
including upregulated TGFB1 and TGFBR1, and downregu-
lated EGF (Fig. 4).

CNV analysis of DEGs. The CNVs of the TGFB1, TGFBR1 
and EGF genes were further identified using the DGV. The 

identification of CNVs of DEGs included deletions, inser-
tions, duplications and complex multi‑site variants. Finally, 
2, 3 and 5 CNVs, were identified in the TGFB1, TGFBR1 and 
EGF genes, respectively (Table II) (27‑34). In total, 1 of the 
CNVs of TGFB1 was insertin; all 3 of the CNVs of TGFBR1 
were insertins; and 1 of the 5 CNVs of EGF was insertin.

Table II. Copy number variations in TGFB1, TGFBR1 and EGF genes.

First author, year	 Gene	 Variant ID	 Subtype	 (Ref.)

Xu et al, 2011	 TGFB1	 nsv911769	 Loss	 (27)
Shaikh et al, 2009		  nsv521311	 Insertion	 (28)
Xu et al, 2011	 TGFBR1	 nsv893619	 Insertion	 (27)
		  nsv893618	 Insertion
Wong et al, 2007		  nsv831666	 Insertion	 (29)
Abecasis et al, 2012	 EGF	 esv2672203	 Deletion	 (30)
McKernan et al, 2009		  esv2618042	 Insertion	 (31)
Conrad et al, 2010		  esv22936	 Loss	 (32)
Mills et al, 2006		  nsv290769	 Loss	 (33)
Kim et al, 2009		  nsv820232	 Loss	 (34)

Figure 4. Molecular pathways in pancreatic cancer involving the DEGs in the protein‑protein interaction networks. Red boxes represent upregulated DEGs 
and the green box represents a downregulated DEG. Red letters represent tumor suppressors or oncogenes that have been validated in previous studies. CIN, 
chromosomal instability; DEG, differentially‑expressed gene; ds, double strand; PanIN, pancreatic intraepithelial neoplasia.
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Discussion

The early stages of PC are usually asymptomatic, and the 
majority of patients with PC are diagnosed at an advanced 
stage. The pathogenesis of PC is involved in a number of 
biological processes. Advanced studies of genetic factors have 
greatly improved our understanding of the pathogenesis of PC, 
which is associated with gene mutations, continuous changes 
to nuclei, loss of polarity and changes in cellular architec-
ture (35).

In the present study, the DEGs between PC tumor tissues 
and normal tissues were systematically investigated. A total 
of 1,765 DEGs, including 1,312 upregulated and 453 down-
regulated DEGs, were identified. The majority of DEGs were 
upregulated in the tumor tissues. The upregulated DEGs 
(including SMAD3, TGFB1 and TGFBR1) were associated 
with the regulation of nucleocytoplasmic and intracellular 
transport, and protein localization, whereas the downregulated 
DEGs (e.g., EGF) were associated with regulation of catalytic 
activity, and the responses to organic substances and hormone 
stimuli. All 4 of these DEGs were connected to the pancreatic 
cancer pathway. In addition, TGFB1, TGFBR1 and EGF exhib-
ited 2, 3 and 5 CNVs, respectively. These results proposed an 
important role for these DEGs in PC development.

CNVs or CNPs, such as deletions, insertions, duplica-
tions and complex multi‑site variants, have been found in all 
humans and in other mammals (36). CNVs can be simple in 
structures like tandem duplication, or may be complex in the 
genome, such as in gains or losses of homologous sequences at 
multiple sites (37). Yang et al (14) screened the DEGs between 
PC tissues and normal tissues using the GSE16515 dataset, and 
selected the important SNPs of A/G and C/T in DEGs such as 
TGFA and EGF. In the present study, 5 CNVs of EGF were 
identified, including 3 losses, 1 deletion and 1 insertion. These 
results demonstrate that the CNVs of EGF may be significant 
in the pathogenesis of PC.

EGFR is required for KRAS‑induced PC (38). Accordingly, 
the overexpression of EGFR and TGFA has been reported as 
an important molecular abnormality in human PCs (39). EGF 
and TGFA are essential molecules for the VEGF signaling 
pathway (Fig. 4). The inhibition of the vascular endothelial 
growth factor (VEGF) signaling pathway is beneficial for the 
suppression of tumor metastasis and invasion, such as required 
in PC (40). In the present study, it was found that the expression 
of EGF was downregulated in the PC tissues. Taken together, 
these results suggest the significant role of EGF in PC and 
indicate that EGF may be a novel target for the therapy of PC.

TGFB1 and TGFBR1 were overexpressed in the PC 
tumors in the present study. The two genes are elements of the 
TGFB signaling pathway, which is a potent inhibitor of cell 
growth (41). There is growing evidence that members of the 
TGFB family are frequently mutated in cancer. CNVs, DNA 
segments that are ≥1 kb and present at variable copy number 
in comparison with a reference genome, affect the expression 
of genes, the variation and adaptation of phenotypes, and the 
pathogenesis of diseases, such as human immunodeficiency 
virus‑1 infection, by disrupting genes and altering gene dosage 
in microdeletion or microduplication disorders (42,43). The 
present study identified 3 insertion CNVs in TGFBR1, and 
1 insertion CNV and 1 loss CNV in TGFB1. Moreover, 3 of 

the CNVs in TGFBR1 and TGFB1 were located at the same 
segment as in a previous study (27).These indicate the vital 
roles of TGFBR1 and TGFB1 in PC development. The genes 
may be potential therapeutic targets for the treatment of PC.

In summary, 1,765 DEGs, including 1,312 upregulated 
(e.g., TGFB1 and TGFBR1) and 453 downregulated (e.g., EGF) 
DEGS, were identified in the PC tissues compared with the 
normal tissues in the present study. The upregulated DEGs 
were associated with the regulation of nucleocytoplasmic 
and intracellular transport, whereas the downregulated DEGs 
were associated with the regulation of catalytic activity, and 
the response to organic substances and hormone stimuli. A 
pancreatic cancer pathway was connected to the DEGs of 
TGFB1, TGFBR1 and EGF. In addition, TGFB1, TGFBR1 
and EGF exhibited 2, 3 and 5 CNVs, respectively. These 
results suggested the significance of the DEGs in PC. TGFB1, 
TGFBR1 and EGF may be potential therapeutic targets for the 
treatment of PC. However, further clinical trials are required 
to validate these conclusions and hypotheses.
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