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Abstract. Renal fibroblast proliferation is key in renal 
fibrosis and chronic kidney disease. Transforming growth 
factor‑β1 (TGF‑β1) has been demonstrated to be an impor-
tant factor that induces cell proliferation in renal fibroblasts. 
Epidermal growth factor receptor (EGFR) is also recognized 
as a factor promoting renal fibroblast proliferation. In addi-
tion, mitogen‑activated protein kinase signaling pathways 
are associated with TGF‑β1‑ and EGFR‑induced cell prolif-
eration. Gefitinib, an EGFR tyrosine kinase inhibitor, is 
predominantly used as an anti‑tumor therapeutic agent in 
clinical therapeutic strategies. However, gefitinib has been 
suggested to exert anti‑proliferative effects on renal fibro-
blasts, however, high‑dose gefitinib may result in serious side 
effects. The present study aims to determine whether low‑dose 
gefitinib reduces gefitinib‑induced side effects and maintains 
the anti‑proliferative effects on renal fibroblasts. TGF‑β1 
promotes cell proliferation in renal fibroblasts, and the current 
study demonstrates that low‑dose gefitinib treatment exhibits 
anti‑proliferative effects similar to those of high‑dose gefitinib 
treatment. Thus, although high‑dose gefitinib is a conventional 
anti‑tumor drug, low‑dose gefitinib may be of use in renal 
fibrosis treatment. Furthermore, the present study demon-
strates that a combined treatment with low‑dose gefitinib and 
vitamin E has synergistic effects that reduce TGF‑β1‑induced 
fibroblast proliferation, cell‑cycle arrest and the ERK phos-
phorylation pathway.

Introduction

Renal fibroblast proliferation induces tubulointerstitial fibrosis 
resulting in renal filtration dysfunction (1) and chronic kidney 
disease (CKD) (2,3), thus, the inhibition of fibroblast prolif-
eration to prevent CKD is an important area. Transforming 
growth factor‑β1 (TGF‑β1) is important in the induction of 
proliferation in human renal fibroblasts (4,5). Previous studies 
have suggested that induction of renal fibrosis by TGF‑β1 is 
associated with p53 (6,7), reactive oxygen species (8,9), the 
Smad signaling pathway (10,11), mitogen activated protein 
kinase (MAPK) signaling pathways (12,13), and RhoA/Rho 
kinase (9,14). These studies indicated that TGF‑β1 is a critical 
factor in activating numerous signal transduction pathways 
that result in proliferation in renal fibroblasts. Thus, TGF‑β1 
was used in the present study as a cell model for investigating 
anti‑proliferative effects on renal fibroblasts by gefitinib and 
vitamin E treatment alone and in combination. Results from 
the current study demonstrated that 0.2 nM TGF‑β1 promoted 
renal fibroblast proliferation.

The epidermal growth factor receptor (EGFR) signaling 
pathway induces cell proliferation in various cells (15‑18). 
Previous studies have demonstrated that the EGFR signaling 
pathway mediates renal fibroblast proliferation and renal 
fibrogenesis  (19,20). Gefitinib, an EGFR tyrosine kinase 
inhibitor, inhibits EGFR signaling activation resulting in 
cell growth arrest (21,22). Thus, gefitinib has generally been 
used for clinical tumor treatment (23‑25). As EGFR medi-
ates renal fibroblast proliferation and EGFR is blocked by 
gefitinib, a previous study has successfully used gefitinib to 
inhibit renal fibroblast proliferation (26). The present study 
demonstrated that gefitinib attenuates fibroblast proliferation 
by blocking the EGFR signaling pathway and by inhibiting 
the TGF‑β1‑mediated pathway. In addition, previous studies 
have suggested that the EGFR signaling pathway is associ-
ated with the TGF‑β1‑mediated pathway  (8,27). Similar 
to these studies, experimental data from the present study 
also demonstrated that gefitinib inhibits TGF‑β1‑induced 
fibroblast proliferation. Although gefitinib effectively 
inhibits fibroblast proliferation to prevent renal fibrosis, the 
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side effects as a result of gefitinib are also clinically impor-
tant (28‑31).

Vitamin E exerts an anti‑oxidative and protective effect 
against various oxidative stress‑associated diseases, including 
hypertension, cardiovascular disease, hemorrhagic liposis, 
and obesity‑associated diseases (32‑35). However, vitamin E 
exerts an anti‑fibrotic effect on the renal cell‑mediated 
TGF‑β1 signaling pathway (36‑38). A previous study indicated 
that vitamin E reduces progression of fibrosis in obstructed 
kidneys (36). Other previous studies have demonstrated that 
vitamin E in combination with pentoxifylline or Fuzheng 
Huayu recipe, a traditional Chinese medicine, inhibits 
TGF‑β1‑induced fibrosis  (37,38). Results from the present 
study also demonstrated that vitamin E inhibits cell prolif-
eration in TGF‑β1‑treated renal fibroblasts. Furthermore, 
the present study indicates that a combination treatment of 
low‑dose vitamin E and low‑dose gefitinib has a more marked 
anti‑proliferative effect on TGF‑β1‑treated renal fibroblasts 
than high‑dose vitamin E treatment or high‑dose gefitinib 
treatment alone. This suggests that combination treatment 
with low‑dose vitamin E and low‑dose gefitinib is a potential 
therapeutic strategy to inhibit fibroblast proliferation and 
prevent high‑dose gefitinib treatment‑induced side effects.

Three major MAPK signaling pathways contain extracel-
lular signal‑regulated kinase (ERK), c‑Jun N‑terminal kinase, 
and p38 mitogen‑activated protein kinase (39,40). Previous 
studies have suggested that renal fibroblast proliferation is 
mediated by MAPK signaling pathways (41,42). The present 
study demonstrates that ERK phosphorylation is increased in 
TGF‑β1‑treated renal fibroblasts, suggesting TGF‑β1‑induced 
proliferation is mediated by the ERK signaling pathway. In 
addition, the present study demonstrated that combination 
treatment of low‑dose vitamin  E and low‑dose gefitinib 
reduces TGF‑β1‑induced increases in ERK phosphorylation 
levels. The present study indicates that combination treatment 
with low‑dose gefitinib and low‑dose vitamin E has synergistic 
effects to inhibit TGF‑β1‑induced renal fibroblast proliferation 
mediated by the ERK phosphorylation signaling pathway.

Materials and methods

Materials. TGF‑β1 was obtained from R&D Systems, 
Inc. (Minneapolis, MN, USA). Anti‑ERK (1:400; cat. 
no.  BS3627), anti‑p-ERK (1:400; cat. no.  BS5016), 
anti‑p38 (1:400; cat. no.  BS3567) and anti‑p-p38 (1:400; 
cat. no.  BS4766) primary rabbit polyclonal antibodies 
were purchased from Bioworld (Louis Park, MN, USA). 
Horseradish peroxidae‑conjugated goat anti-rabbit IgG, 
secondary antibody (1:2,000, cat. no. 7074) was purchased 
from Cell Signaling Technology (Danvers, MA, USA). 
5‑Dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium (MTT) 
assay kit was bought from Bio Basic Canada, Inc. (Markham, 
ON, Canada). Fetal bovine serum (FBS), Dulbecco's modi-
fied Eagle's medium (DMEM), non‑essential amino acids, 
L‑glutamine, and penicillin/streptomycin were purchased 
from Hyclone (GE Healthcare Life Sciences, Logan, UT, 
USA). Vitamin  E and dimethyl sulfoxide (DMSO) was 
obtained from Sigma‑Aldrich (St.  Louis, MO, USA). 
Gefitinib was purchased from AstraZeneca UK Limited 
(London, UK).

Cell line and cell culture. The NRK‑49F rat renal fibroblast 
cell line was obtained from Bioresource Collection and 
Research Center (Hsinchu, Taiwan). The cell line was cultured 
in DMEM supplemented with 10% FBS, 2 mM L‑glutamine, 
100 IU/ml penicillin/streptomycin, and 0.1 mM non‑essential 
amino acids, and maintained in a humidified atmosphere with 
5% CO2 at 37˚C.

Cell survival rate assay. Survival rates of NRK‑49F cells 
were measured with the MTT assay method as described in 
previous studies (43,44). Briefly, cells were cultured in 96‑well 
plates. On the second day, cells were divided into control 
group and experimental groups and MTT assays (with DMSO 
treatment). were determined at 24 and 72 h according to the 
manufacturer's protocols. Absorbance was determined under a 
multi‑well ELISA reader (SpectraMax Paradigm Multi-Mode 
Microplate Reader; Molecular Devices, Sunnyvale, CA, USA) 
at a wavelength of 570 nm. Survival rates were indicated 
using the following formula: A570 experimental group / A570 
control group.

Cell cycle analysis. Cell cycle analysis was conducted 
using fluorescence‑activated cell sorting as described previ-
ously  (45,46). Briefly, NRK‑49F cells from the control 
and experimental groups were collected and washed with 
phosphate‑buffered saline (PBS; containing 140 mM NaCl, 
2.5 mM KCl, 15 mM Na2HPO4 and 1.6 mM KH2PO4), then 
fixed with 70% ethanol (Echo Chemical Co., Ltd., Miaoli, 
Taiwan) at 4˚C for 1 h. The fixed cells were washed with PBS 
and then treated with 1 ml propidium iodide (PI) solution 
(50 µg/ml PI, 100 µg/ml RNase A, and 0.1% Triton X‑100) for 
30 min at 37˚C. Following this, cells were washed with PBS 
and analyzed by flow cytometry (Partec CyFlow® SL; Sysmex 
Partec GmbH, Görlitz, Germany). The resulting data was 
analyzed with WinMDI version 2.8 software (http://winmdi.
software.informer.com/2.8/).

Sodium dodecyl sulfate (SDS) electrophoresis and western 
blotting. Gel electrophoresis and western blotting were 
performed as previously described  (47,48). Briefly, cells 
were treated with lysis buffer (containing 50 mM Tris-HCl, 

Figure 1. Cell survival rate. NRK‑49F cells were treated with 0.2 nM TGF‑β1. 
The survival rate is ~150% after 24 h of TGF‑β1 treatment, and ~360% after 
72 h of TGF‑β1 treatment. The data was analyzed from four independent 
experiments and presented as the mean ± standard deviation. **P<0.01 vs. the 
24 h group. TGF‑β1, transforming growth factor‑β1.
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120  mM NaCl, 1  mM EDTA and 1% NP-40) and centri-
fuged at 16,000 x g for 10 min at 4˚C. The supernatant layer 
containing proteins was collected and the protein level was 
determined using a Bicinchoninic Acid Protein Assay Reagent 
kit (Pierce Biotechnology, Rockford, IL, USA) with a DU 530 
spectrophotometer (OD 562 nm; Beckman Coulter, Inc., Brea, 
CA, USA). Equal quantities of protein (60 µg) were loaded and 
run on an SDS‑PAGE for 45 min and transferred to a PVDF 
membrane. The membranes were blocked with 5% milk for 
2 h and washed three times with PBS. The membranes were 
incubated with primary antibodies in 5% milk for 2 h. The 
membranes were then washed with PBS three times and 
incubated with secondary antibodies for 1 h. Protein levels 
were analyzed with Western Lightning® Chemiluminescence 
Plus reagent (PerkinElmer, Inc., Waltham, MA, USA) and 
were observed with a Luminescence Image Analysis system 
(LAS‑4000, FUJIFILM Electronic Materials Taiwan Co., 
Ltd., Tainan, Taiwan).

Statistical analysis. Data were measured from four indepen-
dent experiments and are presented as the mean ± standard 

deviation. The data was analyzed using a Student's t‑test 
with Excel 2010 (http://microsoft-excel-2010.updatestar.
com/zh-tw). P<0.05 was considered to indicate a statistically 
significant difference between two groups.

Results

TGF‑β1 induces renal f ibroblast proliferation in a 
time‑dependent manner. Consistent with data from previous 
studies (4,5), the data from the present study demonstrates 
that TGF‑β1 induces proliferation in renal fibroblasts. 
Compared with growth in the control cells (without TGF‑β1 
treatment), the survival rate is ~150% in TGF‑β1‑treated cells 
at 24 h. However, the survival rate is significantly increased 
by >360% in TGF‑β1‑treated cells at 72 h (P<0.01; Fig. 1). 
The present study suggested that TGF‑β1 induces cell prolif-
eration in renal fibroblasts in a time‑dependent manner. The 
present study then used TGF‑β1‑induced cell proliferation 
as an experimental model to investigate the antiprolifera-
tive effects of gefitinib treatment, vitamin E treatment, and 
combination treatment of gefitinib and vitamin E on renal 
fibroblasts.

Gefitinib exerts antiproliferative effects on TGF‑β1‑treated 
renal fibroblasts. The present study aimed to investigate 
whether gefitinib inhibits TGF‑β1‑induced cell proliferation. 
The anti‑proliferative effects of gefitinib (high dose, 100 µM; 
low dose for clinical tumor treatment, 13 µM; and low dose, 
1 µM) were examined in TGF‑β1‑treated renal fibroblasts. 
Compared with the control group, the 24‑h survival rates 
in the present study were ~150% in the TGF‑β1‑treated 
group and ~100% in the TGF‑β1  +  gefitinib‑treated 
groups (Fig. 2A). In addition, the 72‑h survival rates were 
>360% in the TGF‑β1‑treated group and <250% in the 
TGF‑β1 + gefitinib‑treated group (P<0.01; Fig. 2B). Results 
from the present study demonstrated that gefitinib reduces 
TGF‑β1‑induced cell proliferation. Furthermore, as shown in 
Fig. 2, there is no marked difference in survival rates among 
the TGF‑β1 + gefitinib (100, 13 and 1 µM)‑treated groups at 
24 and 72 h. The data from the present study suggested that 
high- and low-dose gefitinib (100, 13 and 1 µM) are equally 
effective at inhibiting TGF‑β1‑induced cell proliferation (as 
shown in Fig. 2B).

Figure 2. Cell survival rates. (A) 24 h and (B) 72 h survival rates of NRK49‑F cells were calculated in the 0.2 nM TGF‑β1‑treated, 0.2 nM TGF‑β1 with 1 µM 
gefitinib‑treated, 0.2 nM TGF‑β1 with 13 µM gefitinib‑treated and 0.2 nM TGF‑β1 with 100 µM gefitinib‑treated groups. At 72 h, the survival rate is markedly 
lower in TGF‑β1 with gefitinib‑treated groups than in TGF‑β1 without gefitinib‑treated group. The data was analyzed from four independent experiments and 
presented as the mean ± standard deviation. **P<0.01 vs. the TGF‑β1 group. TGF‑β1, transforming growth factor‑β1.

Figure 3. Cell survival rates. The 72 h survival rates of NRK49‑F cells 
were calculated in the 0.2 nM TGF‑β1‑treated, 0.2 nM TGF‑β1 with 1 µM 
gefitinib‑treated, 0.2 nM TGF‑β1 with 5 µM vitamin E‑treated and 0.2 nM 
TGF‑β1 with 50 µM vitamin E‑treated groups. The survival rate is mark-
edly lower in the TGF‑β1 with gefitinib‑treated group and the TGF‑β1 with 
50 µM vitamin E‑treated group compared with the TGF‑β1‑treated group. 
The data was analyzed from four independent experiments and presented 
as the mean ± standard deviation. **P<0.01 vs. the TGF‑β1 group. TGF‑β1, 
transforming growth factor‑β1.
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Vitamin E reduces cell proliferation in TGF‑β1‑treated renal 
fibroblasts in a dose‑dependent manner. A previous study 
indicated that vitamin  inhibits the progression of fibrosis 
in obstructed kidneys  (36). Numerous other studies have 
demonstrated that epithelial‑mesenchymal transition (EMT) 
and fibroblast proliferation induce renal fibrosis (49‑52). The 
present study further determined whether vitamin E inhibits 
fibroblast proliferation directly to prevent progression of 
fibrosis. As presented in Fig. 3, the 72‑h survival rate is >360% 
in the TGF‑β1‑treated group, ~330% in the TGF‑β1 + 5 µM 
vitamin E‑treated group, and <230% in the TGF‑β1 + gefi-
tinib‑treated group and the TGF‑β1 + 50 µM vitamin E‑treated 
group. The present study demonstrated that high‑dose 
vitamin E (50 µM) treatment reduces TGF‑β1‑induced cell 
proliferation (P<0.01 vs. the TGF β1 group, Fig. 3) similarly 
to gefitinib treatment. However, low‑dose vitamin E (5 µM) 
treatment did not markedly reduce TGF‑β1‑induced cell 
proliferation. Thus, the results from the present study suggest 

that vitamin E reduces TGF‑β1‑induced renal cell prolifera-
tion in a dose‑dependent manner.

Gefitinib enhances the antiproliferative effects of vitamin E 
on TGF‑β1‑treated renal fibroblasts. The present study 
aimed to investigate whether gefitinib promotes the antipro-
liferative effects of vitamin E on TGF‑β1‑treated cells. The 
72‑h survival rate was >360% in the TGF‑β1‑treated group, 
~330% in the TGF‑β1 + 5 µM vitamin E‑treated group, and 
~160% in TGF‑β1 + 5 µM vitamin E with various concentra-
tions of gefitinib‑treated groups (Fig. 4A). In addition, the 72‑h 
survival rate was >360% in the TGF‑β1‑treated group, ~220% 
in the TGF‑β1 + 50 µM vitamin E‑treated group, and ~150% 
in the TGF‑β1 + 50 µM vitamin E with various concentrations 
of gefitinib‑treated groups (Fig. 4B). These data suggest that 
gefitinib enhances the antiproliferative effects of vitamin E 
on TGF‑β1‑treated cells. However, the antiproliferative 
effects were not markedly different among those treated with 
vitamin E + various concentrations (1, 13 and 100 µM) of 
gefitinib. Furthermore, the data demonstrated that although 
low‑dose vitamin E does not have notable antiproliferative 
effects, combination treatment of low‑dose vitamin E and 
gefitinib effectively reduces TGF‑β1‑induced cell proliferation 
(P<0.01 vs. the TGF-β1 group, Fig. 4A).

Combination treatment of low‑dose gefitinib and low‑dose 
vitamin E has synergistic effects to reduce TGF‑β1‑induced 
renal fibroblast proliferation. As presented in Figs.  2 
and 3, gefitinib and vitamin E have been demonstrated to 
exert anti‑proliferative effects on TGF‑β1‑treated cells. 
The current study further analyzed the anti‑proliferative 
effects on TGF‑β1‑induced cell proliferation in the gefi-
tinib‑treated group, the vitamin  E‑treated group, and the 
gefitinib + vitamin E‑treated group. As presented in Fig. 5, 
the 72‑h survival rate was >360% in TGF‑β1‑treated cells, 
~340% in TGF‑β1 with low‑dose vitamin E‑treated group, and 
~250% in TGF‑β1 with high‑dose vitamin E‑treated or gefi-
tinib groups. These data indicate that low‑dose vitamin E does 
not have marked anti‑proliferative effects on TGF‑β1‑induced 
cell proliferation; however, high‑dose vitamin  E and 
low‑dose gefitinib have similar anti‑proliferative effects on 

Figure 4. Cell survival rates. (A) The 72 h survival rates of NRK49‑F cells were calculated in the 0.2 nM TGF‑β1‑treated, 0.2 nM TGF‑β1 with 5 µM 
vitamin E‑treated, 0.2 nM TGF‑β1 with 5 µM vitamin E + 1 µM gefitinib‑treated, 0.2 nM TGF‑β1 with 5 µM vitamin E + 13 µM gefitinib‑treated and 0.2 nM 
TGF‑β1 with 5 µM vitamin E + 100 µM gefitinib‑treated groups. (B) The 72 h survival rates of NRK49‑F cells were calculated in the 0.2 nM TGF‑β1‑treated, 
0.2 nM TGF‑β1 with 50 µM vitamin E‑treated, 0.2 nM TGF‑β1 with 50 µM vitamin E + 1 µM gefitinib‑treated, 0.2 nM TGF‑β1 with 50 µM vitamin E + 13 µM 
gefitinib‑treated, and 0.2 nM TGF‑β1 with 50 µM vitamin E + 100 µM gefitinib‑treated group. The data was analyzed from four independent experiments and 
presented as the mean ± standard deviation. **P<0.01 vs. the TGF‑β1 group. TGF‑β1 (T), transforming growth factor‑β1; E, vitamin E; G, gefitinib.

Figure 5. Cell survival rates. The 72 h survival rates of NRK49‑F cells were 
calculated in the 0.2 nM TGF‑β1‑treated, 0.2 nM TGF‑β1 with 1 µM gefi-
tinib‑treated, 0.2 nM TGF‑β1 with 5 µM vitamin E‑treated, 0.2 nM TGF‑β1 
with 50 µM vitamin E‑treated, 0.2 nM TGF‑β1 with 1 µM gefitinib + 5 µM 
vitamin  E‑treated, and 0.2  nM TGF‑β1 with 1  µM gefitinib  +  50  µM 
vitamin E‑treated groups. The data was analyzed from four independent 
experiments and presented as the mean ± standard deviation. **P<0.01 vs. the 
TGF‑β1 group. TGF‑β1 (T), transforming growth factor‑β1; E, vitamin E; 
G, gefitinib.
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TGF‑β1‑induced cell proliferation. Furthermore, the present 
study demonstrated that the 72‑h survival rates are ~160% 
in TGF‑β1‑induced cells with low‑dose gefitinib + high‑dose 
or low‑dose vitamin E‑treated groups. These data indicate 
that the anti‑proliferative effects in combination treatment 
with low‑dose gefitinib and low‑dose vitamin E is similar to 
combination treatment with low‑dose gefitinib and high‑dose 
vitamin E. Furthermore, the combination treatment with gefi-
tinib and vitamin E has stronger anti‑proliferative effects than 
gefitinib treatment alone or vitamin E treatment alone. Thus, 
the results of the present study suggest that combination treat-
ment of low‑dose gefitinib and low‑dose vitamin E reduces 
TGF‑β1‑induced cell proliferation (P<0.01 vs. the TGF-β1 
group, Fig. 5).

Combination treatment with gefitinib and vitamin E reduces 
TGF‑β1‑induced cell proliferation associated with the 
cell cycle and ERK signaling pathway. The cell cycle was 
analyzed in the control group, the TGF‑β1‑treated group, 
and the TGF‑β1 with gefitinib + vitamin E‑treated group. As 
presented in Fig. 6A, the G1 phase was ~69.6% and the S‑phase 
is ~2.45% in the control group. As presented in Fig.  6B, 
the G1 phase was ~41.9% and the S‑phase was ~10.87% in 
TGF‑β1‑treated group. As presented in Fig. 6C, the G1 phase 
was ~61.16% and the S‑phase was ~4.77% in TGF‑β1 with gefi-
tinib + vitamin E‑treated group. All data obtained from flow 
cytometry were analyzed using Student's t‑test. The S‑phase 
percentage was significantly increased in the TGF‑β1‑treated 
group compared with the control (P<0.05, as determined 
from four independent flow cytometry experiments, data 
not shown), this indicates that TGF‑β1 accelerate entry to 
S‑phase, resulting in cell proliferation. Furthermore, S‑phase 
percentage is significantly increased in the TGF‑β1‑treated 
group compared with the TGF‑β1 with gefitinib + vitamin 
E‑treated group. The result suggested that combination 
treatment with gefitinib and vitamin E may ameliorate the 
increase in cells entering the S‑phase in TGF‑β1‑treated cells. 
Furthermore, previous studies have demonstrated MAPK 
signaling pathways, including ERK and p38 phosphoryla-
tion, are associated with renal fibroblast proliferation (41,42). 
Thus, ERK and p38 phosphorylation, p‑ERK and p‑p38, were 
analyzed in the control group, the TGF‑β1‑treated group, and 
the TGF‑β1 with gefitinib + vitamin E‑treated group (Fig. 7). 
Results from the present study demonstrated that p‑ERK was 
not observed in the control group (Fig. 7, lane 1), but is evident 
in the TGF‑β1‑treated group (Fig. 7, lane 2). This suggests 

TGF‑β1 may induce renal cell proliferation may be via ERK 
phosphorylation. However, p‑ERK was also not observed in 
the TGF‑β1 with gefitinib + vitamin E‑treated group (Fig. 7, 
lane 3). The data indicated gefitinib + vitamin E treatment 
inhibits ERK phosphorylation. However, the p‑p38 levels 
were not significantly different among the three groups. The 
results from the current study suggest that combination treat-
ment with gefitinib + vitamin E reduces TGF‑β1‑induced cell 
proliferation associated with ERK phosphorylation.

Discussion

Gefitinib, an EGFR tyrosine kinase inhibitor, inhibits cell 
growth  (21,22) and has been used for various tumor treat-
ments, including, lung, esophageal and breast cancer (25,29,53). 
Numerous studies have demonstrated that therapeutic doses 
of gefitinib for clinical tumor treatment result in side effects, 
including severe hepatotoxicity (29), acneiform eruption, severe 
xerosis of skin, paronychia (30), and empyema (31). However, 
in the present study, the results indicated that there are similar 
anti‑proliferative effects on TGF‑β1‑treated renal fibroblasts 
among high‑dose, therapeutic dose, and low‑dose gefitinib 
treatments (Fig. 2). The results of the present study indicate that 
gefitinib, a conventional therapeutic agent for tumor treatment, 
may be useful for the treatment of renal fibrosis at a low‑dose.

Figure 7. Western blot analysis. ERK and p38 phosphorylation were analyzed 
at 2 h. p‑ERK and p‑p38 indicated the phosphorylation levels of ERK and 
p38, respectively. ERK and p38 were internal controls. p‑ERK was observed 
in TGF‑β1‑treated cells, however, p‑ERK was not observed in the control or 
TGF‑β1 with gefitinib and vitamin E treated groups. Lane 1, control cells; 
lane 2, 0.2 nM TGF‑β1‑treated cells; lane 3, 0.2 nM TGF‑β1 with 1 µM gefi-
tinib + 5 µM vitamin E‑treated cells.

Figure 6. Cell cycle analysis. The cell cycle was analyzed at 24 h by flow cytometry in (A) Control cells, (B) 0.2 nM TGF‑β1‑treated cells and (C) 0.2 nM 
TGF‑β1 with 1 µM gefitinib + 5 µM vitamin E‑treated cells. The S‑phase percentage was markedly increased in TGF‑β1‑treated cells, however, treatment with 
a combination of gefitinib and vitamin E decreased TGF‑β1‑induced S‑phase percentage increases. TGF‑β1 (T), transforming growth factor‑β1.
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Multiple studies have demonstrated that renal fibrosis 
is induced via the EMT process and renal fibroblast prolif-
eration (49‑52). In addition, it has been reported that EMT 
and fibroblast proliferation are induced by activation of the 
TGF‑β1 signaling pathway (54‑57). Similar to these studies, 
data from the present study also showed that TGF‑β1 induces 
renal fibroblast proliferation. Previous research has indicated 
that vitamin E in combination with other therapeutic agents 
reduces progression of TGF‑β1‑induced fibrosis (37,38). The 
current study further demonstrated that vitamin E alone 
inhibits TGF‑β1‑induced fibroblast proliferation (Fig. 3). 
In addition, high‑dose vitamin E, like gefitinib, has a more 
marked anti‑proliferative effect than low‑dose vitamin E. 
Although the anti‑fibrotic effects exerted by vitamin  E 
remain to be elucidated, the present study demonstrated that 
vitamin E reduces proliferation in TGF‑β1‑treated fibro-
blasts.

Results from the present study demonstrate that combina-
tion treatment with gefitinib and vitamin E has an increased 
anti‑proliferative effect on TGF‑β1‑treated cells compared 
with gefitinib or vitamin E treatment alone. Furthermore, 
these results also demonstrated that combination treat-
ment with low‑dose gefitinib and low‑dose vitamin E has 
anti‑proliferative effects similar to combination treatment 
with high‑dose gefitinib and high‑dose vitamin E. The results 
of the current study demonstrate that low‑dose gefitinib and 
low‑dose vitamin E treatment may be a potential therapeutic 
strategy for renal fibrosis and an effective alternative to avoid 
high‑dose gefitinib‑induced side effects.

Previous studies have suggested that TGF‑β1 induces 
cell cycle‑associated protein expression (4,58) and activates 
MAPK signaling pathways (59,60). Similar to these studies, 
the results from the present study have also demonstrated that 
TGF‑β1 promotes cells to enter the S‑phase and activate ERK 
phosphorylation. In addition, the present study also demon-
strated that combination treatment with low‑dose gefitinib and 
vitamin E induces G1 arrest and reduces ERK phosphorylation 
levels to inhibit TGF‑β1‑induced proliferation.

In conclusion, the present study demonstrated that combi-
nation treatment with low‑dose gefitinib and vitamin E has 
anti‑proliferative effects on TGF‑β1‑treated fibroblasts via cell 
cycle arrest and inactivation of the ERK signaling pathway.
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