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Abstract. Low back pain is a prevalent disease, which leads 
to suffering and disabilities in a vast number of individuals. 
Degenerative disc diseases are usually the underlying causes 
of low back pain. However, the pathogenesis of degenerative 
disc diseases is highly complex and difficult to determine. 
Current therapies for degenerative disc diseases are various. 
In particular, cell‑based therapies have proven to be effective 
and promising. Our research group has previously isolated 
and identified the cartilage endplate‑derived stem cells. In 
addition, alternative splicing is a sophisticated regulatory 
mechanism, which greatly increases cellular complexity and 
phenotypic diversity of eukaryotic organisms. The present 
study continued to investigate alternative splicing events in 
osteogenic differentiation of cartilage endplate‑derived stem 
cells. An Affymetrix Human Transcriptome Array 2.0 was 
used to detect splicing changes between the control and 
differentiated samples. Additionally, molecular function and 
pathway analysis were also performed. Following rigorous 
bioinformatics analysis of the data, 3,802 alternatively spliced 
genes were identified, and 10 of these were selected for vali-
dation by reverse transcription‑polymerase chain reaction. 
Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes pathway analysis also revealed numerous enriched 
GO terms and signaling pathways. To the best of our knowl-
edge, the present study is the first to investigate alternative 
splicing mechanisms in osteogenic differentiation of stem 
cells on a genome‑wide scale. The illumination of molecular 
mechanisms of stem cell osteogenic differentiation may assist 
the development novel bioengineered methods to treat degen-
erative disc diseases.

Introduction

Low back pain (LBP) is a widely spread disease, which generally 
requires medical care and can lead to chronic disabilities (1). 
It is reported that ~84% of the general population suffer from 
LBP in their lifetime (2). Degenerative disc disease (DDD) is 
a commonly observed reason for LBP (3). However, it is very 
challenging to investigate the pathogenesis of DDD on the 
account of the vague DDD definitions and multiple interdepen-
dent factors involved, including changed mechanical loading (4), 
hampered nutrition supply (5), hereditary factors (6) and altered 
extracellular matrix (ECM) composition (7). The removal of 
protruding disc tissues is the prevalent therapeutic method for 
DDD, which relieves painful symptoms of patients; however, 
this overlooks the underlying biological changes of discs. In 
terms of drawbacks of current treatments, advanced novel 
therapies are urgently required, which directly deal with the 
underlying biochemical causes of DDD to both relieve symp-
toms and reverse disc degeneration. In recent years, cell‑based 
therapies regenerating disc structure and function have aroused 
people's interests (8). In particular, mesenchymal stem cells 
(MSCs) are recognized as an eligible cell source for disc 
targeting tissue engineering. A great number of previous studies 
have confirmed the ability of MSCs to self‑renew, expand and of 
multilineage differentiation (9‑12). However, the microenviron-
ment of degenerated discs does not suit exogenous MSCs due to 
the pathological changes occurring in degenerated discs. Hence, 
it may be a better choice to concentrate on stem cells in situ 
in degenerated discs. Numerous previous studies have reported 
evidence for existence of stem cells in degenerated interverte-
bral discs (IVDs) (11,13,14). Notably, our research group has 
previous isolated cartilage endplate‑derived stem cells (CESCs) 
and confirmed their multilineage differentiation capacity (13). 
The cartilage endplate (CEP) refers to a thin layer of hyaline 
cartilage existing between the vertebral body and the disc, and 
it prevents nucleus pulposus (NP) from protruding out to the 
adjacent vertebrae. It is speculated that CEP degeneration may 
be involved in the initiation and development of DDD (15,16), 
since CEP is the predominant path through which nutrients 
get to IVDs and supply them. CEP degeneration has several 
manifestations, including CEP calcification (17), proteoglycan 
loss (18) and hampered ECM synthesis (19). It is reported that 
calcification or sclerosis of CEP inhibited nutrient diffusion 
into adjacent IVDs, resulting in DDD (20). Therefore, it may 
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be helpful to modify the differentiation ability of CESCs to 
relieve CEP calcification and restore CEP structure. However, 
the mechanism of CESC differentiation remains to be fully 
understood.

Alternative splicing (AS) is a sophisticated regulatory 
process in which a single pre‑mRNA generates different RNA 
isoforms, potentially leading to structurally and functionally 
diverse proteins  (21,22). It is estimated that AS occurs to 
~95% of multi‑exonic genes in eukaryotic organisms (23,24). 
Generally speaking, AS is divided into the following types: 
Exon skip/inclusion, mutually exclusive exons, alterna-
tive 5'/3' splice sites, intron retention, alternative promoters 
and polyadenylation sites (22). In addition, regulation of AS 
is elaborately achieved through cell type‑, development‑ and 
extracellular signal‑related pathways (25). Aberrated AS of 
genes is reported to serve roles in numerous human diseases, 
including autoimmune diseases, neurodegenerative diseases 
and cancer  (26‑28). Lately, the AS mechanism underlying 
stem cell differentiation has piqued people's interest. Kazant-
seva et al (29) reported that depletion of hTAF4‑TAFH domain 
from TAF4 isoforms caused enhanced chondrogenic differen-
tiation of human MSCs (29). In addition, a novel alternative 
trasncript‑quantitative polymerase chain reaction method was 
created by McAlinden et al (30) to quantify isoforms of alter-
natively spliced Col2a1 gene, and the results indicated that 
the majority of ATDC5 cells were the chondroprogenitor cells 
induced by the standard chondrogenic differentiation method. 
Furthermore, Longo et al (31) found that in osteogenic differen-
tiation of human MSCs, PTHrP isoforms became increasingly 
selective and were considered as novel molecular markers of 
stem cell state. Therefore, it is very meaningful and rewarding 
to elucidate AS mechanism during stem cell differentiation.

As mentioned above, it may be helpful to promote chon-
drogenic differentiation and inhibit osteogenic differentiation 
of CESCs to alleviate CEP calcification and rebuild nutrition 
provision, repairing and regenerating disc degeneration. The 
present study aimed to investigate the mechanism of AS 
underlying osteogenic differentiation of CESCs. The isolated 
CESCs were induced to undergo osteogenic differentiation and 
a genome‑wide analysis was performed on both the undiffer-
entiated and differentiated samples using Affymetrix Human 
Transcriptome Array (HTA) 2.0 system. Following data extrac-
tion and pre‑treatment, a comparative analysis of alternative 
splicing events (ASE) was performed between the controlled 
CESCs (undifferentiated) and osteogenically differentiated 
CESCs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses were performed to 
add functional annotation of genes of interest to exemplify 
AS mechanisms. The present study is the first, to the best of 
our knowledge, to elucidate the AS mechanisms in osteogenic 
differentiation of stem cells on a genome‑wide scale.

Materials and methods

Ethics statement. The CEP tissues used in the present study 
was obtained from seven patients who underwent discectomy 
and fusion surgeries as a result of lumbar degenerative diseases 
at the Department of Orthopedics, Xinqiao Hospital, Third 
Military Medical University (Chongqing, China) (Table I). 
The present study was approved by the Ethics Committee 

of Xinqiao Hospital, Third Military Medical University. All 
procedures described below were in accordance with the 
Helsinki Declaration. Written informed consent was obtained 
from each patient and we extensive precautions were made to 
protect the privacy of each donor.

Agarose culture to select CESCs. The agarose culture 
method was used, according to a previous study  (32). 
Briefly, a 60 mm‑diameter culture dish was coated with 1% 
low‑melting point agarose containing an equal volume of 
DMEM/F12  (37˚C) and  2% low‑melting point agarose. 
Then,  0.75  ml  DMEM/F12,  0.75  ml  2% low‑melting 
point agarose and  1.5  ml DMEM/F12  (20%  FBS) 
containing  5x104  P1  CEP‑derived cells were mixed and 
transferred to the coated culture dishes. The final concentra-
tion of FBS was 10%. The culture dishes were maintained 
at 4˚C for 15 min until the gel solidified. The culture dishes 
were subsequently incubated in a humidified atmosphere 
containing 5% CO2 at 37˚C. The culture medium was changed 
twice every week. After 6 weeks, cell clusters with a diam-
eter >50 µm were isolated by sterile Pasteur pipette and were 
sub‑cultured in 6‑well plates (Corning Inc., Corning, NY, 
USA). Passage 3 CESCs were used in the present study.

Osteogenic differentiation assay. The CESCs were seeded 
at 3x104 cells/cm2 in 6‑well culture plates pre‑coated with 
gelatin. The complete osteogenic differentiation medium 
(cat. no. HUXMA‑90021; Cyagen Biosciences, Inc., Guangzhou, 
China) consisted of 175 ml basal medium, 20 ml FBS, 2 ml peni-
cillin‑streptomycin,  2  ml  glutamine,  400  µl  ascor-
bate, 2 ml β‑Glycerophosphate and 20 µl dexamethasone. 
After CESCs reached 50‑70% confluence, the culture medium 
was replaced with  2  ml complete medium. The complete 
medium was replaced every 3 days and the cells were cultured 
for 21 days.

Affymetrix HTA 2.0. CESCs were induced to undergo osteo-
genic differentiation or left untreated in the undifferentiated 
state. Differentiated and undifferentiated samples were 
treated with TRIzol reagent and sent to Bioassay Laboratory 
of CapitalBio Corporation (Beijing, China). The alternative 
splicing events were analyzed using HTA  2.0, purchased 
from Affymetrix (Santa Clara, CA, USA). The Affymetrix 
HTA  2.0  contained ~339,000  probe sets (10  probes/exon 
and 4 probes/junction), covering ~67,000 transcript clusters 
and 573,000 probe selection regions (PSRs). Transcript clusters 
were referred to as genes in the present study for simplicity. 
The HTA 2.0 allowed probes to target exons and junctions 
within genes and provided AS information. The labeling, 
hybridization, scanning and data extraction of microarray were 
performed by Bioassay Laboratory of CapitalBio Corporation 
(Beijing, China), according to the recommended Affymetrix 
protocols. Briefly, the fluorescence signals of the microarray 
were scanned and saved as DAT image files. The Affymetrix 
GeneChip® Command Console software transformed DAT 
files into CEL files, to change image signals into digital 
signals, which recorded the fluorescence density of probes. 
Next, the Affymetrix Expression Console software to pre‑treat 
CEL files through Robust Multichip Analysis algorithm (33), 
including background correction, probeset signal integration 
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and quantile normalization. Following pre‑treatment, the 
obtained chp files were analyzed by Affymetrix Transcriptome 
Analysis Console software to detect alternatively spliced genes 
(ASGs). The Expression Console and Transcriptome Analysis 
Console software were provided by Affymetrix. To identify 
significantly enriched GO terms and functional pathways, both 
the publicly available web‑tools KEGG (http://www.genome.
jp/kegg/) and DAVID (http://david.abcc.ncifcrf.gov/tools.jsp), 

and the commercial database Molecule Annotation System 
(MAS; CapitalBio Corporation) were used. The microarray 
data were submitted to NCBI's Gene Expression Omnibus 
(accession number, GSE63897). The overall workflow of the 
HTA data analysis is presented in Fig. 1.

Criteria for detecting ASGs. The Spicing Index (SI) 
model (34,35) was used to identify ASGs. The SI represented 

Table I. Patient information.

Case no.	 Gender	 Age (years)	 Diagnosis	 Degenerated disc level	 Surgery type

1	 Female	 56	 Disc herniation	 L4‑L5	 MEDa

2	 Female	 67	 Disc herniation	 L4‑L5	 MED
3	 Male	 68	 Disc herniation	 L5‑S1	 TLIFb

4	 Female	 50	 Spondylolisthesis	 L4‑L5	 Quadrant assisted TLIF
5	 Male	 52	 Disc herniation	 L5‑S1	 MED
6	 Male	 58	 Disc herniation	 L5‑S1	 TLIF
7	 Male	 60	 Disc herniation	 L4‑L5	 TLIF

aMED, microendoscopic discectomy; bTLIF, transforaminal lumbar interbody fusion.
 

Table II. Primer sequences for alternatively spliced gene confirmation by RT‑PCR.

Gene symbol	 Transcript ID	 Primer sequences (5'‑3')

ADH1C	 NM_000669	 F: CGTTCAGATGAGCATGTGGTT
		  R: AAGGTGCTGACGCCGAC
KDM5D	 NM_004653	 F: TTAAGGCCCGACATGGAACC
		  R: CCGCTCCACATTGGGAATCT
PDE4B	 NM_002600	 F: GCAGGAGTGTGATGACGGTG
		  R: GATCCAGTGGACTCCGACCT
USP9Y	 NM_004654	 F: ACTGTGCGTTCTTCTCCGTCA
		  R: AAGACACAAGCATAAAGGTAGCAG
ADAMTSL3	 NM_207517	 F: TGTCCTGGACGTTGCATGGG
		  R: GCAGCACCTTTGTTTGTAGCG
NTRK2	 NM_006180	 F: ACAATGCACGCAAGGACTTC
		  R: AAATCTCCCACAACACGACCC
C7	 NM_000587	 F: CCTCAGGTTGGCATTTTGTCG
		  R: GCAATGGCACAGACAATGGG
PKP2	 NM_004572	 F: TGTGTGGGGCCTTGAGAAAC
		  R: CTCCGTCAGCGTAAGCAATG
RXFP1	 NM_001253732	 F: TGTAACGGTGTGGACGACTG
		  R: ACCGATGGAACAGCTCGTAA
MLPH	 NM_001042467	 F: TGCTTGCCCCCATTATCCAG
		  R: CTCGTTCAGATGGGCAGTGT
GAPDH	 NM_002046.5	 F: CTCTGCTCCTCCTGTTCGAC
		  R: GCGCCCAATACGACCAAATC

F, forward; R, reverse; RT‑PCR, reverse transcription‑polymerase chain reaction; ADH1C, alcohol dehyrogenase 1C; KDM5D, lysine‑specific 
demethylase 5D; PDE4B, phosphodiesterase 4B; USP9Y, ubiquitin specific peptidase 9, Y‑linked; ADAMTSL3, A disintegrin‑like and me-
talloprotease domain with thrombospondin type I motifs‑like 3; NTRK2, neurotrophic tyrosine kinase, receptor, type 2; C7, complement 
component 7; PKP2, plakophilin‑2; RXFP1, relaxin/insulin‑like family peptide receptor 1; MLPH, melanophilin.
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the ratio of the exon signal intensities normalized against the 
gene signal intensities between two experimental conditions, 
and was used to detect the exon exclusion/inclusion level. The 
SI value was calculated in following ways:

The NI (i,j)A represented the signal intensity of i‑th exon 
normalized against the j‑th gene in condition A. The subscript 
U indicated undifferentiated condition and the subscript D 
indicated the differentiated condition. The default filter criteria 
was set as SI (linear) ≤‑2 or ≥2.

ASG validation by semi‑quantitative reverse transcription 
(RT)‑PCR. RT‑PCR was performed to identify the ASGs. 
The total RNA was extracted using TRIzol reagent and was 
used to generate cDNA using the the relevant kits (Takara Bio, 
Inc., Otsu, Japan), according to the manufacturer's protocol. 
The quality of the total RNA was examined using a spec-
trophotometer (Nanodrop 2000; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA) at 260 and 280 nm. An oligo (dT) 
primer was used to reverse transcribe 1 µg total RNA into 
cDNA using the PrimeScrip RT reagent kit with gDNA Eraser 
(cat. no. RR047A; Takara Bio, Inc.) and 1 µl cDNA template 
was added for each reaction. The primers of genes of interest 
were designed in expressed constitutive exons flanking the 
target exon, using the Primer Premier 6.0 software (Premier 
Biosoft International, Palo Alto, CA, USA). GAPDH was used 
as the internal control. All primers are listed in Table II. The 
candidate genes for ASG validation were selected according 
to following criteria: i) Higher absolute value of SI was firstly 
considered; ii) whole exon gain/skip was privileged; iii) first 
and last alternative exons were excluded because of primer 
design difficulties.

Statistical analysis. Student's t‑test was used to determine the 
significance between groups. The data were expressed as the 
mean ± standard deviation. P<0.05 was considered to indicate 
a statistically significant difference.

Results

ASG detection and validation during osteogenic differentia‑
tion of CESCs. Analysis of HTA 2.0 data was performed using 
rigorous statistical methods to detect ASGs in the osteogenic 
differentiation of CESCs. According to the criteria and the SI 
algorithm mentioned above, this analysis of genome‑wide AS 
identified 11,040 alternatively spliced exons, which belonged 
to 3,802 ASGs during osteogenic differentiation of CESCs. 
In addition, 6,149 (55%) alternatively spliced exons with ≥2 SI 
value were considered as ‘general exon inclusion’ events, while 
the remaining 4,891 (45%) exons were referred to as ‘general 
exon exclusion’ events. Furthermore, it was found that 52% 
(1,990/3,802) of the ASGs contained 83% (9,228/11,040) of 
the alternatively spliced exons, thus confirming that multiple 
AS events can occur to the same gene. During osteogenic 
differentiation of CESCs, each ASG had 4.6 (9,228/1,990) 
alternatively spliced exons on average. The ADH1C gene was 
a typical example, which had 9 alternatively spliced exons 
detected and suggested complicated splicing regulation. Based 
on these results, 10 ASGs were selected for RT‑PCR validation 
(Table III). Fig. 2 showed that 6/10 the selected ASGs were 
validated successfully.

Molecular function analysis of ASGs during osteogenic differ‑
entiation of CESCs. GO enrichment analysis was performed 
on the ASGs during osteogenic differentiation of CESCs. 
The results suggested that numerous important GO terms 
were regulated by AS in osteogenic differentiation of CESCs, 
including regulation of transcription, metal ion binding, 
signal transduction and cell adhesion. Fig.  3  highlighted 
the top 10 GO functions regulated in the biological process, 
molecular function and cellular component categories during 

Table III. Summary of alternatively spliced genes selected for validation by RT‑PCR.

Gene symbol	 AS exon	 PSR ID	 Splicing index	 Microarray results	 RT‑PCR results

ADH1C	   5	 PSR04019704.hg.1	 8.1	 Exon inclusion	 Exon inclusion
C7	 12	 PSR05002182.hg.1	 5.02	 Exon inclusion	 Exon inclusion
MLPH	   5	 PSR02023043.hg.1	 5.33	 Exon inclusion	 Exon inclusion
NTRK2	 22	 PSR09004159.hg.1	 4.94	 Exon inclusion	 Exon inclusion
PDE4B	   4	 PSR01011724.hg.1	 4.47	 Exon inclusion	 Exon inclusion
RXFP1	   7	 PSR04011118.hg.1	‑ 5.4	 Exon exclusion	 Exon exclusion
ADAMTSL3	 29	 PSR15007327.hg.1	‑ 3.94	 Exon exclusion	 Exon inclusion
KDM5D	   3	 PSR0Y001860.hg.1	 7.87	 Exon inclusion	 Exon exclusion
PKP2	   7	 PSR12017926.hg.1	‑ 5.17	 Exon exclusion	 Exon inclusion
USP9Y	 39	 PSR0Y000610.hg.1	 10.43	 Exon inclusion	 Exon exclusion

AS, alternatively spliced; PSR, probe selection region; RT‑PCR, reverse transcription‑polymerase chain reaction; ADH1C, alcohol dehyroge-
nase 1C; C7, complement component 7; MLPH, melanophilin; NTRK2, neurotrophic tyrosine kinase, receptor, type 2; PDE4B, phosphodies-
terase 4B; RXFP1, relaxin/insulin‑like family peptide receptor 1; ADAMTSL3, A disintegrin‑like and metalloprotease domain with thrombo-
spondin type I motifs‑like 3; KDM5D, lysine‑specific demethylase 5D; PKP2, plakophilin‑2; USP9Y, ubiquitin specific peptidase 9, Y‑linked.
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osteogenic differentiation of CESCs at the level of alternative 
splicing.

The 3,802 ASGs were analyzed by KEGG pathway analysis 
in order to determine functional cellular pathways regulated 
during osteogenic differentiation of CESCs. Based on the 
results, several cellular pathways were affected, including 
the MAPK signaling pathway, insulin signaling pathway, 
cell adhesion molecules and calcium signaling pathway. 
Fig. 4 demonstrated the top 10 KEGG pathways regulated in 
osteogenic differentiation of CESCs at the level of AS.

Discussion

Tissue engineering is a bioengineering method to combine 
seed cells, biomaterials and biological factors to repair and 
regenerate damaged tissues and organs (36). The differentia-
tion capacity is of great importance to seed cells, usually stem 
cells, to accomplish the repair and regeneration tasks. In recent 
years, the molecular mechanism of osteogenic differentiation 

of stem cells has been extensively studied (37‑39). In particular, 
it is a very powerful approach to analyze gene transcription 
and translation on a genome‑wide scale to fully elucidate 
the mechanisms of osteogenic differentiation of stem cells. 
This approach has been applied to several previous studies to 
investigate the global gene expression, and post‑transcriptional 
and epigenetic changes in the differentiation process (40‑43). 
However, little contribution has been made to obtain a compre-
hensive and coherent view of AS mechanisms of stem cell 
osteogenic differentiation in a genome‑wide scale. The present 
study detected and verified ASEs in osteogenic differentiation 
of CESCs, and analyzed molecular functions and pathways 
using bioinformatics methods. To the best of our knowledge, 
the present study is the first to determine the ASEs in osteo-
genic differentiation of stem cells on the whole genome level.

The HTA 2.0 platform was used in the present study to 
cover the entire genome to both identify evidence‑based 
sequences and discover novel ASEs. Previously, researchers 
tended to analyzed expression sequence tag (EST) data for the 

Figure 1. Overall workflow of the HTA data analysis. Briefly, CESCs were isolated and induced into osteogenic differentiation. The total RNA was extracted, 
labeled and hybridized to HTA 2.0. The Affymetrix AGCC, EC and TAC software were used to scan and analyze the microarray data. HTA, human transcrip-
tome array; CESCs, cartilage endplate‑derived stem cells; AGCC, Affymetrix GeneChip® command console; EC, expression console; TAC, Transcriptome 
analysis console.
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purpose of discovering novel ASEs (44). However, it should 
be noted that the number of sequenced ESTs is really small 
and the available EST data leave more ASEs undetectable. 
The present study detected 3,802 ASGs with 11,040 ASEs in 
osteogenic differentiation of CESCs. Additionally, 6 ASGs 
were validated successfully by RT‑PCR. These novel validated 
isoforms of ASGs have not been recorded in the NCBI Refer-
ence Sequences database previously, hence further studies are 
required to be carried out to determine cellular and molecular 
functions of these isoforms. In terms of the molecular functions 
and pathways of these detected ASGs, GO analysis presented 
enrichment of numerous GO terms, including signal transduc-
tion, cell differentiation and cell cycle arrest. The enriched 
signal transduction process suggested that AS may modulate 
signaling pathways to exert its influence on cellular function 
networks. Besides, during osteogenic differentiation process, 

Figure 4. KEGG pathway analysis of alternatively spliced genes in osteo-
genic differentiation of CESCs. The top 10 KEGG pathways regulated in 
osteogenic differentiation of CESCs at the level of alternative splicing are 
shown. KEGG, Kyoto Encyclopedia of Genes and Genomes; CESCs, carti-
lage endplate‑derived stem cells.

Figure 2. ASGs confirmed in osteogenic differentiation of CESCs by RT‑PCR. A total of 6/10 ASGs were confirmed successfully by RT‑PCR. The control 
sample refers to undifferentiated CESCs and GAPDH was used as internal control. ASG, Alternatively spliced gene; CESCs, cartilage endplate‑derived stem 
cells; RT‑PCR, reverse transcription‑polymerase chain reaction; OD, osteogenically differentiated; ADH1C, alcohol dehyrogenase 1C; C7, complement com-
ponent 7; MLPH, melanophilin; NTRK2, neurotrophic tyrosine kinase, receptor, type 2; PDE4B, phosphodiesterase 4B; RXFP1, relaxin/insulin‑like family 
peptide receptor 1; GAPDH, glyceraldehyde 3‑phosphate dehydrogenase; Incl, including; Excl, excluding; Ex, exon; bp, base pairs.

Figure 3. GO analysis at the AS level during osteogenic differentiation of CESCs. The top 10 GO terms regulated in (A) biological process, (B) molecular 
function and (C) cellular component during osteogenic differentiation of CESCs at the level of AS are shown. GO, gene ontology; CESCs, cartilage end-
plate‑derived stem cells; AS, alternative splicing.

  A   B   C



MOLECULAR MEDICINE REPORTS  14:  1389-1396,  2016 1395

the state of CESCs shifted from proliferation to differentiation. 
Therefore, cell cycle arrest occurred and cell growth stopped 
slowly. Furthermore, the present study also performed KEGG 
pathway analysis and revealed several enriched signaling path-
ways, including focal adhesion, ECM‑receptor interaction and 
the MAPK signaling pathway. The focal adhesion signaling 
pathway is critical for cell‑matrix adhesion and serves impor-
tant roles in numerous biological processes, including cell 
proliferation, cell differentiation and gene expression regula-
tion (45‑47). The significantly enriched focal adhesion pathway 
suggested an CESC and ECM interaction in osteogenic 
differentiation. Additionally, the MAPK signaling cascade 
is a highly conserved module, which is involved in diverse 
cellular processes, including cell differentiation, migration and 
proliferation (48‑50). Therefore, the results of pathway analysis 
indicate that AS interacts with signaling pathways to regulate 
the osteogenic differentiation process.

The present stusdy used the HTA 2.0 platform to investigate 
AS events in osteogenic differentiation of CESCs. The results 
revealed various ASGs, and associated molecular functions and 
pathways. Further research is required to illuminate downstream 
mechanisms of AS modulation. The structure and function of 
novel isoforms may be potential targets in future studies.
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