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Abstract. Congenital heart disease (CHD) is a complex 
illness with high rates of morbidity and mortality. In embry-
onic development, the heart is the first formed organ, which 
is strictly controlled by gene regulatory networks, including 
transcription factors, signaling pathways, epigenetic factors 
and microRNAs. Bone morphogenetic protein (BMP)‑2 and ‑4 
are essential in cardiogenesis as they can induce the expression 
of transcription factors, NKX2‑5 and GATA binding protein 4, 
which are important in the development of the heart. The inhi-
bition of BMP‑2 and ‑4 inhibits the late expression of NKX2‑5 
and affects cardiac differentiation. The aim of the present 
study was to investigate whether BMP‑2 and ‑4 variations may 
be associated with CHD in Chinese Han populations. The 
rs1049007, rs235768 and rs17563 single nucleotide polymor-
phisms (SNPs), which are genetic variations located within 
the translated region of the BMP‑2 and ‑4, were evaluated 
in 230 patients with CHD from the Chinese Han population 
and 160 non‑CHD control individuals. Statistical analyses 
were performed using the χ2 test, implemented using SPSS 
software (version 13.0). The Hardy‑Weinberg equilibrium 
test was performed on the population using online Online 
Encyclopedia for Genetic Epidemiology studies software, 
and multiple‑sequence alignments of the BMP proteins 
were performed using Vector NTI software. No statistically 
significant associations were identified between these genetic 
variations and the risk of CHD (rs1049007, P‑value=0.560; 

rs235768, P‑value=0.972; rs17563, P‑value=0.787). In addition, 
no correlation was found between the patients with CHD and 
the non‑CHD control individuals. Therefore, the rs1049007, 
rs235768 and rs17563 genetic variations of BMP‑2 were not 
associated with CHD in the Chinese Han population.

Introduction

Congenital heart disease (CHD) is a common, complex illness 
with high rates of morbidity and mortality, the genetic etiology 
of which emains to be fully elucidated  (1,2). Worldwide, 
the incidence of moderate and severe CHD is ~6/1,000 live 
births, however, if small muscular ventricular septal defects 
(VSDs) and other minor lesions are included, the incidence is 
~75/1,000 live births (3). Appropriately, 1% of patients with 
CHD require intervention (4), and ~13% of patients with CHD 
show recognizable chromosomal variants (5,6). The majority 
of adult patients with show a variety of cardiac complications, 
including coronary heart disease, arrhythmias and heart 
failure  (7). Although extensive genetic investigations and 
high‑resolution technologies have revealed subtle defects in 
familiar and sporadic cases of CHD (2,8), the subtle genetic 
causes and molecular mechanisms of CHD remain to be fully 
elucidated.

In embryonic development, the heart is the first formed 
organ, which is strictly controlled by gene regulatory networks, 
including transcription factors, signaling pathways, epigenetic 
factors and microRNAs (2,9,10). During the last few decades, 
several cardiac‑enriched transcription factors have been 
identified, and a variety of CHD‑causing mutations have been 
identified in those factor genes, which provide molecular 
markers and models for the analysis of heart development 
and the molecular mechanisms underlying CHD (6,11). For 
example, NKX2‑5 is a member of the NK‑2 class homeodo-
main proteins, and is among the earliest markers of cardiac 
specification. Drosophila embryos fail to form a heart in the 
presence of a mutant NKX gene (12) and, if the functions of 
the NKX family members are inhibited, vertebrate embryos 
also fail to form a heart (13). The zinc finger binding proteins, 
GATA binding protein (GATA)‑4, ‑5 and ‑6, are also members 
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of cardiac‑enriched transcription factors, and are expressed 
early in heart development, being involved in the initial steps 
of cardiomyocyte differentiation (14). Mutations in GATA‑4 
have been identified to be associated with CHD (15), and a 
variety of other CHD‑causing gene mutations have been iden-
tified, includingCITED2 (16), CFC1 (17) and TBX1 (18). These 
gene are critical in cardiac development; mutations in these 
genes lead to cardiovascular malformations and contribute to 
CHD (19).

In non‑precardiac mesoderm, the expression of the 
heart‑specific transcription factors, NKX2‑5 and GATA‑4, can 
be induced by BMP‑2 and ‑4, and inhibition of BMP‑2 and ‑4 
signaling inhibits the late expression of NKX2‑5 and affects 
the cardiac differentiation (20). In zebrafish, the BMPs also 
have a direct role in development of heart tube looping (21), 
and in Xenopus, BMP‑2 and ‑4 are broadly expressed in the 
anterior endoderm and cardiac mesoderm, prior to cardiac 
differentiation in heart development (22‑24). The inhibition of 
BMP signaling in mice lacking Sma6, leads to the development 
of hyperplasia in heart valves and defects in the aorticopulmo-
nary septum (25).

BMP‑2 and ‑4 have important functions at multiple stages 
of cardiogenesis, particularly in the initial induction of heart 
development. However, the exact nature of these roles, and 
the association between BMP‑2 and ‑4, with CHD remains 
to be elucidated. To determine whether there is an associa-
tion between BMP‑2 and ‑4, and CHD, the gene sequences of 
BMP‑2 and ‑4 were compared between 230 Chinese Han 
patients with CHD and 160 control individuals, focusing on the 
rs1049007, rs235768 and rs17563 SNP genetic variations. The 
results revealed no correlation between these candidate SNPs 
and the risk of CHD, and the BMP‑2 rs1049007, rs235768 and 
BMP‑4 rs17563 genetic variations may not be risk factors for 
CHD.

Materials and methods

Study population. A total of 230 patients with CHD and 
160 control subjects with no reported cardiac phenotypes 
were recruited for the present study from the Second 
Affiliated Hospital of Harbin Medical University (Harbin, 
China), as shown in Table I. Written informed consent was 
obtained from each participant and the study was reviewed 
by the Ethics Committee of Harbin Medical University, 
consistent with the 1975 Declaration of Helsinki (26,27). The 
Ethics Committee approved the study. Detailed records on 
the medical history, physical examination and chest X‑ray 
examination, electrocardiogram and ultrasonic echocardio-
gram were obtained.

BMP‑2 rs1049007 and rs235768, and BMP‑4 rs17563 SNP 
genotyping analysis and statistical methods. Whole genomic 
DNA was extracted from peripheral blood leukocytes using 
a QIAamp DNA Blood Mini Kit (cat. no. 51104; Qiagen, 
Hilden, Germany) (28). The genotypes for the rs1049007, 
rs235768 and rs17563 SNPs associated with the BMP‑2 
and ‑4 genes, respectively (Fig. 1), were determined using 
a two‑stage method. First, rs1049007, rs235768 and rs17563 
(Table II) were amplified using standard procedures (2,6,29), 
following which the PCR products were sequenced 

(Genewiz, Inc., South Plainfield, NJ, USA) to determine the 
genotype (Fig. 2). The statistical analyses were performed 
using χ2 tests (descriptive statistic crosstalk) to calculate the 
odds ratios and P‑values, implemented using SPSS software 
(version 13.0; SPSS, Inc., Chicago, IL, USA). In addition, 
Online Encyclopedia for Genetic Epidemiology studies 
(OEGE; http://www.oege.org/software) online software was 
used to perform the Hardy‑Weinberg equilibrium test for the 
CHD and control populations.

Multiple sequence alignment. From the National Center 
for Biotechnology Information website (http://www.ncbi.
nlm.nih.gov/), the BMP‑2 and ‑4 protein sequences of 
various species were obtained. Using Vector NTI software 
(Suite  9; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA), multiple‑sequence alignments of these proteins were 
performed.

Results

Patients. Clinical diagnosis of the recruited patients was 
confirmed at the Second Affiliated Hospital of Harbin 
Medical University. There were no histories of other systemic 
abnormalities in the patients with CHD, and their mothers 
had no history of taking medicines or contracting infections 
during pregnancy (30).

BMP genotyping and statistical analysis. To confirm the 
hypothesis that there are possible associations between 
BMPs, which inhibit the late expression of NKX2‑5 and 
affects cardiac differentiation (20), and CHD, the present 
study performed SNP analyses. No significant differences 

Table I. Clinical characteristics of the study populations.

Parameter	 CHD	 Control

Sample (n)	 230	 160
Male/Female (n)	 142/88	 105/55
Age (years)	 16.18±10.22	 7.88±11.96

Data are presented as the mean ± standard deviation; CHD, con-
genital heart disease.
 

Figure 1. Schematic diagrams of rs1049007, rs235768 and rs17563 locations 
within the translated regions of the BMP‑2 and ‑4 genes. BMP, bone mor-
phogenetic protein.
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were found between the patients with CHD and the 160 
CHD‑free control individuals in relation to the risk of 
CHD (Tables III and IV). The present study also performed 
Hardy‑Weinberg equilibrium tests for the patients with CHD 

and control individuals, and found that the χ2 value was 
3.06 for the patients with CHD and 2.86 for the CHD‑free 
control individuals. The results were concordant with the 
Hardy‑Weinberg equilibrium.

Table II. Polymerase chain reaction primers used for BMP genotyping sequence analysis.

	 Single nucleotide			   Temperature
Gene	 polymorphism	 Primer	 Size (bp)	 (˚C)

BMP2	 rs1049007	 Forward CGGGACCCGCTGTCTTCT	 455	 60.5
		  Reverse TGGAAACGTCCGCTGGTG		
	 rs235768	 Forward CCCACGGAGGAGTTTATC	 275	 52.5
		  Reverse GCCACTTCCACCACGAAT		
BMP4	 rs17563	 Forward CCCCACTTATCTGCTCCT	 500	 52.8
		  Reverse AGTTTGGCTGCTTCTCCC		

BMP, bone morphogenetic protein.
 

Table III. Genotype and allele frequencies of the rs1049007, rs235768 and rs17563 SNPs in 230 Chinese Han patients with 
CHD and 160 non‑CHD control individuals.

SNP	 Group	 n	 Genotype frequency, n (%)	 Allele frequency, n (%)

rs1049007			   G/G	 A/G	 A/A	 G	 A
	 CHD	 230	 155 (67.4)	 68 (29.6)	 7 (3.0)	 378 (82.2)	 82 (17.8)
	 Control	 160	 103 (64.4)	 54 (33.8)	  3 (1.9)	 260 (81.3)	 60 (18.8)
rs235768			   T/T	 T/A	 A/A	 T	 A
	 CHD	 230	 142 (61.7)	 80 (34.8)	 8 (3.5)	 364 (79.1)	 96 (20.9)
	 Control	 160	 97 (60.6)	 57 (35.6)	 6 (3.8)	 251 (78.4)	 69 (21.6)
rs17563			   T/T	 T/C	 C/C	 T	 C
	 CHD	 230	 114 (49.6)	 96 (41.7)	 20 (8.7)	 324 (70.4)	 136 (29.6)
	 Control	 160	 85 (53.1)	 62 (38.8)	 13 (8.1)	 232 (72.5)	 88 (27.5)

SNP, single nucleotide polymorphism; CHD, congestive heart disease.
 

Table IV. rs1049007, rs235768 and rs17563 SNPs within BMP‑2 and ‑4 are not associated with risk of congenital heart disease.

	 Pearson's χ2	 Pearson's R
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ 
						      Asymp.		
Genotyped		  Genotype/		  Min		  P‑value	 Pearson's	 Asymp. 	 Approx. 	 Approx. 
SNP	 Gene	 allele	 χ2	 counta	 df	 (2‑sided)	 R‑value	 SEb	 T‑valuec	 P‑valued

rs1049007	 BMP2	 Genotype	 1.160	 4.10	 2	 0.560	 0.017	 0.050	 0.337	 0.737d

		  Allele	 0.108	 58.26	 1	 0.742	 0.012	 0.036	 0.329	 0.743d

rs235768	 BMP2	 Genotype	 0.568	 5.74	 2	 0.972	 0.012	 0.051	 0.239	 0.811d

		  Allele	 0.054	 67.69	 1	 0.816	 0.008	 0.036	 0.233	 0.816d

rs17563	 BMP4	 Genotype	 0.479	 13.54	 2	 0.787	‑ 0.032	 0.051	‑ 0.623	 0.534d

		  Allele	 0.393	 91.90	 1	 0.531	‑ 0.022	 0.036	‑ 0.626	 0.531d

aMinimum expected count; bNot assuming the null hypothesis; cUsing the asymptotic standard error assuming the null hypothesis; dBased 
on normal approximation. df, degrees of freedom; Asymp, asymptomatic; Approx, approximate; SNP, single nucleotide polymophism; BMP, 
none morphogenetic protein.
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Figure 2. DNA sequence chromatograms of the rs1049007, rs235768 and rs17563 single nucleotide polymorphisms. (A) rs1049007; (B) rs235768; (C) rs17563. 
Arrows indicate the sites of variation.

Figure 3. Multiple‑sequence alignment of BMP‑2 and ‑4 from birds, fish and mammals, including Homo sapiens, Pan troglodytes and Macaca mulatta. 
Conservation of 190Ser and 152Val residues in BMP‑2 and ‑4, respectively, were high and in a highly conserved regions. BMP, bone morphogenetic protein.

  A

  B

  C
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Conservation of proteins in evolution. The comparison of the 
BMP‑2 and ‑4 protein sequences between different species 
included birds, fishes, rodents and mammals, including Homo 
sapiens, Pan troglodytes and Macaca mulatta. The results 
of the multiple‑sequence alignment analysis showed that the 
conservation of the rs235768 and rs17563 variations were high; 
the rs1049007 variation did not alter the protein sequence. The 
conservation of the 190Ser and 152Val residues in BMP‑2 
and ‑4, respectively, were high and were located in highly 
conserved regions of the proteins (Fig. 3).

Discussion

BMP4, a member of the transforming growth factor (TGF)‑β 
family, is capable of causing human embryonic stem cells 
(hESCs) to differentiate, and this differentiation can occur 
without extensive generation of mesoderm and endoderm (31). 
When inhibiting the fibroblast growth factor (FGF)2 pathway 
and maximizing BMP4 signaling, BMP4 can direct the 
hESCs to differentiate towards syncytiotrophoblasts (32,33). 
The differentiation program induced by BMP4 involves rapid 
induction, and occurs prior to the expression of caudal type 
homeobox 2 and several other mesoderm marker genes (32,34). 
BMP2 is a homodimeric disulfide‑bonded protein and is also 
a member of the TGF‑β family (35‑37). Despite substantial 
differences in amino acid sequences with cystine‑knot 
growth factors, it has a similar monomer structure with the 
factor (38), and has a similar dimer structure with the TGF‑β 
family (39,40).

Several previous studies have shown that BMP‑2 and ‑4 
are implicated in the formation of the heart from the overlying 
mesoderm (41). The expression of the early cardiac markers, 
NKX2‑5 and GATA‑4, can be induced by BMP‑2 within anterior 
mesodermal cells, which are located close to the heart forming 
region (20,42). Following pretreatment with FGFs, BMP‑4 can 
increase the activity of the posterior mesoderm cells (20,43). If 
the expression of BMP‑2 and ‑4 are inhibited, cardiac differ-
entiation can be inhibited (20,44). Therefore, BMP‑2 and ‑4 
are essential in cardiogenesis, and the inductive functions 
of BMP‑2 and ‑4 may result from the interactions between 
BMP and other extracellular signaling molecules (45). BMP 
signaling is important in the formation of different early cell 
types from hESCs, including the mesoderm (46), endoderm (18) 
and trophoblasts (47). However, BMP signaling is not required 
for the expression of early markers of cardiac specification, 
including NKX2‑5, and GATA‑4, ‑5 and ‑6 (41,48). Therefore, 
the present study focussed on the rs1049007, rs235768 and 
rs17563 SNP genetic variations, the aim of which was to analyze 
the association between BMP‑2 and ‑4, and CHD.

Previously, Qian et al found that the rs762642 polymor-
phism in BMP4 may increase susceptibility to sporadic CHD, 
and that the polymorphism contributes to the susceptibilities 
to atrial septal defects and VSDs (49). In addition, it was 
found that the rs17563 SNP in BMP4 was not associated 
with the risk of CHD or types of CHD (49). These previous 
results do not conflict with the results of the present study. 
The rs762642 SNP is located within the intron between the 
first and second exon of BMP4, which may affect the function 
of the promoter and enhancer regions of the gene. Although 
the rs17563 SNP within the fourth exon resulted in an amino 

acid change within the CDS region of the gene, the SNP may 
not be as important as the rs762642 SNP for the function of 
BMP4.

In conclusion, the present study compared the gene 
sequences of BMP‑2 and ‑4 between 230 Chinese Han 
patients with CHD and 160 control individuals, focusing on 
the rs1049007, rs235768 and rs17563 SNP genetic variations. 
The meta‑analysis assisted in clarifying the associations 
between these SNPs with CHD, the results of which revealed 
that there were no correlations between these candidate SNPs 
and the risk of CHD in the Chinese population. The risk of 
developing CHD in individuals with these variants of the 
BMP‑2 and ‑4 genes may be low; the results of the present 
study demonstrated that these variations in the BMP‑2 and 
‑4 genes were not associated with CHD in the Chinese Han 
population.
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